
Second International Workshop on Robot Motion and Control, RoMoCo’01, 18–20 October 2001, Bukowy Dworek, Poland. pp.121–128

A Quasi-Formal Approach to Structuring
Multi-Robot System Controllers

Cezary Zieliński

Abstract— The paper presents a formal approach to struc-
turing multi-robot system controllers. It was used to struc-
ture the MRROC++ based controllers. The deduced structure is
such that on the one hand it is not too complex for imple-
mentation and on the other hand it does not limit the tasks
that can be executed. Both coordinated and uncoordinated
motions are taken into account. Use of diverse sensors is
also considered. This approach enables the classification of
motion generators and execution conditions giving further
insight into future performance of the designed system. The
same approach can be used to elaborate different structures
to the one used by MRROC++ based systems.

Keywords— robot programming, multi-robot systems,
multi-robot controllers, sensor incorporation

I. INTRODUCTION

A considerable effort has been concentrated on devel-
oping new Robot Programming Languages (RPLs), both
specially defined for robots (e.g. WAVE [23], AL [20], [28],
VAL II [41], AML [26], RAPT [1], [28], SRL [7], [9] TORBOL
[27], [28]) and general purpose programming languages en-
hanced by libraries of robot specific procedures (e.g. RCCL
[13], Multi-RCCL [17], [18] KALI [14], [15], [5], RORC [31],
[29], MRROC [31], [32], PASRO [8], [9], MRROC++ [37], [39]).
Specialised languages render the controller with a closed
structure. If new hardware is to be added to the sys-
tem, usually the language itself has to be modified too.
Those changes have to be reflected in the compiler or in-
terpreter. Because of this, rather robot programming lan-
guages/libraries submerged in general purpose program-
ming languages are used by the research community than
specialised RPLs. This approach is also gradually gaining
recognition in the industrial community (e.g. RobotScript
is an RPL submerged in Visual Basic [16]).
MRROC++ is submerged in C++. It utilises the real-time op-

erating system QNX [40] capable of supervising a computer
network. Initially MRROC [32] was implemented using pro-
cedural approach, but currently this has been changed to
object-oriented approach [36], and hence MRROC++ resulted.
The switch of programming approach not only simplified
robot task coding, but also proved to be much more ef-
fective in the implementation. Polymorphism enables late
binding, so procedures could be coded without the specific
knowledge of what types of robots and sensors will be used.
Exception handling enabled the separation of the code pro-
cessing normal system functioning from the code dealing
with error situations. Using C++ instead of C functions fur-

Warsaw University of Technology, Institute of Control and Com-
putation Engineering, ul. Nowowiejska 15/19, 00-665 Warsaw,
POLAND, e-mail: C.Zielinski@ia.pw.edu.pl

ther simplifies programming, as the former have access to
all the data members of objects, whilst functions either
have to rely on global variables or long parameter lists.
The programming of such a system consists in assembling
out of library objects and procedures a controller dedicated
to the execution of the task at hand. The user’s program
is incorporated into the controller code. The user delivers
the code for just a few object classes that are used by Move
and Wait instructions. The formal approach presented in
this paper not only facilitated the structuring of the whole
system software, but also helped in distinguishing the few
objects that the user has to modify while creating a user’s
program.

The approach followed in implementing MRROC++ based
controllers has been tested on diverse robots and tasks.
MRROC++ can currently control ASEA type IRb-6 robots
(one of them mounted on a track), prototype serial-parallel
structure RNT robot [6], [21], and a prototype fast robot
without joint limits – Polycrank [22]. All of those robots
require specialised hardware controllers [38]. Force/torque,
ultrasonic, and infrared sensors, CCD cameras and a con-
veyor belt have been included in the implemented systems.
The described approach to programming has been vali-
dated on different tasks – both industrial and research.

