
3rd Int. Workshop on Robot Motion and Control, RoMoCo’02, 9–11 November 2002, Bukowy Dworek, Poland.

Reaction to Errors in Robot Systems

C. Zieliński
Warsaw University of Technology (WUT)

Institute of Control and Computation Engineering
ul. Nowowiejska 15/19, 00-665 Warsaw, POLAND, e-mail: C.Zielinski@ia.pw.edu.pl

Abstract

The paper1 analyzes the problem of error (failure) de-
tection and handling in robot programming. First an
overview of the subject is provided and later error de-
tection and handling in MRROC++ are described. To
facilitate system reaction to the detected failures, the
errors are classified and certain suggestions are made
as to how to handle those classes of errors.

1 Introduction

Although the problems of faults, failures and errors
in control and computer systems have been studied
extensively it is acknowledged that there is no com-
mon terminology regarding that subject, e.g. [17]. The
main reasons are that those terms are strongly interre-
lated and difficult to define precisely. All of them per-
tain to expected or unexpected abnormal situations
or difference between an expected state and measured
value. This paper does not aspire to resolve this am-
biguity and will rely on their intuitive and descriptive
meaning. It will look more closely at how errors are
dealt with in robot programming frameworks.
In general, software frameworks are application gener-
ators for a specific domain of problems [20]. This pa-
per concentrates on robot programming frameworks,
i.e. libraries of software modules (procedures, objects
or processes) supplemented by design patterns for
robot system controllers. A design pattern is com-
posed of the so called frozen spots and hot spots.
Frozen spots are the unalterable parts of the generated
software and hot spots are the variable parts. Code
of hot spots is delivered by the system builder or ex-
tracted from the library of ready modules. Although
the terms: framework and hot or frozen spots are fairly
recent, the concept of providing a library of ready or

1This work was supported by CATID, WUT.
Dr.W.Szynkiewicz supported the author in the implemen-
tation of MRROC++.

modifiable modules that can be assembled according
to a certain pattern into a ready to use application
(e.g. controller), is quite old. Formerly frameworks
used to be called simply robot programming or con-
trol libraries or languages, but both of those terms are
not adequate. A library does not imply an associated
software pattern into which the modules should be
inserted, and a language is usually associated with a
specific grammar (e.g. syntactic structure). As general
purpose languages, such as Pascal or C have been used
as the development tools for those libraries, so no new
language was being defined. Although initially spe-
cialised programming languages had been favoured,
they lost they appeal, when it turned out that in the
robotics domain the variability of equipment causes
an ever greater demand for extensibility of those lan-
guages. Any extensions force a modification of the
compiler or the interpreter of the language rendering
the alteration more costly. Moreover, soon it became
obvious that the specialised robot programming lan-
guages have to provide nearly all the capabilities of a
general purpose programming language. Under those
circumstances it was more reasonable to use a gen-
eral purpose programming language and a library of
modules specific to robot control and to define a gen-
eral pattern according to which they should be assem-
bled. Thus, although specialised robot programming
languages gained considerable popularity (e.g. WAVE
[28], AL [22, 31], VAL II [42], AML [29], RAPT [2, 31],
SRL [4, 6] TORBOL [30, 31]) robot programming frame-
works have been especially favored by the research
community (e.g. RCCL [11], Multi-RCCL [15, 16] KALI
[12, 13, 3], ARCL [8], PASRO [5, 6], RORC [33, 32], MRROC
[33, 34], MRROC++ [37, 39]). This paper concentrates
on how the robot programming frameworks handle er-
rors, so first the means of detecting errors must be
discussed.

Robot systems use two kinds of sensors: internal
(equivalent to interoceptors and proprioceptors in an-
imals) and external (similar to exteroceptors in ani-
mals). The former are responsible for delivering in-

