
5th Int. Workshop on Robot Motion and Control, RoMoCo’05, 23–25 June 2005, Dymaczewo, Poland. pp.251–257

Applications of MRROC++ Robot Programming Framework

Cezary Zieliński Wojciech Szynkiewicz Tomasz Winiarski

C.Zielinski@ia.pw.edu.pl W.Szynkiewicz@ia.pw.edu.pl T.Winiarski@ia.pw.edu.pl
Warsaw University of Technology, Inst. of Control and Computation Engineering, Faculty of
Electronics and Information Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, POLAND

Abstract

The paper1 concentrates on the way that the MRROC++

robot programming framework has been applied to pro-

duce control systems for robots of different types per-

forming diverse tasks. Moreover, both a brief formal

specification and the method of implementation of the

MRROC++ based systems is presented.

1 Introduction

Programming frameworks [12] are application genera-
tors with the following components:
• library of software modules (building blocks out of
which the system is constructed),
• a method for designing new modules that can be
appended to the above mentioned library,
• a pattern according to which ready modules can be
assembled into a complete system jointly exerting
control over it and realizing the task at hand.
MRROC++ [31, 32] is a programming framework facili-
tating the implementation of single and multi-robot
system controllers executing diverse tasks. Its struc-
ture was derived by formalizing the description of the
general structure of multi-robot controllers [33, 34].
Its implementation was preceded by a version for sin-
gle robots (RORC [30, 28]), which was later substituted
by a non-object oriented version for multi-robot sys-
tems (MRROC [30, 29]). MRROC++ is derived from C++,
thus it is object oriented.
Work on robot programming frameworks has a long
history, but initially they were not distinguished from
robot programming libraries. Robot programming fra-
meworks have been especially favored by the research
community (e.g. RCCL [9], KALI [8, 7], PASRO [2], RORC
[30, 28], MRROC [30, 29], MRROC++ [31, 32], GenoM [5, 1],

1This work was supported by Polish Ministry of Science and
Information Technology grant: 4 T11A 003 25.

DCA [20], TCA [23], TDL [22], Generis [16], due to va-
riability and diversity of research tasks. Those two
factors render a specialized robot programming lan-
guage either useless, if with very limited capabilities,
or very similar to a general purpose programming lan-
guage. Currently efforts are being made to produce
public domain generic robot control software (e.g. the
OROCOS project [4]).

2 General specification of MRROC++

A system composed of ne+1 subsystems is considered.
The state of such a system is described by:

s = 〈s0, s1, . . . , sne
〉 (1)

where s0 is the state of the coordinator and sj , j =
1, . . . , ne, are the states of the subsystems. To be brief,
and because of contextual obviousness, the denota-
tions assigned to the components of the considered
system and their state are not distinguished. The state
of each subsystem sj , j = 1, . . . , ne, is represented by:

sj = 〈cj , ej, Vj , Tj〉 (2)

ej – state of the effector (i.e. a mechanical
device capable of influencing the environ-
ment),

cj – state of the subsystem controller (me-
mory: variables, program etc.),

Vj – bundle of virtual sensor readings,
Tj – information transmitted/received to/from

the coordinator.

The coordinator s0 does not posses an effector (a
body), but has the ability of gathering the informa-
tion from the environment, thus has a virtual sensor
bundle of its own. The state of the coordinator s0 is
described by:

s0 = 〈c0, V0〉 (3)



A constraint has been imposed on the structure of the
system by disallowing direct communication between
subsystems. However they can still communicate indi-
rectly, either through the coordinator or by stigmergy
[3], i.e. by observing the changes in the environment
caused by the other subsystems. This constraint sim-
plifies the implementation of the inter-subsystem com-
munication structure without significantly limiting its
functionality.
A bundle of virtual sensor readings assigned to a sys-
tem sj contains nvj

individual virtual sensor readings:

Vj = 〈vj1 , . . . , vjnvj
〉 (4)

Each virtual sensor vjk
, k = 1, . . . , nvj

, produces an
aggregate reading from one or more hardware sensors
– receptors. The data obtained from the receptors
usually cannot be used directly in motion control, e.g.
control of arm motion requires the grasping location of
the object and not the bit-map delivered by a camera.
In other cases a simple sensor would not suffice to con-
trol the motion (e.g. a single touch sensor), but several
such sensors deliver meaningful data. The process of
extracting meaningful information for the purpose of
motion control is named data aggregation and is per-
formed by virtual sensors. Thus the kth virtual sensor
reading obtained by the subsystem sj is formed as:

vjk
= fv

jk

(cj , Rjk
) (5)

where Rjk
is a bundle of receptor readings used for

the creation of the kth virtual sensor reading.