MRROC++ has been successfully used to build a typical
industrial controller for a task consisting in engraving in-
scriptions in soft materials (e.g. wood) by a robot equipped
with a milling machine [19]. The controller inputs data
files produced by a CAD system – describing the Carte-
sian paths along which the engraving has to take place.
The path generator uses moving segment B-spline inter-
polation between points in the same way that the CAD
station produces on-screen drawings of tool trajectories.
Later it reproduces these paths with high precision due
to high rigidity of the serial-parallel structure prototype
RNT robot [21]. This is a continuous path industrial ap-
plication, which most of the industrial robots would have
difficulty performing, as in this case the executed trajecto-
ries, unless taught-in, would have to be interpolated either
by straight lines or circular arcs. In the case of MRROC++
based control system the trajectories can be programmed
to have any shape and velocity profile along them. In this
case the shape was defined to be a series of B-spline curves
spanning eight point segments. From each such segment
only the curve between the middle (4th and 5th) points is
utilised, and the remaining portion is discarded. Then the
segment is shifted by one point to the next eight point part
of the trajectory starting with the second point of the first

segment and ending with the next point after the last point
of the first segment. In such a way a very smooth curve is
built, and that is executed during milling.

Cooperative transfer of a rigid body by two robots hav-
ing 5 d.o.f. each has been demonstrated by using MRROC
[34]. It shows how the motion of over-constrained systems
can be programmed using the presented software. To auto-
mate the tedious process of calibrating the two-robot sys-
tem another controller was built. For calibration two high
precision electronic theodolites were used [11]. The same
procedure and software was later used in the case of the
RNT robot [12].
MRROC based software was also used to build a system

containing a robot and an ultrasonic matrix overhanging a
conveyor. The 3D image obtained through that matrix en-
abled the detection, localisation and recognition of objects
moving on a conveyor. For that purpose neural networks
were incorporated into the controller [24], [25]. Thus ob-
tained information was utilised in acquiring objects from a
moving conveyor and sorting them by a robot. In a sep-
arate experiment a CCD camera was used for the same
purpose.

This software can also be applied to create reactive con-
trollers [30], [31], [33], [35], which have gained much at-
tention lately, especially in the area of autonomous mobile
robots [2], [3], [4]. If robot arms are substituted by robot
legs or wheels the same software can be used to build con-
trollers for autonomous mobile systems. Originally a con-
troller was built for a robot transferring inside a maze a
touch probe and later a force sensor. The robot gradually
gained information on its surroundings by reacting to col-
lisions with the walls of the maze while trying to attain a
global goal of finding a way out of the maze. Another con-
troller was built which used global information about the
maze layout obtained through a CCD camera, although
in this case a reactive controller was unnecessary and a
distance-optimal path could be traced. Reactive control
was also used to acquire moving objects from a conveyor.
In this case infra-red sensors were the source of informa-
tion both about velocity and position of the object [35]. An
interesting aspect of this research was that the same for-
malism that will be presented in this paper can be extended
to describe reactive robot systems and that the hierarchic
distributed controllers can be used as a platform to imple-
ment reactive control.

This paper gives formal reasons for the assumed struc-
ture of the MRROC++ system. Formal reasoning distin-
guished the variable part of the software and the part
that is fixed (not subjected to modifications). The variable
part is composed of motion instructions (e.g. Move, Wait)
and object classes (e.g. robots, sensors, generators,
conditions). The user expresses the task in terms of mo-
tion instructions, and then delivers, in a plug-in fashion,
the specific objects that deal with the details of its exe-
cution (e.g. trajectories). The formally postulated motion
generators can cope with any type of independent or co-
operative motions with or without sensors. The division
of software into the fixed and variable part lets the user

concentrate only on the task that has to be executed. The
remaining portion is not modified and so does not distract
the user’s attention from coding the task.

II. ROBOT SYSTEM DECOMPOSITION

A robot system S is composed of three subsystems:

S =< C;E;R >, (1)

C – control subsystem, (i.e. memory: variables,
program and program execution control flow),

E – effectors (manipulator arm or arms, tool and
the devices cooperating with the robot),

R – receptors or real sensors.
Real sensors include all the measuring devices gathering in-
formation from the environment of the system. Devices for
measuring the internal state of the system (e.g. position
encoders, resolvers) are not treated here as sensors. They
supply data about the state of E.