formation about the internal state of the the system
(e.g. current in the servomotor or reading of a joint
position encoder), and the latter for gathering infor-
mation from the environment (e.g. tactile or vision
data). Regardless of the source of information this
data can be perceived by the system as expected or
unexpected. To make this distinction clearer let us
define unexpected situations as those that the con-
trol program does not handle by its routine measures.
The expected information is utilised by the system to
execute its task under normal conditions. The unex-
pected information has to be handled separately.
The unexpected situations are generally associated
with diverse failures, errors or events unanticipated by
the user. Any system should be able to detect those
situations, but also an explanation of the cause of the
error should be offered. It would be even better, if the
system could respond to those events in such a way
that it could continue functioning correctly. Obviously
here we can pose a philosophical question: whether
the system had encountered an unexpected situation
at all, if it was able to handle it in such a way that
it continued to realise its task? This is the main rea-
son why the definition of unexpected events (and thus
errors) is so difficult and relatively ambiguous.
Specialised robot programming languages initially
treated errors in a similar way that errors were dealt
with in interpreted general purpose programming lan-
guages. Early languages [6] dealt only with excep-
tional situations defined by the system (i.e. the sys-
tem detects an a priori defined abnormal situation
and the programmer can supply a handler for that
situation) or the programmer (i.e. the user supplies a
conditional expression that upon satisfaction triggers
a supplied handler). The latter is equivalent to termi-
nal condition monitoring (e.g. stopping a motion on
exceeding a predefined force), thus it is difficult to de-
cide wether it is an error at all. In AL [22] runtime
errors required operator response, who could: start
the program again, continue from a statement that
followed the one that caused the error, or retry the
statement that created the problem. In the case of
RPS [27] an error message containing: the line num-
ber in which the error was detected, type of error, and
the line numbers of the 10 preceding executed state-
ments were displayed. Subsequently the user could
use trace printouts, single-step execution or break-
points to find the cause. Unfortunately in the current
multi-process systems those debugging tools would be
very ineffective. Error recovery in early systems con-
sisted in: retrying the current statement, continuing
from the next one, restarting the program, aborting
or trying an alternate program. In industrial systems,
such as VAL II [42] special instructions (e.g. REACTE

error handling program) could be inserted into the
code of the user’s program. If such an instruction
was not activated upon detecting an error the pro-
gram halted. On the other hand, if REACTE was active,
error handling program was executed. A function
ERROR was used to find the cause of the error. RETURN
within the handler caused the reexecution of the in-
struction that caused the problem. An error within
the handler aborted the program all together.

Relatively much attention has been concentrated on
error recovery in the case of task planning, espe-
cially dealing with assembly, disassembly and obstacle
avoidance. For instance in [14] objects in the work cell
model can be in one of the three states: valid (known),
unvalidated (unknown, because a transformation is in
progress) or invalid (mislocated). The last state trig-
gers error recovery and if that fails replanning is per-
formed. In [19] the assembly process is modelled as
a discrete event system, where tokens within a Petri
net represent contact points between objects (vertices,
edges and surfaces). The assembly process is broken
down into transitions between states of contact. The
trajectory of desired markings and transitions in the
Petri net forms the assembly strategy. An error is
detected when an event occurs that causes a mark-
ing that is not in the prescribed trajectory. The pro-
cess monitor detects and identifies errors and thus a
new path through the Petri net can be found – in
effect implementing error recovery. In [7] a generic
architecture is presented, that provides functions for
dispatching actions, monitoring their execution, diag-
nosing failures and recovering from errors. The mon-
itoring function using sensors tracks the execution of
assembly plans and detects non-nominal feedback –
both in discrete event and continuous domains. The
generated plan contains the information about what
sensor feedback should be tracked. Subsequently a di-
agnosis function confirms if a failure has been detected
and tries to explain it. To do that it uses the model
of the task, the system and the environment. Errors
have been classified into: system faults (abnormal be-
havior of the system hardware or software – treated
as unrecoverable), external exceptions (abnormal oc-
currences in the cell environment – e.g. unexpected
objects) and execution failures (deviation of the state
of the world from the expected state of execution of
actions – e.g. collision, part missing). The recovery
function tries to find a strategy for bringing the exe-
cution to a nominal state. [17] distinguishes two main
recovery strategies: backward error recovery (finding
a previously traversed error free state) and forward
error recovery strategy (looking for an error free state
that the system should eventually reach). The task
level of the Aramis system (A Robot And Manufac-