Rjk
= 〈rj

k1

, . . . , rjknr
〉 (6)

where nr is the number of receptor readings rj
kl

, l =

1 . . . , nr, taken into account in the process of forming
the reading of the kth virtual sensor of the subsystem
sj .
There are diverse methods of expressing effector state
ej , e.g. a manipulator can be perceived as:
• a set of actuators (with angular or translational
shaft positions),
• a sequence of links (with angular or translational
joint positions),
• an end-effector (with a coordinate frame affixed to
the end-effector).
The responsibility of the controller cj of the subsys-
tem sj is to: gather information about the environ-
ment through the associated virtual sensor bundle Vj ,
obtain the information from the coordinator s0, mo-
nitor the state of its own effector ej, and to process
all of this information to produce: a new state of the
effector ej , influence the future functioning of the vir-
tual sensors Vj , and communicate with the coordina-
tor. As a side effect the internal state of the controller

cj of the subsystem sj changes. Thus three types of
components of the subsystem controller must distin-
guished:

• input components providing the information about:
the state of the effector, virtual sensor readings and
the messages obtained from the coordinator (they
use a leading subscript x),
• output components exerting influence over: the
state of the effector, configuration of virtual sensors
and the messages to be transmitted to the coordi-
nator (they use a leading subscript y),
• other resources needed for data processing within
the subsystem controller (without a leading subs-
cript).

xci
Tj yci+1

Tj

transmission
buffers

xci
Vj

yci+1

Vj

sensor
images

yci+1
ej xci

ej

effector
images

c
i/i+1
cj

internal
variables

cj

ej

effector
control/state

transmission
from/to coordinator

sensor
reading/
command

Vj

Rjk

real sensor
reading/
command

Figure 1: Subsystem sj, j = 1, . . . , ne

The following components have been distinguished
(fig.2):

xcej
– input image of the effector (a perception
of the effector by the subsystem controller
as produced by processing the input sig-
nals transmitted from the effector to the
controller, e.g. motor shaft positions, joint
angles, end-effector location),

xcVj
– input images of the virtual sensors (cu-
rrent virtual sensor readings – subsystem
controller’s perception of the sensors and
through them the environment),

xcTj
– input of the coordinator’s commands,

ycej
– output image of the effector (this is a per-
ception of the effector by the subsystem
controller as needed to produce adequate
control signals),



ycVj
– output images of the virtual sensors (cu-
rrent configuration and commands contro-
lling the virtual sensors),

ycTj
– output of the messages to the coordinator,

ccj
– all the other relevant variables taking part
in data processing within the subsystem
controller.

From the point of view of the system designer the
state of the subsystem controller changes at a servo
sampling rate or a low multiple of that. If i denotes
the current instant, the next considered instant is
denoted by i+ 1. The subsystem controller uses:

xci
j = 〈c

i
cj

, xci
ej

, xci
Vj

, xci
Tj
〉 (7)

to produce:

yc
i+1
j = 〈ci+1

cj
, yci+1

ej
, yci+1

Vj
, yci+1

Tj
〉 (8)

and hence:






















ci+1
cj

= fccj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
ej

= fcej
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Vj

= fcVj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

yci+1
Tj

= fcTj
(ci

cj
, xci

ej
, xci

Vj
, xci

Tj
)

(9)

or more compactly:

yci+1
j = fcj

(xci
j) (10)