The state of the system S is denoted as:

s =< c; e; r >, (2)

where:
c – state of the control subsystem C,
e – state of the effectors E,
r – state of the real (hardware) sensors R.
The motion instructions of the user’s program, in the

most general case, take into account the the current state
c of the control subsystem C and the current readings r
of the receptors R, and exert influence over effectors E
by changing (enforcing) the desired state e. The state of
each component of the system can be expressed in terms
of diverse abstract notions. In the case of effectors these
can be: manipulator joints, end-effector or objects of the
work-space. Data obtained from real sensors usually can-
not be used directly in robot motion control. For instance,
to control the arm motion, only the grasping location of the
object that is to be picked would be necessary. In the case
of such a complex sensor as a camera a bit-map has to be
processed to obtain the grasping location. In some other
cases a simple sensor in its own right would not suffice to
control the motion (e.g. a single touch sensor), but several
such sensors deliver meaningful data. The process of ex-
tracting meaningful information for the purpose of motion
control is named data aggregation and is performed by
virtual sensors V . As a result virtual sensor readings v
are obtained:

v = fv(c, e, r) (3)

III. SENSOR UTILIZATION

The execution of a motion instruction begins in an ini-
tial state, ends in a terminal state, and causes the sys-
tem to traverse a sequence of intermediate states. The ex-
ecution of each instruction is subdivided into steps. Each
step results in the change of system state from one inter-
mediate state to the next. Usually the duration of each
step is either equivalent to the servo sampling rate (e.g.
1ms) or a low integer multiple of that. The initial state

and the terminal state can be treated as boundary cases of
intermediate states.

In each intermediate state (or while attaining it) the
state of the system can be measured – monitored by sen-
sors. The current state of the system can only be moni-
tored, but the future intermediate states can be influenced
– controlled. Three reasonable purposes of intermediate
state monitoring can be distinguished:
• initial condition monitoring (waiting for the satisfaction
of a certain condition, so that the instruction execution can
proceed),
• terminal condition monitoring (execution of an instruc-
tion – usually an instruction causing a motion – until a
certain condition is fulfilled),
• error condition monitoring (detection of abnormal
states).
Besides monitoring, i.e. passively observing the state evo-
lution, we want instructions to have an active influence on
the future states. That is called control of future interme-
diate states.

In the case of initial condition monitoring the system
executes consecutive steps waiting for the initial condition
to be satisfied, so that the motion can proceed. As the
effectors are immobile the following semantics results:

ei+1 =

ei = ei0 when
fI(ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
eim = ei0 when

fI(ci, ei, vi) = true
∧

fE(ci, ei, ri) = false
eim∗ = ei0 when

fE(ci, ei, ri) = true
for i = i0, . . . , im, im∗ ≤ im (4)

fI(ci, ei, vi) – initial condition (Boolean value func-
tion),

fE(ci, ei, ri) – error condition (Boolean value func-
tion),

im – step in which fI(ci, ei, vi) becomes
true, and so the initial condition mon-
itoring is interrupted,

im∗ – step number in which fE(ci, ei, ri) is
satisfied (i.e. an error occurs, so the
instruction execution has to be termi-
nated prematurely).

In the above definition, as well as in the following ones,
the next effector state ei+1 is computed by taking into ac-
count the part of the definition for which the associated
condition is fulfilled in the current step i. Only one condi-
tion is true in each step i, so the next effector state ei+1

is evaluated uniquely. The next effector state ei+1 is eval-
uated iteratively for each step i = i0, . . ., until the cur-
rently monitored condition is fulfilled. Each definition con-
tains the specification of the terminal effector state ei both
for normal termination (i.e. when the currently monitored
condition is fulfilled – eim) and abnormal termination (i.e.
when error condition is detected – eim∗). The reason for
this is to explicitly label the terminal effector state and

to distinguish between normal and abnormal instruction
execution termination.