turing Instruction System) [18] sets reference values
for objects, what is equivalent to commanding the ob-
jects to change their state. The execution level acts
as a virtual servomechanism matching the real world
and world model states. Sometimes this is not pos-
sible, so an error is detected and error recovery has
to be implemented. Unfortunately from the point of
view of the task level the control level does not behave
in transactional way, i.e. it should either attain the
requested state or report a failure. Sometimes some
intermediate state is reached, e.g. half-done seam nei-
ther can be finished nor undone. This leads to the
necessity of simultaneous ridding of the work-cell of
the faulty workpiece and bringing the controller into
a normal state from which the task can be continued,
i.e. performing resynchronisation.
Closed structure systems use specialised programming
languages for expressing the user’s program. The pro-
gram is compiled and executed or interpreted on an
instruction by instruction basis. The only sources of
errors are: the user’s program, hardware failure or an
unexpected event in the environment. In the case of
open structure systems that are created by using pro-
gramming frameworks the situation is aggravated by
the possibility that the designer delivers a flawed mod-
ule or inserts a module in violation of the rules of the
general pattern. Because of that error detection and
diagnosis are of utmost importance in frameworks –
this capability has to be built into them.
GenoM (Generator of Modules) [9, 1] is a tool for au-
tomatic generation of frozen spots and the shells of
the hot spots of the control system execution level
(functional level) from the builder’s specifications of
modules. A module is an entity providing services
upon request. Control requests influence the execu-
tion of a service (e.g. parameterize, abort, interrupt
it), whereas execution requests start services. A run-
ning service, called an activity, exchanges data with
other modules through posters. Services are provided
by execution tasks. Besides one or more execution
tasks, a module contains a single control task that
is responsible for asynchronous communications with
the clients of the module, checking the validity of the
incoming requests and for initiating the service exe-
cution. Execution tasks and the control task contain
hot spots called codels (code elements) – those are de-
livered by the system builder. Currently codels are
implemented as two kinds of C functions, returning ei-
ther: status (OK or ERROR) or the designator of the
next state of the module (e.g. START, EXEC, END, FAIL,
TERMINATE, ZOMBIE). The normal execution sequence
of the states is: START → EXEC → END → TERMINATE.
END is reached when an activity has been finished, but
this activity can be invoked once again. TERMINATE

means that the activity is no longer available. FAIL
results when the module cannot cope with an error.
In that state a cleanup can be performed by the codel
and the module goes into the ZOMBIE state – becomes
unavailable. This is a situation that should not arise
after debugging the module. During normal life of a
module, even if it detects abnormal functioning of the
hardware, it has to go into TERMINATE state, within
which it is able to inform other modules requesting
a service that the hardware is in an abnormal state.
At the end of each service a report is returned to the
client. For nominal execution the report contains OK.
For situations in which errors were detected reports
that had been listed in the description file of the mod-
ule are used. This enables some recovery actions to be
undertaken by other modules or upper control layers.
It should be noted that automatic generation of the
controller from a specification provided to GenoM sig-
nificantly reduces the possibility of introducing bugs
into the system software.

2 MRROC++ based controllers

This section describes the general structure of the
object-oriented version of the Multi-Robot Research-
Oriented Controller: MRROC++ framework. It has been
used to control ASEA type IRb-6 robots (one of them
mounted on a track), prototype serial-parallel struc-
ture RNT robot [23, 41], and a prototype fast robot –
Polycrank [24]. All of those robots require specialised
hardware controllers [38]. Force, ultrasonic and in-
frared sensors, CCD cameras and a conveyor belt have
been included in the implemented systems. MRROC and
MRROC++ have been used to implement, e.g.: coopera-
tive transfer of a rigid body by two robots [35], calibra-
tion of robot kinematic models using two high preci-
sion electronic theodolites [10], engraving inscriptions
in soft materials by a robot equipped with a milling
machine [21], polishing metals, grasping moving ob-
jects detected by a 3D image capture ultrasound ma-
trix [25, 26].
MRROC++ is a robot programming framework for de-
signing multi-robot controllers tailored to the tasks
at hand. Thus it is a library of software modules (i.e.
classes, objects, processes and procedures) that can be
used to construct any multi-robot system controller.
This set of ready made modules can be extended by
the user by coding an extra module in C++. The
freedom of coding is, however, restricted by the gen-
eral structure of the framework. New modules have to
conform to this general structure. Theoretical reasons
for selecting this structure can be found in [40, 36, 33].
It is divided into three layers: hardware dependant,

Operator

?�
�

�
�User Interface

Process UI

?
6�

�
�
�Master Process

MP

?6#
"

!

Effector Control
Process ECPj ,
j = 1, . . . , ne

?
6#

"

!

Effector Driver
Process EDPj ,
j = 1, . . . , ne

?6#
"

!

Servo Group
Process SGj ,
j = 1, . . . , ne

?6
Effectorj , j = 1, . . . , ne

Actuators Tool Outputs

-

�

#
"

!

