
4th Int. Workshop on Robot Motion and Control, RoMoCo’04, 17–20 June 2004, Puszczykowo, Poland. pp. 79–84

Specification of behavioural embodied agents

Cezary Zieliński
Warsaw University of Technology (WUT)

Institute of Control and Computation Engineering
ul. Nowowiejska 15/19, 00-665 Warsaw, POLAND, e-mail: C.Zielinski@ia.pw.edu.pl

Abstract

The paper1 presents a transition function based for-
malism for specifying robot programming frameworks.
It deals with systems consisting of multiple embod-
ied agents (e.g. robots), influencing the environment
through their effectors and gathering information from
the ambient through their sensors. The presented ex-
amples of its usage pertain to behavioural and hy-
brid behavioural-deliberative agents, but are not lim-
ited only to that.

1 Introduction

This paper deals with the problem of designing uni-
versal control software for systems:
• composed of multiple embodied (i.e. having a ma-
terial body) agents with initially unknown:
– number and type of effectors (devices within the
agents influencing the state of the environment),
– number and type of sensors (devices within the
agents gathering the information about the state
of the environment)
– communication means between the agents,
– information processing capabilities of the agents,
• with initially unspecified task to be executed by
both the system and separate agents.
As the variability of systems fulfilling such a general
specification is enormous the tool for the construction
of such systems must be very versatile. Because of the
above mentioned variability of both the structure and
the components of those systems the control software
must be open to the highest degree. The answer to
the so posed problem, that is provided by computer
science, is a tool named a programming framework [5].
In general, programming frameworks are application
generators with the following components:
• library of software modules (i.e. building blocks out
of which the system is constructed),
• a method for designing new modules that can be
appended to the above mentioned library,

1This work was supported by Polish Ministry of Science and
Information Technology grant: 4 T11A 003 25.

• a pattern according to which these modules can be
assembled into a complete system jointly exerting
control over it and realizing the task at hand.

Rational design of a programming framework requires
some specification tool. Here we shall concentrate on
specific programming frameworks, namely the ones
dealing with multi-agent systems, where the agents
have material bodies. Such a programming framework
is a tool for constructing multi-agent control systems,
but we still need a meta-tool for defining such a frame-
work. This paper presents a formal meta-tool for spec-
ifying the modules of a programming framework that
is well suited to building control systems consisting of
one or more embodied agents. The proposed meta-tool
has been verified by presenting several specifications
of agents utilizing behavioral, fuzzy and deliberative
approaches to their control [10].

Summarizing, the paper proposes a formal method of
describing multi-agent systems lending itself to struc-
turing and implementation of a general programming
framework for producing such systems. The presented
formalism is a generalization of the approach used to
define and implement the MRROC++ [8, 9, 11] robot pro-
gramming framework. MRROC++ based systems have ei-
ther a hierarchical structure or a structure composed
of independent entities. In both cases no direct inter-
action between the agents is possible. Obviously in-
direct interactions through sensing or upper layers of
hierarchy are possible. The formalism presented here
includes direct interactions between agents. Moreover,
diverse approaches to designing the internal principles
of operation of each agent are at the focus of this work.

Many behavioral [1] and deliberative [6] robot control
methods have been developed. Besides investigating
task execution by a single robot, multi-agent systems
are being developed. Unfortunately only some of those
control methods have a formal description. To aggra-
vate the situation, those control methods that have
formal specifications use different formal means of de-
scription. This paper presents an outline of a unified
formal description of systems composed of many em-
bodied agents using behavioral or deliberative control
methods. Such a description is needed to specify in
an implementation independent way the functional-



ity of programming frameworks. Transition function
based approach to the formal description of the above
mentioned systems has been assumed to facilitate the
future implementation of thus specified programming
frameworks. The presented description is a generaliza-
tion of the formal description used for the specification
of MRROC++ [8, 9].

2 Embodied agents

For the purpose of brevity, and because of contextual
obviousness, the denotations assigned to the compo-
nents of the considered system and their state will not
be distinguished. Let us consider a multi-agent system
consisting of na agents. The state of a single embodied
agent aj , j = 1, . . . , na, is:

sj =< cj , ej , Vj > (1)

cj – state of the control subsystem of the
agent (i.e. memory: variables, program),

ej – state of the effector of the agent,
Vj – bundle of virtual sensor readings utilized

by the agent.