The error condition fE is caused by: computational er-
rors (hence ci as its argument); robot or sensor hardware
malfunction (hence ei and ri). In error detection rather ri

is used directly than vi.
The control of future intermediate states is usually

combined with monitoring of the terminal condition, so it
can be expressed as:

ei+1 = f∗e (ci, ei, vi) when
fT (ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
ei = eim when

fT (ci, ei, vi) = true
∧

fE(ci, ei, ri) = false
ei = eim∗ when

fE(ci, ei, ri) = true
for i = i0, . . . , im, im∗ ≤ im (5)

where:
f∗e (ci, ei, vi) – effector transfer function
fT (ci, ei, vi) – terminal condition (Boolean value

function),
im – step number in which fT (ci, ei, vi) be-

comes true, and so the terminal condi-
tion monitoring is interrupted,

im∗ – step number in which fE(ci, ei, ri) is
satisfied, i.e. an error occurs, so the
instruction execution has to be termi-
nated prematurely.

It should be noted that from the engineering point of view
ei+1 is attained in two phases. First, the next state is com-
puted according to the definitions presented here and the
result ei+1

c of those computations becomes the set value
for the servos. Second, the servos force the effectors to at-
tain the state ei+1 = ei+1

c . Both phases are performed in
one step (usually servo sampling time or a low multiple of
that). For the sake of brevity the intermediate stage has
been excluded from the presented definitions.

Semantics specified by (4) can be represented graphically
by the flow chart in (Fig. 1). Its implementation results in a
Wait instruction. Definition of semantics (5) can be trans-
formed into the flow chart in (Fig. 2). This can be used as
an implementation vehicle for a Move instruction. It should
be noted that error condition monitoring is not included in
the flow charts (this can be handled as an exception). The
error condition has to be monitored throughout the entire
execution of all instructions of the program. The form of
fE does not have to be formulated analytically, if error
condition monitoring is done in the background of the user
program execution. Whenever the user program detects
a specific error it throws an exception and the error han-
dling code takes care of the necessary reaction. Technically
speaking, fE is a conjunction of all specific error situations.
As each situation is handled separately the global analytic
form of fE does not have to be supplied neither by the user
nor the one who implements the system.

�
�
�
�BEGIN

(i := i0)

Demand new sensor
readings vi

?

Get new sensor
readings vi

?

Evaluate the
initial condition
fI(ci, ei, vi)

?

�
��

@
@@

@
@@

�
��

?
YES Is the initial

condition satisfied?
fI(ci, ei, vi) = true?

NO

6

i := i+ 1

?

?�
�
�
�END

(i = im)

Fig. 1

Wait instruction flow chart

IV. MRROC++

The primary task of a system designer is to come up with
the structure of the system, i.e. its components and the in-
terconnections between those components. The necessary
interconnections between the system components can be
deduced from the general forms of effector and control sub-
system transfer functions. The semantics (4) of the initial
condition monitoring instruction (Wait) shows that the ef-
fector transfer function in that case is an identity, as the
effectors do not change their state throughout the execu-
tion of this instruction, but in the case of the instruction
controlling future intermediate states (Move), the general
semantics (5) implies an effector transfer function with a
value depending on all three system components.

ei+1 = f∗e (ci, ei, vi) (6)

Here it is assumed that the list of arguments of the transfer
function f∗e is the same as the lists of arguments of condi-
tion monitoring functions fI and fT , so we can concentrate
our considerations only on the transfer function f ∗e .

Any computations have to be done within the control
subsystem, which due to that changes its internal state.
Those computations, in the most general situation, involve
the information from all the system components.

ci+1 = fc(ci, ei, vi) (7)

The transfer function in the form (7) implies that there
exists a single centralised control subsystem that changes
its state basing on the information obtained from all the

�
�
�
�BEGIN

(i := i0)

Generate new
effector position

ei0+1

?

Demand new sensor
readings vi

?

Initiate motion
to position

ei+1

?

Get new sensor
readings vi

?

Evaluate the
terminal condition

fT (ci, ei, vi)

?

�
��

@
@@

@
@@

�
��

?
YES Is the terminal

condition satisfied?
fT (ci, ei, vi) = true?

NO

?�
�
�
�END

(i = im)

Generate next
effector position
ei+1 = f∗e (ci, ei, vi)

?

6

i := i+ 1

?