Virtual Sensor
Process VSPl,
l = 1, . . . , nv

?6
Real Sensorsl
l = 1, . . . , nv

�

?

�
�

�
�System Response

Process SRP

666

-
Operator
interface
(frozen spot)

Task
dependent
part
(contains
hot spots)

Hardware
dependent
part
(may contain
hot spots)

Figure 1: Structure of a MRROC++ based controller

task dependant and the operator interface (fig. 1).
The operator interface layer is composed of User In-
terface Process UI and System Response Process SRP.
They should be treated as frozen spots of the frame-
work. UI is responsible for delivering the operator
commands to the system (e.g. STOP, PAUSE, EXE-
CUTE, RESUME). SRP collects the messages from all
the other processes of the system, decodes them, and
displays them in a window on the screen of the moni-
tor. The messages pertain to the current system states
and the detected errors.
User’s task is coordinated by a single process called
Master Process MP. It is assumed that there are ne
effectors in the system, where an effector can be, e.g.:
a robot, cooperating device or a limb of a walking
machine. From the point of view of the executed
task MP is the hierarchically highest process, as UI
and SRP just provide supplementary services. MP is
responsible for trajectory generation in multi-effector
systems, where the effectors cooperate tightly. In the
case of loose cooperation it just synchronises the ef-
fectors from time to time. The general specification of
the task for all the effectors is concentrated in the hot
spots of MP.
Each effector (either a robot or a cooperating device)

has three processes controlling it: Effector Control
Process ECP, Effector Driver Process EDP and Servo
Group Process SG. The first one is responsible for the
execution of the user’s task dedicated to this effector,
and the other two for direct control of this effector.
The hot spots of ECP contain the part of the task
specification that pertains to a single effector. EDP is
responsible for coordinate transformations, tool def-
initions, etc., thus it presents the effector from the
kinematical point of view. As in MRROC++ the user can
provide his/her own kinematic models or kinematic
model correctors for certain areas of the work-space,
this process also can contain hot spots. SG is respon-
sible for servo control. Because MRROC++ can maintain
many switchable servo control algorithms with diverse
sets of parameters, and both the algorithms and the
parameters can be provided by the users, this process
also can contain hot spots. Nevertheless, for the ma-
jority of tasks EDP and SG are not modified.

Data obtained from real (i.e. hardware) sensors usu-
ally cannot be used directly in robot motion control.
For instance, to control the arm motion, only the loca-
tion of the centre of gravity of an object to be grasped
would be necessary. In the case of such a complex
sensor as a camera a bit-map has to be processed to

obtain the above mentioned location. In some other
cases a simple sensor in its own right would not suf-
fice to control the motion (e.g. a single strain gauge),
but several such sensors deliver meaningful data. The
process of extracting meaningful information for the
purpose of motion control is named data aggregation
and is performed by a virtual sensor. Data aggrega-
tion is done by Virtual Sensor Processes VSPs. It is
assumed that there are nv virtual sensors in the sys-
tem. Both MP and ECPs can use the data provided
by the VSPs.
The user’s parts of both the MP and the ECPs are com-
posed of the Move and Wait instructions (procedures).
On the MP level these instructions take (as their argu-
ments) lists of robots and virtual sensors. On the ECP
level, for each ECP only a single robot exists, so this
robot and a list of sensors are the arguments of these
instructions. Moreover, the Move instruction has an
object named trajectory generator as the third argu-
ment, and the Wait instruction has an object named
the condition as the last argument. The generator is
responsible, on the MP level, for the generation of tra-
jectories of the end-effectors of all the robots on the
list forming the argument of the Move instruction. On
the ECP level the generator creates a trajectory for a
single robot. The condition, being the argument of the
Wait instruction, if true, terminates the waiting, and
if not, causes the system to pause. For each Move and
Wait instruction the user writes in C++ his/her own
generator and condition objects. In this way, usually
only very small portions of MP and ECPs have to be
rewritten when the task changes. The modifications
are cumulated in the separate code of specific genera-
tors and conditions. Errors are dealt with within the
whole system by exception handling, so the user needs
not deliver the program code responsible for that. Nei-
ther need he/she worry about the code dealing with
the inter-process communication.