A bundle of virtual sensor readings contains nvj indi-
vidual virtual sensor readings:

Vj =< vj1 , . . . , vjnvj
> (2)

Each virtual sensor vjk , k = 1, . . . , nvj , produces an
aggregate reading from one or more exteroceptors.
Exteroceptors, for brevity further on called simply re-
ceptors or real sensors, include all the measuring de-
vices gathering information from the environment of
the system. Interoceptors and proprioceptors, i.e. de-
vices for measuring the internal state of the system
(e.g. position encoders, resolvers), are not treated here
as proper receptors, because they supply data about
the state of the effectors (internal state of the agent)
and not the environment of the agent, and thus are
associated with the effector. The data obtained from
the receptors usually cannot be used directly in agent
motion control, e.g. to control the arm motion, one
would need the grasping location of the object that is
to be picked and not the whole bit-map delivered by
a camera. In some other cases a simple sensor in its
own right would not suffice to control the motion (e.g.
a single touch sensor), but several such sensors deliver
meaningful data. The process of extracting meaning-
ful information for the purpose of motion control is
named data aggregation and is performed by virtual
sensors. Thus the kth virtual sensor reading obtained
by the agent aj is formed as:

vjk = fvjk
(cj , Rjk) (3)

where Rjk is a bundle of receptor readings used for
the creation of the kth virtual sensor reading.

Rjk =< rjk1
, . . . , rjknr > (4)

where nr is the number of receptor readings rj
kl

,

l = 1 . . . , nr, taken into account in the process of form-
ing the reading of the kth virtual sensor of the agent
aj . It should be noted that (3) implies that the reading
of the virtual sensor depends also on cj . In this way
the agent has the capability of configuring the sensor
as well as delivering to the virtual sensor the relevant
information about the current state of the agent (in-
cluding its effector). This might be necessary in the
case of computing the reading of a virtual sensor hav-
ing its associated receptors mounted on the effector
(e.g. artificial skin).

ciTj ci+1Tj
transmission
buffers

ciVj

ci+1Vj

sensor
images

ci+1ej ciej
effector
images

c
i/i+1
cj

internal
variables

cj

effector
control/state

ce′
j

effector
control/state

ce′′
j

ej

effector
control/state

inter-agent

transmission

sensor
reading/
command

Vj

Rj

real sensor
reading/
command

Figure 1: A single embodied agent aj , j = 1, . . . , na

The responsibility of the agent’s control subsystem
cj is to: gather information about the state of the
environment through the associated virtual sensor
bundle Vj , obtain the information from the other
agents aj′ (j

′ 6= j), monitor the state of its own
effector ej , and to process all of this information to
produce: a new state of the effector ej , influence the



future functioning of the virtual sensors Vj , and send
out information to the other agents aj′ . As a side
effect the internal state of the control subsystem cj
changes. To do this effectively several components of
the control subsystem can be distinguished:

cej – image of the effector (this is a perception
of the effector by the control subsystem,
e.g. motor shaft positions, joint angles,
end-effector location),

cVj – images of the virtual sensors (i.e. current
virtual sensor reading and configuration),

cTj – inter-agent transmission (i.e. information
mutually transmitted between the agents),

ccj – all the other relevant variables.

Thus the control subsystem is partitioned:

cj =< ccj , cej , cVj , cTj > (5)

From the point of view of the system designer the state
of the control subsystem changes at a servo sampling
rate or a low multiple of that. If i denotes the current
instant, the next considered instant is denoted by i+1.
The control subsystem uses cij =< c

i
cj , c

i
ej , c

i
Vj
, ciTj >

to produce ci+1j =< ci+1cj , c
i+1
ej , c

i+1
Vj
, ci+1Tj >, i.e.:























ci+1cj = fccj (c
i
cj , c

i
ej , c

i
Vj
, ciTj )

ci+1ej = fcej (c
i
cj , c

i
ej , c

i
Vj
, ciTj )

ci+1Vj = fcVj (c
i
cj , c

i
ej , c

i
Vj
, ciTj )

ci+1Tj = fcTj (c
i
cj , c

i
ej , c

i
Vj
, ciTj )

(6)

or more compactly:

ci+1j = fcj (c
i
j) (7)