In the process of producing the output values yci+1
j

the values of inputs xci
j and internal variables ci

cj
are

used. The internal variables change their values, thus
ci+1
cj
is created – those will be the values of internal

variables at the onset of motion step i + 1. All of
the mentioned quantities are stored in the subsystem
controller’s memory, thus their values form the total
state of the controller.
Delivering just one set of functions (9) for the whole
duration of the subsystem’s activity would be a formi-
dable task, hence a method of decomposition is propo-
sed. It consists in specifying the subsystem’s actions
in terms of motion commands, which are implemented
as Move instructions. The semantics of those instruc-
tions is defined in fig.2. Here the single vector func-
tion (10) is decomposed into a sequence of nm vector
function triplets: mf ′cj

, mf ′′cj
and mfτj

, m = 1, . . . , nm.
Each triplet is associated with a single Move instruc-
tion. Within each triplet the function mf ′cj

describes
the first step of the Move instruction, whereas the func-
tion mf ′′cj

describes the behaviour of the subsystem in
each next step. The Boolean function mfτj

determines
the number of steps executed within the Move instruc-
tion. This number results from testing the instruction
termination condition described by mfτj

.

�
�

�

BEGIN (i := i0)

Generate new effector position ⇒ yc
i+1
ej
= mf ′cej

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Generate new sensor command ⇒ yc
i+1
Vj
= mf ′cVj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Generate response to the coordinator ⇒ yc
i+1
Tj
= mf ′cTj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Compute the values of internal variables ⇒ ci+1
cj
= mf ′ccj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

?

Demand new sensor readings Vj ⇒ yc
i+1
Vj

֌ Vj

Send messages to the coordinator s0 ⇒ yc
i+1
Tj

֌ cT0

Initiate motion to position ci+1
ej
⇒ yc

i+1
ej

֌ ej

?

i := i+ 1
?

Get current effector state: ej ⇒ ej ֌ xc
i
ej

Get current sensor readings Vj ⇒ Vj ֌ xc
i
Vj

Receive messages from the coordinator s0 ⇒ cT0 ֌ xc
i
Tj

?

Evaluate the terminal condition mfτj
(ci

cj
, xc

i
ej

, xc
i
Vj

, xc
i
Tj
)

?

�
�

@
@

@
@

�
�

?
YES Is the terminal condition satisfied?

mfτj
(ci

cj
, xc

i
ej

, xc
i
Vj

, xc
i
Tj
) = true?

NO

?�
�

�

END (i = if )

?

Generate next effector position ⇒ yc
i+1
ej
= mf ′′cej

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Generate next sensor command ⇒ yc
i+1
Vj
= mf ′′cVj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Generate response to the coordinator ⇒ yc
i+1
Tj
= mf ′′cTj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

Compute the value of internal variables ⇒ ci+1
cj
= mf ′′ccj

(ci
cj

, xc
i
ej

, xc
i
Vj

, xc
i
Tj
)

6

?

Figure 2: Move instruction semantics (where ’֌’
stands for the transfer of data)

3 Implementation

The above general specification of the system can be
implemented using diverse software technologies. The
most convenient way is to use the facilities (i.e. proces-
ses, threads, inter process communication) provided
by real-time operating systems (RTOS) and to distin-
guish the coordinator and the subsystems as processes.
Even smaller granularity is of benefit, thus virtual sen-
sors also have been implemented as separate processes.
Taking into account that effector control depends on
both the task that is to be executed and the hardware
that is to be controlled it is reasonable to separate
those two functions, hence two processes have been
assigned to each of the subsystems. MRROC++ based
control systems are implemented following the pat-
tern depicted in fig.3. MRROC++ is coded in C++ using
object-oriented programming paradigm. It currently
uses QNX ver.6.3 RTOS.