3 Handling of errors in MRROC++

To the frozen spots of the system the user appends
the code forming hot spots (i.e. invocations of Move,
Wait instructions, trajectory generators, initial con-
ditions and task specific C++ code). This process is
error-prone. Moreover, it cannot be assumed that the
hardware will run without failure. The processes of
the system can be distributed over a network of com-
puters, so inter process communication problems can
arise. Both the code provided by the user and the
code of the frozen spots has to be able to detect er-
rors. Upon detecting an error MRROC used function
return values to inform the the higher control layers

within a process about that fact. For the same purpose
MRROC++ throws exceptions that by default are caught
at the uppermost process level. From that point the
information about the errors is further propagated by
inter process communication (IPC) means, i.e. mes-
sage passing, if only IPC still operates.
Error diagnostics and recovery depend on:
• type of error detected,
• place in the code that it had occurred,
• structure of the system.
To facilitate error handling three classes of errors
have been distinguished in MRROC++: non-fatal, fa-
tal and system errors. Non-fatal errors are caused by
computational problems or wrong arguments of com-
mands/replies within the IPC. Fatal errors are caused
by malfunction of the effector (e.g. over-current in the
motor or hitting a limit switch). System errors are
caused by problems with IPC or process creation.
The standard procedure of dealing with errors in
MRROC++ is very simple. For any piece of code that can
generate or detect an abnormal situation the user pro-
vides an error condition testing instruction. If the er-
ror condition is fulfilled an exception is thrown with an
argument describing the reason of the problem (class
of error and its specific type) depending both on the
direct cause of the error and the place of its occur-
rence. Moreover, at the uppermost process level an ex-
tra case in the switch instruction of the catch section
is inserted. This will deal with this error adequately.
Only SG, which has a relatively fixed structure (only
new servo-control algorithms can be inserted) does not
use this method . It uses function arguments to return
error codes. At the soonest possible contact with EDP
(the contact is always initiated by EDP) this code is
transferred. Detection of an error does not free SG
from performing servo control the best it can.
It should be pointed out that there always exists a
limit to which a system can endure failures. In the
case of robust systems this limit is located fairly high,
and so they can handle a wide spectrum of unexpected
events, but even those systems can be mutilated or
even destroyed by deliberate malicious actions or ran-
dom failure of their vital components. It is econom-
ically viable to place that limit in such a way that,
on the one hand, the system will be robust enough to
carry out its task under reasonable conditions, and on
the other hand, the fabrication of this system is cheap
enough to attract buyers.
The majority of MRROC++ based controllers dealt with
the detected errors in the same way. The fatal and
non-fatal errors caused the error messages to propa-
gate throughout the system, the executed user’s task
was interrupted, and each of processes was left in a
state enabling the operator to resume the actions of

the system as a whole. The exceptions were caught at
the uppermost level of each process. From there the
error message was dispatched to SRP and the near-
est superior in the process hierarchy (this was done
at the earliest contact initiated by the superior), e.g.
EDP informed ECP and ECP informed MP. In this
way all the processes participating in the execution
of the task were informed about the error and each
one of them in turn reported the error to SRP, which
displayed adequate messages for the operator to act
upon. The operator could work out the probable cause
of the error, because each process reported the error
as it perceived it, thus enabling the user to figure out
the state that each of the processes was in when the
failure occurred.
Obviously, as exception handling is used, and the user
is the one who provides the user’s program, the ex-
ceptions can be caught before they reach the topmost
level of the process. Thus the user can change the
standard method of dealing with particular errors or
more probably with certain classes of errors. There
are a few standard methods of treating error recovery,
e.g.:
• retrying the action that failed,
• retrying the action that failed, but with a different

set of parameter values,
• trying another action.
It should be noted that the classes of errors pertain to
the ability of the system to retain its own composure
and not to the ability to correct them. For instance,
a non-fatal error detected as a computational error
(e.g. negative argument of a sqrt function within in-
verse kinematic procedure), but resulting from an ob-
ject that is to be grasped being out of the workspace,
cannot be corrected by the system (the object is sim-
ply too far), but the system should retain such a state
that it will be able to execute other actions. The abil-
ity of correcting fatal errors depends on the redun-
dancy of the system, e.g. malfunction of the manip-
ulator in a single robot system cannot be remedied,
but in a multi-robot one sometimes can be corrected.
Thus, whether errors can be handled depends also on
the overall structure of the system. Nevertheless, after
a fatal error the system should be left in such a state
that at least it is able to inform the operator about the
reason for its malfunction – it should not disintegrate.
System errors cannot be dealt with by the above de-
scribed methods. They are caused by the disintegra-
tion of the control system itself, so it is not realistic to
assume that the inter process communication will be
intact at that moment. Hence in MRROC++ the process
that detects such an error displays an error message
by itself and subsequently aborts. The operator is left
with the task of cleaning up. In fixed structure sys-