The control subsystem obtains the input values ciej ,

ciVj , c
i
Tj
through transmission from the other compo-

nents of the agent itself (e.g. effector, virtual sensors)
or the other agents. It also must transmit the com-
puted values ci+1ej , c

i+1
Vj
, ci+1Tj to the other elements of

the agent or to the other partners (fig. 1). If we do
not want to make any assumptions about the order
of those transmissions and do not assume that the
input and output images are of the same type (this
occurs very rarely) duplicates of those entities must
be stored. Only the internal variables ccj should have
a single representation. Hence the control subsystem
state can be represented as (fig. 1):

cj =< ccj , c
i
ej , c

i+1
ej , c

i
Vj , c

i+1
Vj
, ciTj , c

i+1
Tj
> (8)

Usually the control subsystem of an agent is not imple-
mented as a single entity (e.g. process). In that case
there is no direct link between ej and cej . Both the
input and the output effector images are being trans-
formed through several intermediate layers (fig. 1).

For example, in MRROC++ the Effector Control Process
(ECP), which is equivalent to the agent’s control sub-
system, sends motion commands formed in the output
effector image and receives the updates of the input
effector image through Effector Driver Process (EDP)
and Servo Group Process (SG) [8, 11]. This only in-
troduces multi-stage transmissions: ci+1ej ֌ ei+1j and

eij ֌ ciej , i.e. :

ci+1ej ֌ ci+1e′
j

֌ ci+1e′′
j

֌ ei+1j

eij ֌ cie′′
j

֌ cie′
j

֌ ciej
(9)

where the symbol “֌” represents a transmission
within a small fraction of a single time step. Some-
times the creation of a virtual sensor reading requires
a multi-stage process, e.g. Arkin [1] defines perceptual
schemas that have that property. This also can be
dealt with by a multi-stage aggregation and transmis-
sion similar to the one presented by (9).

3 A multi-agent system

The needs of communication between the agents are
defined by the arguments of the transition functions
(6). If the computation of any of the output values
requires some input data, this input data has to be
delivered to the agent’s control subsystem, and this
defines a connection between the source of this data
and the agent’s control subsystem.
The agents of the described system can act: purely
independently, they can interact directly through an
exchange of transmitted data (cTj ), they can also in-
teract indirectly by sensing (through the receptors)
the other agents or the results of their actions, or they
can be coordinated by a hierarchically higher entity,
i.e. a coordinator. The coordinator, for the sake of
consistency, can be treated as an abstract agent, i.e
an agent that does not posses an effector (a body).
Nevertheless, there is no reason to assume that the
abstract agent should not gather directly the informa-
tion from the environment, thus it can have a virtual
sensor bundle of its own. In this case it would de-
liver global information about the environment, e.g.
a camera gathering the information about the global
state of the football pitch in a RoboCup match. Let
us distinguish the coordinator by the subscript 0. In
the face of the above its state will be:

s0 =< c0, V0 > (10)

Hence the system state is described by:

s =< s0, s1, . . . , sna > (11)

The structure of the coordinator will not be discussed
further in this paper. Let it suffice to say that it can
be subdivided into other abstract subagents.



4 Internal functioning of an agent

Internal functioning of an agent is defined by the tran-
sition functions (6), (7). The flexibility of a program-
ming framework is located in the ability of express-
ing diverse approaches to programming the actions
of each agent, and so the formal description should
enable easy formulation of diverse control strategies.
Usually instead of computing a single set of functions
(6) many partial functions are evaluated and the fi-
nal result is obtained by a certain composition of the
partial results. Thus nf partial functions are defined:

ci+1j = mfcj (c
i
j), m = 1, . . . , nf (12)

Variability of agents is due to the diversity of those
functions. The more functions of this type is pro-
vided by a programming framework the more types of
agents we can construct. Moreover, the partial func-
tions (12) do not have to take as arguments all of
the components of cij . Here some interesting possibil-
ities are investigated. The diversity of those possibil-
ities is simultaneously the verification of the power of
the proposed specification meta-tool. The following
examples pertain to reactive, behavioural and hybrid
behavioural-deliberative control methods, but neither
the presented formalism nor the resulting frameworks
are limited to only those kinds of robot control.
In the case of a purely reactive system, sometimes also
called a reflex system, the choice of the function mfcj is
based on testing predicates qpcj , q = 1, . . . , np which

take as arguments only the components of ciVj . In

pseudo-code it can be expressed as:

if qpcj (c
i
Vj ) then c

i+1
j := mfcj (c

i
j) endif (13)