The coordinator s0 is implemented as the Master Pro-
cessMP supplemented by zero or more Virtual Sensor
Process VSP. Each subsystem sj is composed of Ef-
fector Control Process ECP, Effector Driver Process
EDP supplemented by zero or more Virtual Sensor
Process VSP. Both EDP and VSPs depend on the as-



Operator

User Interface
Process UI

Master Process
MP

Effector Control
Process ECPj

Effector Driver
Process EDPj

Effector ej

Virtual Sensor
Process VSP (vjk

)

Receptors Rjk

Hardware
layer

Hardware
dependent layer

Task dependent
layer

System
dependent layer

Figure 3: A MRROC++ based system structure

sociated hardware, whereas MP and ECPs are hard-
ware independent, but depend on the task that is to be
executed by the system. This division highly simplifies
coding. When the hardware configuration is fixed the
programmer with each new task modifies only the MP
and the ECPs. Only when this configuration has to
be changed, e.g. by introducing a new type of manipu-
lator, a new EDP and ECP has to be appended to the
system. The code of ECP contains the Move instruc-
tions and the definitions of vector function triplepts:
mf ′cj
, mf ′′cj

and mfτj
(forming a motion generator of the

instruction). The code of MP contains similar Move
instructions [34], but they refer to all the coordinated
effectors, whereas the Move instructions within ECPs
refer to single effectors. The User Interface Process UI
depends only on the number of effectors constituting
the system. It is responsible for presenting the sys-
tem status to the operator and enables the operator
to start, pause, resume or terminate the execution of
the task.

4 Selected applications

MRROC++ has been used to create controllers for several
prototype robots executing diverse tasks:
• Serial-parallel robot exhibiting high stiffness and
having a large work-space [14, 18, 13, 35], thus well
suited to milling (fig.4(a)) and polishing (fig.4(b))
tasks [15],

• Direct-drive robot without joint limits (fig.6(e)) [17,
19], hence applicable to fast transfer of objects,
• Two IRp-6 robots (fig.6(a)) acting as a two-handed
manipulation system [37, 24]. In this case the in-
dustrial controllers of the robots were substituted
by our own hardware [36].
The control programs can be simulated prior to their
execution or in parallel to it [6]. Graphic simulation
of the robot and its environment (fig.6(d))is run on a
separate computer supervised by the Windows opera-
ting system. A separate ECP and EDP process pair
is created. The EDP instead of issuing motor com-
mands, causing the motions of the real robot, contacts
the simulation computer by using the TCP/IP proto-
col. Those commands are used to animate the robot
on the screen.

(a) RNT robot milling in
wood

(b) RNT robot polishing me-
tal

Figure 4: Industrial applications of the RNT robot
with MRROC++ controllers

An IRp-6 robot mounted on a track and equipped with
a force/torque sensor has been applied to the execu-
tion of three benchmark tasks [26]. The first task con-
sisted in following an unknown contour (fig. 5(a)), the
second in moving a crank 5(b) and the third in copying
drawings (fig.6(b)).
Both the first and the second task use the same con-
trol algorithm, thus the EDP processes and the ECP
processes are exactly the same. In both cases the end-
effector moves in the horizontal plane. The direction
of force command in each macrostep results from the
previously measured real direction of force being ap-
plied to the surface of an object. In the case of contour
following it was the surface an iron block (fig. 5(a))
and in the case of moving the crank it was the inter-
nal surface of the hole in the crank, into which the
end-effector was inserted (fig. 5(b). In the orthogonal
direction the end-effector was position controlled. In



(a) Following an unknown
contour

(b) Rotating a crank

Figure 5: An Irp6 robot postion–force MRROC++ con-
trolled applications

both tasks the force sensor is treated as a propriocep-
tor, thus its readings are utilized only in the EDP and
the ECP. No VSP was necessary.

In drawing copying task the force sensor was used to
manually guide the robot holding a pen through the
motions producing a drawing. During that phase the
robot was fully compliant and positions were recorded
at certain intervals of time – the teach-in phase. Besi-
des continuous force control the sensor was also used
for detecting vertical jerks signalling the necessity of
lifting the pen off or lowering it onto the surface of
the paper to transfer it to another area of the dra-
wing. Once the drawing was complete the pen held
by the robot was displaced to a new location and the
mode of operation was switched to partially compliant
– reproduction phase. In that phase the robot was po-
sition controlled in the plane of the drawing and it was
force controlled in the axis normal to the drawing. In
that way the pen could adjust itself to the unevenness
of the surface on which the drawing paper rested. In
this task the force-torque sensor played a dual role, so
besides being used as a proprioceptor and thus being
utilized directly by the EDP, an extra VSP detecting
jerks had to be added.