tems such a situation usually does not arise (except
when some piece of hardware is destroyed), but we
are dealing with an open structure system. The user
can insert his/her own code, so there is an unlimited
opportunity of introducing bugs, including the ones
leading to disasters (e.g. killing off one of the pro-
cesses). A well tested system will be free of such bugs,
but we are speaking about a situation when the system
is under development. At that stage the operator has
to be informed about the mishap, so that the program
can be debugged quickly.

4 Conclusions

Robot programming frameworks have to provide very
accurate error detection capabilities, because the user
builds the system out of modules with partially or fully
unknown inner workings. Thus it is vital that the as-
sembled system informs the user upon detecting any
abnormality, so that it can be corrected. Moreover,
framework designers should try to provide error diag-
nostic capabilities. Otherwise the user, after an error
is detected, is left to guess what went wrong and that
in a complex system is a formidable task. As error re-
covery strategies heavily depend on the executed task,
they have to be provided by the user of the frame-
work. Nevertheless, a provision should be made by
the framework designer to enable the user to add on
such error recovery procedures in a simple way.
It should be noted that in some systems there are situ-
ations where some problems might go on undetected.
For instance, if the gain of the servo is low or the
friction in the mechanism causes slight slip-stick, the
system will function, but the quality of its actions will
be compromised. Such situations are not treated as er-
rors, but a good robot programming framework should
be equipped with tools that can monitor the operation
of the system and provide adequate reports. The anal-
ysis of those reports should lead to the detection of the
problems and finding a remedy. Usually such prob-
lems arise at the lowest control level. In MRROC++ the
Servo Group Process is provided with the capability of
constant monitoring of variables selected by the user.
Usually a single value of a variable is not meaning-
ful. Only trends give adequate hint as to what is the
cause of a problem. Unfortunately it is not possible,
due to memory limitations, to collect the whole history
of changes of variable values (e.g. current servo posi-
tion or its set-value changes at sampling rate). Thus
a cyclic buffer is used that is able to hold the last 10
– 30 seconds of selected data. As file operations are
rather slow, SG which is responsible for servo control,
cannot dump the contents of the cyclic buffer to a file

directly. Thus Reader Process (RP) is created by SG
upon system initialisation. RP is capable of interact-
ing with the operator, so he/she can select the data
that is needed. Upon the operator request made to
the RP, it contacts SG which transmits the contents
of the cyclic buffer using standard IPC means. Subse-
quently RP (at low priority) dumps the selected data
into a file. The file is in a text format so any rea-
sonable plotting program can be used to display the
trends.
MRROC++ in itself does not ensure that the created con-
troller will be error free, but by providing a pattern
(ready structure) and at least some ready made and
tested software components makes the introduction of
errors less likely. Besides that it makes the system
designer aware of the three error classes, thus enables
him/her to group the specific errors accordingly. In
doing so the programmer decides the system response
to a specific error. Moreover the handling of those er-
rors is provided within the pattern of the framework,
so the designer does not have to busy herself with that.
The addition of the above mentioned servo tracking
capability enables fine tuning of the servo control al-
gorithms. All those provisions simplify the life of the
control system designer, but by no means does that
imply that nothing will hinder the implementation.
Much further research work is required to provide sat-
isfactory solution to the issues brought forward by this
paper.

References

[1] Alami R., Chatila R., Fleury S., Ghallab M., In-
grand F.: An Architecture for Autonomy . Int. J. of
Robotics Research. Vol.17, no.4, April 1998, pp.315–
337.

[2] Ambler A. P., Corner D. F.: RAPT1 User’s Man-
ual . Department of Artificial Intelligence, University
of Edinburgh, 1984.

[3] Backes P., Hayati S., Hayward V., Tso K.: The KALI
Multi-Arm Robot Programming and Control Environ-
ment . Proc. NASA Conf. on Space Telerobotics, 1989.

[4] Blume C., Jakob W.: Design of the Structured Robot
Language (SRL). in: Advanced Software in Robotics,
Eds. Danthiene A., Géradin M., Elsevier, North
Holand, 1984. pp.127–143.