In actual systems an endless loop containing the con-
ditional instruction (13) must be constructed. Thus,
the pseudo-code will assume the following form:

loop

// Compute the next effector state
if 1pcj (c

i
Vj
) then ci+1j := 1fcj (c

i
j) endif

if 2pcj (c
i
Vj
) then ci+1j := 2fcj (c

i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
if nppcj (c

i
Vj
) then ci+1j := npfcj (c

i
j) endif

// Transmit the results of computations
// to the effector
ci+1ej ֌ ei+1j
endloop

(14)
where the comments are preceded by a double slash
and the symbol “֌” denotes transmission of data and
as a result the execution of motion as required.
In each step i one iteration of the loop (14) will be ex-
ecuted. If in each iteration, and thus in each control
step i, only one out of the np predicates

qpcj is true,

then a single function mfcj is selected as the one des-
ignating the next state of the agent. Usually in such a
case np = nf and therefore the endless loop contains
np instructions of the type (13). Obviously different
predicates can cause the same reaction, but usually
this is not the case, hence the functions in (14) have
been numbered 1 through np.
The system that is described in [7] performs the selec-
tion of the function mfcj for several consecutive steps,
i.e. the selection is less frequent than the evaluation
of the function, so the reaction is composed of several
steps. In that case a behavior is defined as a sequence
of states:

bij = {c
i+1
j , c

i+2
j , . . . , c

i+ns
j } (15)

where ns is the number of steps in a behavior (reac-
tion). As this behavior originates in cij it is labelled

with the superscript i, in other words it depends on cij .
The pseudo-code (13) represents a single-step behav-
ior, i.e. ns = 1. In the case of a multi-step behavior
the pseudo-code assumes the following form:

if qpcj (c
i
Vj ) then b

i
j(c
i
j) endif (16)

In the case (16) the decision as to which behavior
should be executed is taken once every ns steps. Nev-
ertheless, the transition between the state ci+ǫj and

ci+ǫ+1j , where ǫ = 0, . . . , ns − 1 is still computed on
the basis of the functions mfcj . The control program
is composed of an endless loop containing a sequence
of instructions of the form (16). In that case each
iteration of the loop contains several control steps i.

loop

// Select the next behavior
if 1pcj (c

i
Vj
) then 1bij(c

i
j) endif

if 2pcj (c
i
Vj
) then 2bij(c

i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
if nppcj (c

i
Vj
) then npbij(c

i
j) endif

endloop

(17)

Here the required computations (i.e. computation of
ci+ǫj , ǫ = 1, . . . , ns) and the execution of behaviors

(i.e. transmission: ci+1ej ֌ ei+1j ) are bundled together

within qbij(c
i
j), q = 1, . . . , np. The loop can be con-

structed in such a way that if none of the predicates
qpcj (c

i
Vj
) is true a default behavior, called the main

reaction or a goal pursuing reaction, is executed. The
other reactions deal with some abnormal situations –
hindering attaining of the goal.
If we use (15) and (17) as a combined definition of
a behaviour a recursive definition results, where (15)
defines an atomic behaviour, and (17) defines a com-
plex behaviour consisting of subbehaviours. In that
case within the behaviour a local set of predicates can
be used, thus producing a hierarchy of reactions with



a variable granularity. One way to deal with assign-
ing predicates to levels of behaviour is to look at the
time needed to process the information from the sen-
sors, i.e. ciVj . The more time required to perform the

processing the higher the level of behaviour that the
associated predicate triggers.
Rodney Brooks in [2, 3] uses inhibition and suppres-
sion (exchange) mechanism for the evaluation of the
final value of ci+1j – in this case the state of augmented
finite state automatons. Each of the automatons gen-
erates signals that are the result of a process equivalent
to the computation of functions mfcj . The suppression
and inhibition mechanism is equivalent to a selection
based not only on the values of input signals but also
on the priorities of automatons, i.e. priorities of the
partial functions. In this way higher level behaviors
can subsume the lower level ones.
In the case (14), where the computation of the next
effector state and its execution are separate, several
predicates qpcj can be true simultaneously. In that
case the values of several partial functions mfcj have to
be composed together. Many composition operators
can be conceived. Competitive methods are based on
some form of selecting one value out of the computed
values, e.g.:

ci+1j = max
m
{mfcj (c

i
j)} (18)