For the purpose of position–force controlled tasks,
a special control algorithm was implemented in
MRROC++. This algorithm is compatible with
the TFF (Task Frame Formalism) specifica-
tion. Hence the ECP process sends the macros-
tep command to the EDP process containing:
local reference frame - related to either: the tool
frame (relative mode) or the global frame (absolute
mode), pos xyz rot xyz, force xyz torque xyz and
selection vector are vectors with six components
each; the selection vector determines along or
about which axes of the local reference frame
position/orientation is controlled and along/about
which force/torque is controlled; the pos xyz rot xyz

and force xyz torque xyz determine the set values
of translation/rotation and force/torque along/about
the selected axes; the translation/rotation components
in the directions selected as force/torque controlled
are irrelevant and vice versa, thus out of the twelve
components of the two vectors (pos xyz rot xyz and
force xyz torque xyz) only six are relevant.

(a) The two IRp-6 robot system

(b) Drawing copying robot

(c) Draughts playing robot

(d) Simulation of an
IRp-6 robot and a con-
veyor

(e) The Polycrank ro-
bot

Figure 6: Utilization of MRROC++ in simulation and
control of diverse robot systems

Moreover, MRROC++ was used to construct a robotic
system playing draughts (fig.6(c)) against a human
player [25]. The overall experimental setup consis-
ted of an IRp-6 robot with a Mitsubishi 400E CCD
color camera with a lens having a focal length of
f = 3.9 − 54.9 mm. The images delivered by the ca-
mera were transmitted to a frame grabber at a frame
rate of 25 Hz. The images contained blue or red
colored pieces on white background (the checkered
board was black and white). The pieces were distin-
guished from the environment based upon their co-
lor value. The color information was used to simplify



image analysis, i.e., object identification and extrac-
tion. One of the major problems was the effect of an
ever-changing illumination, as the change of illumina-
tion changes the perceived colors. To reduce this ef-
fect the Hue-Saturation-Value (HSV) color model was
used and the median non-linear filter was applied. The
VSP on the basis of an image obtained from the ca-
mera produced a data structure representing the cu-
rrent state of the board. The ECP used this data
structure to deduce the best move in terms of a certain
heuristic. The α–β pruning algorithm [21] was applied
to a tree of possible moves, five game-moves ahead.
The best move was transformed into trajectories for
the robot, represented as a sequence of Move instruc-
tions, and those were executed. An electromagnetic
gripper was used for picking colored iron pieces. The
transformation between the end-effector frame and the
camera frame was only roughly known. The calibra-
tion process was performed by an operator before the
game session. The force sensor was used to manually
guide the end-effector to the two opposite corners of
the board. Positions of the corners were recorded and
used to calculate the transformation between adequate
frames.

5 Conclusions

The formal description of robotic systems proved ins-
trumental in the specification of the MRROC++ robot
programming framework. Subsequently the creation
of robot controllers executing diverse tasks by using
MRROC++ turned out fairly simple. Work is being con-
tinued on ever more complex systems, which in due
time will be a basis for the creation of a fully fledged
service robot. Currently the abilities of hearing [10]
and speaking [11] are being added. The robot will be
able to comprehend Polish language commands and
respond to them by a synthesized voice. Moreover,
two-handed manipulation using visual and force feed-
back is integrated with the system.
MRROC++ based controller is a real-time application,
currently running under control of the QNX Neu-
trino ver.6.3 RTOS. A common problem with real-time
application development is that each OS is usually
equipped with its own proprietary API. However, in
MRROC++ environment POSIX-standard API is being
used, and OS-specific extensions are being avoided.
Therefore, MRROC++ source code can be readily ported
from QNX to another RTOS with POSIX API.
MRROC++ controller program consists of several con-
currently running multi-threaded processes. Due to
modular structure together with message passing IPC
those processes can be easily distributed over the lo-

cal network. Then, appropriate amount of computing
power can be made available at each node to meet the
needs of each task performed by robotic system.