Fig. 2

Move instruction flow chart

effectors and all virtual sensors. Rarely in complex systems
the situation is such that the state of each component of
the system depends on every other component. We need
a finer granularity of system decomposition, so the system
S, as described by (1), is further divided by taking into ac-
count that there are ne effectors Ej , j = 1, . . . , ne. For this
situation still a centralised control subsystem can calculate
the next effector state for all of the effectors, but a much
better and clearer structure is obtained, if a hierarchical
distributed control subsystem is considered. In this case
the control subsystem C is partitioned into ne + 1 parts,
where there is a single coordinator C0 and ne effector con-
tollers Cj each responsible for control of the effector Ej ,
j = 1, . . . , ne.

Usually virtual sensors are grouped into bundles
(MRROC++ does not impose this constraint, but experience
does). Each bundle is associated with a separate effec-
tor. The actions of effector Ek rely on nvk virtual sensors.

Moreover the coordinator reads its own nv0 virtual sensors.
In consequence the system has nv virtual sensors:

nv =
ne∑

k=0

nvk (8)

As the result (1) can be transformed into:

S = < C0, C1, . . . , Cne ;E1, . . . , Ene ;V0, . . . , Vne > (9)

where each Vk, k = 0, . . . , ne represents a bundle of vir-
tual sensors. It is composed of virtual sensors Vkl , l =
1, . . . , nvk . The reading of each of those sensors is repre-
sented by vkl .

As the system has been subdivided into even smaller
subsystems than in (1), new transfer functions for those
subsystems have to be specified. The designer by deciding
what should be the arguments of those functions deter-
mines what connections will be present between those sub-
systems. An interconnection between two subsystems has
to be produced, if the next state of one system component
(i.e. its transfer function) depends on the current state of
the other component (i.e. takes the state of this element
as a transfer function argument). Reasonable forms do not
cause, on the one hand, too many interconnections and, on
the other hand, enable the execution of any control algo-
rithm. In the considered case the state of the coordinator
C0 was chosen to evolve in the following way:

ci+1
0 = fc0(ci0, c

i
1, . . . c

i
ne , e

i
c1 , . . . , e

i
cne
, vi01

, . . . , vi0nv0
) (10)

where eicj , j = 1, . . . , ne symbolises that C0 obtains the
information about the state of each of the effectors Ej in-
directly through Cj . eicj is the image of the state of the
effector. This implies that no direct connection between
C0 and each Ej needs to be implemented. The connection
between C0 and all Cj suffices.

The state of each effector Ej and of each control sub-
system part Cj was chosen to to evolve in the following
way:

ei+1
j = f∗ej (c

i
0, c

i
j , e

i
j , v

i
j1 , . . . , v

i
jnvj

) (11)

ci+1
j = fcj (c

i
0, c

i
j , e

i
j , v

i
j1 , . . . , v

i
jnvj

) (12)

The general structure the Multi-Robot Research-Oriented
Controller MRROC++ (Fig. 3) resulted. Each subsystem Cj ,
j = 1, . . . , ne, is responsible for controlling an effector as-
sociated with it, and the subsystem C0 is responsible for
the indirect coordination of all effectors. Hence, with each
of the effectors Ej , j = 1, . . . , ne an Effector Control
Process (ECP) is associated. Its state is expressed by
cj , j = 1, . . . , ne. The coordinating process is called the
Master Process (MP) and its state is expressed by c0.

Each virtual sensor vk, k = 1, . . . , nv is implemented as a
Virtual Sensor Processes (VSPk) running concurrently
to the other VSPs and ECPs. In consequence of (3)

vijk = fvjk (cij , e
i
cj , r

i
jk) (13)

is obtained, where j = 0, . . . , ne, k = 1, . . . , nvj , ecj is the
image of the state of the j-th effector (the one associated
with vjk) and rijk is a grup of real sensors that delivers data
to the virtual sensor.