[5] Blume C., Jakob W.: PASRO: Pascal for Robots.
Springer-Verlag, Berlin 1985.

[6] Blume C., Jakob W.: Programming Languages for In-
dustrial Robots. Springer-Verlag, 1986.

[7] Camarinha-Matos L. M., Lopes L. S., Barata J.: In-
tegration and Learning in Supervision of Flexible As-
sembly Systems. IEEE Transactions on Robotics and
Automation. Vol.12, No.2. April 1996. pp. 202–219.

[8] Corke P., Kirkham R.: The ARCL Robot Program-
ming System . Proc. Int. Conf. Robots for Competi-
tive Industries, Brisbane, Australia, 14-16 July 1993.
pp.484-493.

[9] Fleury S., Herrb M.: GenoM User’s Guide. Report,
LAAS, Toulouse, No. 01577, December 2001.

[10] Fra̧czek J., Buśko Z.: Calibration of Serial and Serial-
Parallel Robot Systems Using Electronic Theodolites
and Error Correction Procedure. 10th World Congress
on Theory of Machines and Mechanisms, Oulu, Fin-
land, 20–24 July 1999. Vol.3. pp.972–977.

[11] Hayward V., Paul R. P.: Robot Manipulator Control
Under Unix RCCL: A Robot Control C Library . Int. J.
Robotics Research, Vol.5, No.4, Winter 1986. pp.94-
111.

[12] Hayward V., Hayati S.: KALI: An Environment for
the Programming and Control of Cooperative Manip-
ulators. Proc. American Control Conf., 1988. pp.473-
478.

[13] Hayward V., Daneshmend L., Hayati S.: An Overview
of KALI: A System to Program and Control Cooper-
ative Manipulators. In: Advanced Robotics. Ed. Wal-
dron K., Springer-Verlag, 1989. pp.547–558.

[14] Kelly R. B.: Knowledge-Based Robot Workstation:
Supervisor Design. In NATO ASI Series Vol.66:
Sensor-Based Robots: Algorithms and Architectures.
Ed. C. S. G. Lee. Springer-Verlag, Berlin, 1991.
pp.107–128.

[15] Lloyd J., Parker M., McClain R.: Extending the
RCCL Programming Environment to Multiple Robots
and Processors. Proc. IEEE Int. Conf. Robotics and
Automation, 1988. pp.465-469.

[16] Lloyd J., Hayward V.: Real-Time Trajectory Gener-
ation in Multi-RCCL. J. of Robotics Systems, 10 (3),
1993. pp.369–390.

[17] Loborg P.: Error Recovery in Automation. AAAI’94
Spring Symposium on Detecting and Resolving Er-
rors in Manufacturing Systems, Stanford, California,
USA. 1994.

[18] Loborg P., Thörne A.: Manufacturing Control Sys-
tem Principles Supporting Error Recovery . AAAI’94
Spring Symposium on Detecting and Resolving Er-
rors in Manufacturing Systems, Stanford, California,
USA. 1994.

[19] McCarragher B.J.: Task Primitives for the Discrete
Event Modeling and Control of a 6-DOF Assem-
bly Tasks. IEEE Trans. Robotics and Automation.
Vol.12, No.2. April 1996. pp.280–289.

[20] Markiewicz M. E., Lucena C. J. P.: Object Ori-
ented Framework Development . ACM Crossroads,
7(4), 2001, http://www.acm.org/crossroads/xrds7-
4/frameworks.html

[21] Mianowski K., Nazarczuk K., Wojtyra M.,
Szynkiewicz W., Zieliński C., Woźniak A.: Ap-
plication of the RNT Robot to Milling and Polishing .

Proc. of the 13-th CISM-IFToMM Symposium on
Theory and Practice of Robots and Manipulators
Ro.Man.Sy’13, 3–6 July 2000, Zakopane, Poland.

[22] Mujtaba S., Goldman R.: AL Users’ Manual . Stan-
ford Artificial Intelligence Lab., AI Memo 323, Jan-
uary 1979.

[23] Nazarczuk K., Mianowski K., Olȩdzki A.,
Rzymkowski C.: Experimental Investigation of
the Robot Arm with Serial-Parallel Structure. Proc.
9-th World Congress on the Theory of Machines and
Mechanisms, Milan, Italy, 1995, pp. 2112-2116.