References

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab M., and
Ingrand F. An architecture for autonomy. Int. J. of
Robotics Research, 17(4):315–337, 1998.

[2] C. Blume and W. Jakob. PASRO: Pascal for Robots.
Springer-Verlag, Berlin, 1985.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems. Ox-
ford University Press, New York, Oxford, 1999.

[4] H. Bruyninckx. Orocos – open robot control software.
http://www.orocos.org/, 2002.

[5] S. Fleury and M. Herrb. Genom user’s guide. Report,
LAAS, Toulouse, December 2001.

[6] G. Górski. Visualization of a working robot. B.Eng.
Thesis, Faculty of Electronics and Information Te-
chnology, Warsaw University of Technology (in Po-
lish), 2004.

[7] V. Hayward, L. Daneshmend, and S. Hayati. An over-
view of KALI: A system to program and control co-
operative manipulators. In K. Waldron, editor, Ad-
vanced Robotics, pages 547–558. Springer-Verlag, Ber-
lin, 1989.

[8] V. Hayward and S. Hayati. KALI: An environment
for the programming and control of cooperative ma-
nipulators. In Proc. American Control Conference,
pages 473–478. 1988.

[9] V. Hayward and R. P. Paul. Robot manipulator con-
trol under unix RCCL: A robot control C library. Int.
J. Robotics Research, 5(4):94–111, Winter 1986.

[10] W. Kasprzak and A. Okazaki. Applying independent
component analysis for speech feature detection. In
11th Int. Workshop on Systems, Signals and Image

Processing IWSSIP04, Poznań, Poland, pages 323–
326. 13-15 September 2004.

[11] S. Kula, P. Dymarski, A. Janicki, C. Jobin, and
P. Boula de Mareuil. Prosody control in a diphone-
based speech synthesis system for polish. In Prosody
2000 Workshop: Speech Recognition and Synthesis,

Cracow, pages 135–142. 2000.

[12] M. E. Markiewicz and C. J. P. Lucena. Object orien-
ted framework development. ACM Crossroads, 7(4),
2001.

[13] K. Mianowski. Parallel and serial-parallel robots for
the use of technological applications. In Proceedings of
the Parallel Kinematic Machines PKM’99, November,

Milano, Italy, pages 39–46. 1999.



[14] K. Mianowski and K. Nazarczuk. Parallel drive of
manipulator arm. In Proceedings of the 8th CISM-
IFToMM Symposium on Theory and Practice of Ro-

bots and Manipulators Ro.Man.Sy 8, Cracow, Poland,

2–6 July, pages 143–150. 1990.

[15] K. Mianowski, K. Nazarczuk, M. Wojtyra, and
S. Ziętarski. Application of the unigraphics system
for milling and polishing with the use of rnt robot.
In Proceedings of the Workshop for the users of UNI-
GRAPHICS system, Frankfurt, November, pages 98–
104. 1999.

[16] E. R. Morales. Generis: The ec-jrc generalised soft-
ware control system for industrial robots. Industrial
Robot, 26(1):26–32, 1999.

[17] K. Nazarczuk and K. Mianowski. Polycrank – fast
robot without joint limits. In Proceedings of the 12-th
CISM-IFToMM Symposium on Theory and Practice

of Robots and Manipulators Ro.Man.Sy’12, Vienna,

6–9 June, pages 317–324. Springer-Verlag, 1995.

[18] K. Nazarczuk, K. Mianowski, A. Olȩdzki A., and
C. Rzymkowski. Experimental investigation of the ro-
bot arm with serial-parallel structure. In Proceedings
of the 9-th World Congress on the Theory of Machi-

nes and Mechanisms, Milan, Italy, pages 2112–2116.
1995.

[19] K. Nazarczuk, K. Mianowski, and S. Łuszczak. Deve-
lopment of the design of polycrank manipulator wit-
hout joint limits. In Proceedings of the 13-th CISM-
IFToMM Symposium on Theory and Practice of Ro-

bots and Manipulators Ro.Man.Sy 13, Zakopane, Po-

land, 3–6 July, pages 285–292. 2000.