As the semantics of the Wait and Move instructions for-
mulated by (4) and (5) are implementation independent,
they do not take into account the partitioning of the con-
trol subsystem into parts. The following discussion will
resolve this problem. From (10) it is evident that only
the coordinator (C0, MP) perceives all of the effectors, al-
though it does that indirectly through all Cj . From (11)
and (12) it is evident that all components Cj (ECPj) per-
ceive only one effector each, i.e. Ej . The above mentioned
problem is resolved, if in each process that perceives an
effector Ej , an abstract image of that effector is created.
In this way the coordinator (MP) must contain the images
of all effectors and each ECPj must posses the image of
Ej . Each process operates on its own images of effectors
and as a result of this activity sends motion commands
to images of lower level processes or finally directly to the
control hardware. The MP executes its Move and Wait in-
structions on the images of its effectors and so it computes:
f∗e0 , fI0 , fT0 based on the information contained in those
images. Then it sends the results of those computations
to the ECP processes. Each ECP also executes its Move
and Wait instructions, so adequate functions: f ∗ej , fIj , fTj ,
j = 1, . . . , ne, are computed taking into account the the in-
formation contained in the images incorporated into those
processes. The results of those computations are sent to the
Ej for execution. The above mentioned functions within
each level operate on adequate images and produce set val-
ues, or commands (decisions) for lower level images housed
in subordinate processes or for the control hardware itself.
By using the same principle each virtual sensor used by MP
or ECPj has to be reflected in that process, so an image
of each virtual sensor from the bundle associated with that
process has to be created in it.

The images of effectors are created within the memory
resources of a process, hence MP will contain the images
of all the effectors within C0. This enables it to compute
the next desired state for each of the effectors. An ECPj
contains within Cj the image of only one effector, that is
Ej , and so upon the guidance of the MP it can compute the
modified value of the next desired effector state or simply
transmit (for execution) the one computed by MP. The
influence of MP over the ECPj can be nil. In that case the
computation of the next desired state of effector Ej is the
sole responsibility of ECPj . ECPj updates its image of the
state of Ej on the basis of information obtained from the
hardware, and also transmits that information to the MP.

V. MOTION INSTRUCTIONS

As the current version of MRROC++mainly controls robots,
instead of using the generic concept of effectors the term
robot is utilised. From the discussion of previous sections
it can be concluded that two motion instructions (Move
and Wait) have to be supplied. Their structure should not
vary with the number of robots or sensors used. Only func-

�
�

�
�Master Process MP

?
6

?
6

. . .

#
"

!

Effector Control
Process ECPne

?6
Effectorne

-�

#
"

!

Virtual Sensor
Processes VSPnek
k = 1, . . . , nvne

?6
Real Sensorsne

#
"

!

Effector Control
Process ECP1

?6
Effector1

�-

#
"

!

Virtual Sensor
Processes VSP1k ,
k = 1, . . . , nv1

?6
Real Sensors1

�-

�
�

�
�Virtual Sensor Processes

VSP0k , k = 1, . . . , nv0

�-Real Sensors0

Fig. 3

Structure of a MRROC++ based system

tions f∗e , fI and fT change from motion to motion. Because
there is a contradiction between changing numbers of hard-
ware devices used in each motion, and preferably constant
number of instruction arguments, it was decided that robot
and sensor lists will be the formal parameters of instruc-
tions and not robots or sensors themselves. Robot and
sensor images on the MP level are object classes (i.e. data
and code operating on it) with the capability of influencing
and reading the states of adequate ECPs and VSPs respec-
tively. By looking at the flow charts of the Move (Fig. 2)
and Wait (Fig. 1) instructions one can notice that there are
compact portions, delimited by dashed lines, responsible ei-
ther for computation and testing of fI0 , or computation of
f∗e0 , fT0 and testing of fT0 . The portions of the flow charts
outside the bounds of the dashed lines are fixed – they do
not change regardless of the task that has to be executed
or the number and type of the robots or sensors used. This
suggests that the programmer will have to deliver only the
code dealing with: fI0 , f∗e0 and fT0 . To do that just two
program entities (e.g. objects) are needed:
• initial condition monitoring
• terminal condition monitoring and simultaneous genera-
tion of the next effector state,
so object classes named condition and generator respec-
tively have been introduced. The Move and Wait instruc-
tions (procedures) use within their bodies: robot (effec-
tor image), sensor (virtual sensor image), condition and
generator base classes, but at run-time they invoke de-
scendant objects of those classes. The programmer creates
descendants according to the task at hand. All this is pos-
sible due to polymorphism.