[24] Nazarczuk K., Mianowski K.: Polycrank – Fast Robot
Without Joint Limits. Proc. of the 12-th CISM-
IFToMM Symposium on Theory and Practice of
Robots and Manipulators Ro.Man.Sy’12, 6-9 June
1998. Springer-Verlag, Wien, pp.317-324.

[25] Pacut A., Brudka M., Jaworski M.: Neural Processing
of Ultrasound Images in Robotic Applications. Proc.
of the IEEE Int. Workshop on Emerging Technolo-
gies, Intelligent Measurements and Virtual Systems
for Instrumentation and Measurements ETIMVIS’98,
St. Paul, USA, May 1998. pp. 59–66

[26] Brudka M., Pacut A.: Intelligent Robot Control Us-
ing Ultrasonic Measurements. Proc. of the 16-th IEEE
Instrumentation and Measurement Technology Con-
ference IMTC/99, Venice, Italy, vol. 2, May 1999. pp.
727–732.

[27] Park W. T.: The SRI Robot Programming System
(RPS). Proc. 13th International Symposium on In-
dustrial Robots, Chicago, USA, 1983. pp.12.21–12.41.

[28] Paul R.: WAVE – A Model Based Language for Ma-
nipulator Control . The Industrial Robot, March 1977.
pp.10–17.

[29] Taylor R. H., Summers P. D., Meyer J. M.: AML:
A Manufacturing Language. International Journal of
Robotics Research, Vol. 1, No. 3, 1982. pp.842–856.

[30] Zieliński C.: TORBOL: An Object Level Robot Pro-
gramming Language. Mechatronics, Vol.1, No.4, 1991.
pp.469-485.

[31] Zieliński C.: Object Level Robot Programming Lan-
guages. In: Robotics Research and Applications. Ed.:
A. Morecki et.al., Warsaw 1992. pp.221-235.

[32] Zieliński C.: Flexible Controller for Robots Equipped
with Sensors. 9th Symp. Theory and Practice of
Robots & Manipulators, Ro.Man.Sy’92, 1-4 Sept.
1992, Udine, Italy, Lect. Notes: Control & Informa-
tion Sciences 187, Springer-Verlag, 1993. pp.205-214.

[33] Zieliński C.: Robot Programming Methods. Publishing
House of Warsaw University of Technology, 1995.

[34] Zieliński C.: Control of a Multi-Robot System, 2nd
Int. Symp. Methods and Models in Automation and
Robotics MMAR’95, 30 Aug.–2 Sept. 1995, Międzyz-
droje, Poland. pp.603-608.

[35] Zieliński C., Szynkiewicz W.: Control of Two 5 d.o.f.
Robots Manipulating a Rigid Object , IEEE Int. Symp.
on Industrial Electronics ISIE’96, 17–20 June 1996,
Warsaw, Poland. Vol.2, pp.979–984.

[36] Zieliński C.: Object-Oriented Robot Programming ,
Robotica, Vol.15, 1997. pp.41–48.

[37] Zieliński C.: Object–Oriented Programming of Multi–
Robot Systems, Proc. 4th Int. Symp. Methods and
Models in Automation and Robotics MMAR’97, 26–
29 August 1997, Międzyzdroje, Poland, pp.1121–
1126.

[38] Zieliński C., Rydzewski A., Szynkiewicz W.: Multi-
Robot System Controllers. Proc. of the 5th Interna-
tional Symposium on Methods and Models in Au-
tomation and Robotics MMAR’98, 25–29 August
1998, Międzyzdroje, Poland, Vol.3, pp.795–800.

[39] Zieliński C.: The MRROC++ System, 1st Workshop
on Robot Motion and Control, RoMoCo’99, 28–29
June, 1999, Kiekrz, Poland. pp.147–152.

[40] Zieliński C.: By How Much Should a General Pur-
pose Programming Language be Extended to Become
a Multi-Robot System Programming Language? . Ad-
vanced Robotics, Vol.15 No.1, 2001. pp.71–95.

[41] Zieliński C., Szynkiewicz W., Mianowski K.,
Nazarczuk K.: Mechatronic Design of Open-Structure
Multi-Robot Controllers. Mechatronics, Vol.11 No.8,
November 2001. pp.987–1000.

[42] User’s Guide to VAL II: Programming Manual .
Ver.2.0, Unimation Incorporated, A Westinghouse
Company, August 1986.

	Introduction
	MRROC++ based controllers
	Handling of errors in MRROC++
	Conclusions