[20] L. Petersson, D. Austin, and H. Christensen. Dca:
A distributed control architecture for robotics. In
Proc. Int. Conference on Intelligent Robots and Sys-

tems IROS’01. 2001.

[21] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Upper Saddle River,
N.J., 1995.

[22] R. Simmons and D. Apfelbaum. A task description
languagefor robot control. In International Confe-
rence on Itelligent Robots and Systems IROS’98. Vic-

toria, Canada. October 1998.

[23] R. Simmons, R. Goodwin, C. Fedor J., and Basista.
Task control architecture: Programmer’s guide to ver-
sion 8.0. Carnegie Mellon University, School of Com-
puter Science, Robotics Institute, May 1997.

[24] W. Szynkiewicz. Motion planning for multi-robot
systems with closed kinematic chains. In Proce-
edings of the 9th IEEE International Conference on

Methods and Models in Automation and Robotics

MMAR’2003, Międzyzdroje, pages 779–786. August
25-28 2003.

[25] P. Topór. Utilization of visual information in robot
control on an example of the game of checkers. B.Eng.

Thesis, Faculty of Electronics and Information Te-
chnology, Warsaw University of Technology (in Po-
lish), 2004.

[26] T. Winiarski and C. Zieliński. Test-bed for the inves-
tigation of position–force robot control algorithms. In
8-th National Conference on Robotics, Polanica Zdrój.
June, 23–25 2004 (in Polish).

[27] C. Zieliński. TORBOL: An object level robot pro-
gramming language. Mechatronics, 1(4):469–485,
1991.

[28] C. Zieliński. Flexible controller for robots equipped
with sensors. In 9th Symp. Theory and Practice of Ro-
bots and Manipulators, Ro.Man.Sy’92, Udine, Italy,

Lect. Notes: Control and Information Sciences 187,
pages 205–214. Springer-Verlag, Berlin, September 1–
4, 1992 1993.

[29] C. Zieliński. Control of a multi-robot system. In
2nd Int. Symp. Methods and Models in Automation

and Robotics MMAR’95, Międzyzdroje, Poland, pages
603–608. 30 Aug.–2 Sept. 1995.

[30] C. Zieliński. Robot Programming Methods. Publishing
House of Warsaw University of Technology, Warsaw,
1995.

[31] C. Zieliński. Object–oriented programming of multi–
robot systems. In Proc. 4th Int. Symp. Methods
and Models in Automation and Robotics MMAR’97,

Międzyzdroje, Poland, pages 1121–1126. August 26–
29 1997.

[32] C. Zieliński. The MRROC++ system. In 1st Works-
hop on Robot Motion and Control, RoMoCo’99, Kie-

krz, Poland, pages 147–152. June 28–29 1999.

[33] C. Zieliński. Programming and control of multi-robot
systems. In 6th International Conference on Control,
Automation, Robotics and Vision, ICARCV’2000,

Singapore, pages on CD–ROM. December 5–8 2000.

[34] C. Zieliński. By how much should a general pur-
pose programming language be extended to become a
multi-robot system programming language? Advan-
ced Robotics, 15(1):71–95, 2001.

[35] C. Zieliński, K. Mianowski, K. Nazarczuk, and
W. Szynkiewicz. A prototype robot for polishing and
milling large objects. Industrial Robot, 30(1):67–76,
January 2003.

[36] C. Zieliński, A. Rydzewski, and W. Szynkiewicz.
Multi-robot system controllers. In Proc. of the 5th
International Symposium on Methods and Models in

Automation and Robotics MMAR’98, Międzyzdroje,

Poland, volume 3, pages 795–800. August 25–29 1998.

[37] C. Zieliński and W. Szynkiewicz. Control of two 5
d.o.f. robots manipulating a rigid object. In IEEE
Int. Symp. on Industrial Electronics ISIE’96, War-

saw, Poland, volume 2, pages 979–984. June 17–20
1996.


	Introduction
	General specification of MRROC++
	Implementation
	Selected applications
	Conclusions