The programmer creates the MP by supplying adequate
robot and sensor lists (images of robots and sensors), as
well as initial conditions and motion generators. On the
MP level the sensor list is composed of any of the nv0 vir-
tual sensor images. It should be noted that the variability
of system structure has been contained in several indepen-
dent objects. For each motion the programmer points out
which robots and sensors will be used. This is done by
supplying the above mentioned lists. Each specific robot
or sensor “knows” how to interact with its ECP or VSP.
On the ECP level the Move and Wait instructions, instead
of a robot list, require a single robot image as one of their

arguments. The sensor list for each effector Ek is created
out of any of the nvk images of virtual sensors assigned to
that effector.

VI. MOTION GENERATORS

An interesting point is that motion generators can be
classified on the basis of the arguments of the function f ∗ej ,
j = 0, . . . , ne. A separate classification is needed for the
coordinator (MP) motion generators (f ∗e0MP

) and a sepa-
rate for all ECP motion generators (f ∗ejECP). To distin-
guish them explicitly the subscripts MP and ECP have
been added. From (11) it is obvious that the state of each
effector depends on c0, and that is determined by C0 (MP)
with the help of (10). That means that on the MP level the
most general form of effector transfer function will depend
on components c0, ec, v0, where ec =< ec1 , . . . , ecne >
and v0 =< v01 , . . . , v0nv0

>. As a result it can be de-
duced that there are eight possible forms of that function,
because each of the three arguments: c0, ec, v0 can ei-
ther be present or absent. Only the following five cases
are meaningful: f∗0e0MP

(c0), f∗1e0MP
(c0, v0), f∗2e0MP

(c0, ec),
f∗3e0MP

(c0, ec, v0), f∗∗e0MP
() = const. In the first four cases

c0 is used to compute the next (demanded) effector state
ei+1. It must be present as an argument, because the im-
ages of effectors and sensors and other variables are con-
tained within C0, so ec or v0 cannot be used without c0
– there would be no access to them. C0 can also be used
for memorizing other facts, which can be useful for motion
generation (e.g. taught-in trajectories or functionally de-
fined trajectories). In the fifth case c0 is missing, so the
resources of C0 cannot be used. This means that only a
certain constant is sent to the lower level. The ECPs op-
erate independently of each other and the MP, but they
need initial activation to know when to start their jobs.
The activation is caused by sending this constant. Obvi-
ously, when c0 is not present in the argument list of f∗e0MP

,
no computations can be carried out, so the information
contained in e and v cannot be utilised. When c0 is in
the argument list, four possibilities arise, with all combina-
tions of arguments ec and v0. With v0 present, the motion
generator modifies a predefined trajectory (e.g. a taught-
in trajectory) or generates a completely new one on the

basis of sensory information (e.g. unknown contour follow-
ing). When ec is present in the argument list the motion
generation takes into account high level effector state feed-
back. Substitution of ec by cj , j = 1, . . . , ne broadens the
capabilities of motion generation, as not only the high level
effector feedback can be taken into account, but also any
other information that is present on the ECP level.

Similar considerations are valid for the ECP level. For-
mula (11) shows that function f∗ejECP (ci0, c

i
j , e

i
j , v

i
j) has four

arguments, but cj must always be present, because unlike
on the MP level the resources of Cj must be employed in
the determination of the next effector state – they can-
not be delegated to a lower control level. This produces
eight possible cases f∗qejECP , q = 0, . . . , 7 – all of them valid.
When c0 is not present in the argument list the effectors
are not coordinated – virtually no contact with MP is nec-
essary. The action initiating constant sent by MP to ECP
is neglected, as it initiates the overall operation of ECP
rather than a specific action of the low level motion gen-
eration performed by f∗qejECP . If c0 is present, then the ef-
fectors are coordinated by MP. Two forms of coordination
are possible:

• loose – where the coordinator synchronised in time and
space the effectors sporadically,
• tight – where the effectors are synchronised in each mo-
tion step or a low integer multiple of that (e.g. jointly trans-
fer a rigid object).