Cooperative methods are based on some form of su-
perposition of the computed values, e.g.:

ci+1j =

nf
∑

m=1

mfcj (c
i
j) (19)

(19) can be generalized by introducing weighted sums.
The purely reactive approach can be generalized if the
predicates qpcj take as arguments not only c

i
Vj
, but

also other components of cij , especially c
i
cj . A purely

deliberative system results, if for the generation of
ci+1j , functions having as arguments only c

i
cj are used.

This is rarely feasible in the case of embodied agents,
as the state of the environment cannot be fully pre-
dicted, hence sensor readings ciVj are necessary. In

this way a hybrid deliberative-reactive systems result.
Deliberation assumes the use of artificial intelligence
techniques [4] to find a plan (i.e. sequence) of actions
leading the execution of a task (goal) set forth before
the agent. This is implemented by search techniques.
Search requires the following entities:
• search space (i.e. problem domain) composed of
search state states – not to be mistaken with the
state of the environment or the agent itself,
• initial state, belonging to the search space – from
this state the search commences,
• operators, which transform the current search space
state into the next states (those operators may re-
sult either from production rules or be the side-effect
of application of predicate logic [4]),

• data structure accumulating the generated states
(i.e. the search tree or graph),
• goal test deciding whether the generated state is the
goal state
• path cost function, which evaluates the quality of
the obtained search space state – usually it takes
into consideration the cost of both the path tra-
versed so far and the remaining path to the goal
state (e.g. A∗ algorithm or its derivatives).
In the case of deliberative or hybrid systems ccj must
contain the data structures accumulating the gener-
ated states (i.e. problem solution). Deliberation is a
search process starting in the initial state of the prob-
lem solution. This state includes a partial description
of the current state of the agent, but also other search
related information. As the operators are applied new
problem solution states are generated. The operators
are equivalent to transition functions transforming one
problem solution state into another. Heuristics are in-
cluded in the path cost function and help in discard-
ing the produced states that either do not lead to a
solution or are along a far from optimal search path,
thus avoiding a combinatorial explosion in the search
process. The path leading from the initial state and
ending in a goal state describes a plan of actions that
the agent should try to execute. Assuming that the
plan generation starts with cicj the plan (result of the

search process) would be included in ci+1cj and would
influence the generation of the state of the agent in
the next steps, i.e. ci+1j , c

i+2
j , . . .. In the case of hybrid

systems this plan can be treated as a goal pursuing re-
action (main reaction). If the planning process takes
a lot of time, the plan might not be ready in the in-
stant i + 1. In that case the function (7) would have
to generate ci+1j without the plan, so that ci+1j would
have to result in halting the effector.
In the case of hybrid systems two approaches to plan
generation can be followed. In the first case, the plan
can be treated as a template and fixed corrective reac-
tions handle minor problems with its execution. The
plan constitutes a goal pursuing reaction and always
the same corrective reactions are executed regardless
of the step (action) in the plan. In the second case,
the plan is generated with a changing set of corrective
reaction for each action (plan step). This is equivalent
to a system that changes both the goal pursuing re-
action and the set of corrective reactions in each plan
step. Nevertheless, in both cases such problems can
arise that further execution of the plan will be im-
possible. In that case replanning has to be done –
obviously with the current state of the agent included
in the initial problem solution state.
Besides using cicj as an argument of functions gener-

ating the value of ci+1j , also c
i
Tj
can be used. This

implies direct cooperation of agents. Thus obtained
information can be used both in the planning process
as well as a parameter of the reactions.



5 Conclusions

The presented mathematical generic specification of
multi-agent systems is based on transition functions
and selection predicates. Both of those concepts are
the basis of high-level general purpose computer pro-
gramming languages. Mathematical functions can eas-
ily be transformed into a programming language (e.g.
C, C++, Pascal) functions, procedures or OOP meth-
ods, while selection predicates are well grounded in
control flow instructions of programming languages
(e.g. in C: if then else, switch etc.). Within each agent
each of the control subsystem components (8) can be
treated as an object in an object-oriented program-
ming sense. Thus the communication with the other
agents, effectors or virtual sensors can be handled in-
ternally by the methods of these objects (MRROC++ uses
this method). The objects provide, through their pub-
lic interfaces, only the data that is necessary for the
computation of the control of the agent. Those objects
provide data that is utilized by transition functions
(6) resident in the control subsystem to compute the
next state of this subsystem. Thus the transformation
of the specification into software is straight forward.
Specific cases of such transformations have been pre-
sented in [7, 9].

The formalism by enumerating the arguments of the
transition functions (6) ensures that all the neces-
sary interconnections between the components of the
system will be present. The presented examples
showed the numerous possibilities of designing such
systems, e.g. purely reactive agents with diverse meth-
ods of composition of the final control signals, delib-
erative systems and hybrid deliberative-reactive sys-
tems. Purely deliberative agents have not been consid-
ered here, because the discrepancy between a compu-
tationally realistic world model (a model that includes
the search space) and the real environment is so big
that it is highly improbable that an agent without sen-
sors updating the state of the world model frequently
could act efficiently. Usually it would fail to attain its
goal even because of minor discrepancies between the
model and reality.

The presented formalism also poses many open re-
search problems, especially regarding detailed meth-
ods of controlling an agent. For instance: for a given
task the selection of behaviors bij of an agent aj is not
obvious. The definition of functions mfcj defining a
behavior and the selection of predicates qpcj trigger-
ing a behavior is also a difficult job. The proposed
hierarchical composition of the reactions within a sin-
gle agent is even more complex to implement for a
real task. Even less obvious is the assignment of sub-
tasks to agents in a multi-robot behavioral system.
All of the above proposals need future investigations.
The treatment of abnormal situations (hardware or
software errors) in both behavioral and deliberative

systems also requires research.
However, it should be noted that the enumerated
problems pertain to the implementation of a specific
activity of an agent and not to the structure of the sys-
tem, hence the presented formalism serves its purpose
of providing a formal representation for describing the
structure of multi-agent programming frameworks. It
points out what has to be contained in the framework
both in terms of building blocks and in terms of its
structure, i.e. what are the legal ways of assembling
those building blocks. The formalism can also be used
for describing the functioning of a single agent, but the
control algorithm is external to the introduced nota-
tion. In other words, first we must have an idea of
the control algorithm and only later we can express it
in the presented formalism. The formalism only is a
specification tool that facilitates the later implemen-
tation of the control system.

References

[1] R. C. Arkin. Behavior-Based Robotics. MIT Press,
Cambridge, Mass., 1998.

[2] R. A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automa-
tion, RA-2(1):14–23, March 1986.

[3] R. A. Brooks. Inteligence without representation. Ar-
tificial Intelligence, (47):139–159, 1991.

[4] G. F. Luger, W. A. Stubblefield. Artificial Intelli-
gence and the Design of Expert Systems. Benjamin-
Cummings, Redwood, 1989.

[5] M. E. Markiewicz, C. J. P. Lucena. Object oriented
framework development. ACM Crossroads, 7(4),
2001. Also: http://www.acm.org/crossroads/xrds7-
4/frameworks.html.

[6] S. Russell, P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, Upper Saddle River,
N.J., 1995.

[7] C. Zieliński. Reaction based robot control. Mecha-
tronics, 4(8):843–86, 1994.

[8] C. Zieliński. The MRROC++ system. 1st Workshop
on Robot Motion and Control, RoMoCo’99, Kiekrz,
Poland, strony 147–152. June 28–29 1999.

[9] C. Zieliński. By how much should a general pur-
pose programming language be extended to become
a multi-robot system programming language? Ad-
vanced Robotics, 15(1):71–95, 2001.

[10] C. Zieliński. A unified formal description of be-
havioural and deliberative robotic multi-agent sys-
tems. Proc. 7th IFAC International Symposium on
Robot Control SYROCO 2003, Wrocław, Poland, wol-
umen 2, strony 479–486. September 1–3 2003.

[11] C. Zieliński, W. Szynkiewicz, K. Mianowski,
K. Nazarczuk. Mechatronic design of open-structure
multi-robot controllers. Mechatronics, 11(8):987–
1000, November 2001.


	Introduction
	Embodied agents
	A multi-agent system
	Internal functioning of an agent
	Conclusions