In the case of loose coordination the MP (coordinator)
transmits only decision information (an item from a finite
set), and in the case of tight coordination numeric informa-
tion (describing the next location to be attained) is being
sent to the ECPs. It should be noted that even if the effec-
tors are not coordinated by the coordinator they still can
cooperate. In that case an effector perceives the actions of
the other effectors with the sensors from its bundle. For the
purpose of this paper coordination and cooperation should
be distinguished – because they are not the same.

When ej is present in the argument list of f∗qejECP , the
ECP level effector state feedback is taken into account dur-
ing motion generation. An obvious example of that is any
form of interpolation between the current arm position and
the desired one. To compute the absolute locations of the
interpolation nodes the current arm position must be ob-
tained by the ECP from lower control level. As the feed-
back is required only once per each trajectory section, this
is the case of sporadic feedback. More frequent feedback
is also possible. Effector state ej can be absent from the
argument list of f∗qejECP . For instance, motion generation
relative to the current arm location does not require ECP
level feedback (motion by an offset).

A similar situation arises in the case of virtual sensor
readings vj . If they are present in the argument list of
f∗qejECP , the motion is generated on the basis of information
contained in the sensor readings or this data is used to
modify a predefined trajectory present in cj . If vj is missing
from the argument list sensorless motion generation takes
place.

VII. Initial and terminal conditions

Using exactly the same approach as above, a classifica-
tion based on the argument lists of functions fI and fT
can be conducted. As the classification is the same for
both functions it will be carried out only once, so subscript
P will stand for either I or T . As effector and sensor im-
ages are contained in C, so an adequate argument c must
always be present.

On the MP level four possible combinations of arguments
of the condition functions result: f 0

PMP
(ci0), f1

PMP
(ci0, v

i
0),

f2
PMP

(ci0, e
i
c), f

3
PMP

(ci0, e
i
c, v

i
0). The presence of c0 ensures

access to the coordinator C0 program variables. Presence
of ec ensures the possibility of checking the state of one or
more effectors. Existence of v0 enables testing the readings
of the V0 bundle of virtual sensors.

There are four possible arguments to those functions
on the ECP level, but cj must always be present, so
eight possible combinations of arguments of the condition
functions result: f0

PECP
(cij), f

1
PECP

(cij , v
i
j), f

2
PECP

(cij , e
i
j),

f3
PECP

(cij , e
i
j , v

i
j), f

4
PECP

(ci0, c
i
j), f

5
PECP

(ci0, c
i
j , v

i
j),

f6
PECP

(ci0, c
i
j , e

i
j), f

7
PECP

(ci0, c
i
j , e

i
j , v

i
j).

If c0 is missing the condition is constructed only out of
local knowledge contained in cj and the state ej of the
effector and the readings vj of the bundle of virtual sensors
Vj assigned to the effector Ej . It should be noted however,
that f2

IECP
(cij , e

i
j) either reduces to f0

IECP
(cij) or is useless

for the purpose of waiting, as ei does not change – see
(4). Nevertheless it can still be used for decision making –
checking if the attained state ej is the required one. The
same can be said for other functions fIECP containing ej .

As in the MRROC++ system the function fT is used in
conjunction with function f∗e within a generator, both of
them have exactly the same lists of arguments.

VIII. CONCLUSIONS

The informal approach to partitioning of a multi-effector
system, as described by (9) and later the formal elaboration
of the internal communication links based on (11), (10) and
(12), shows to the designer explicitly what are the capabili-
ties of the designed system. If different forms of those func-
tions would have been assumed a system with another in-
ternal structure would result. The assumed functions pro-
hibit direct communication between effectors. Such com-
munication is possible only indirectly through the coordi-
nator. The benefit is the overall simplification of system
implementation, but it can be argued that it limits gen-
erality. This dilemma has to be solved by the designer of
the system, but he or she should be aware of the conse-
quences of the decision. The introduced formalism shows
the consequences explicitly.

This paper concentrated on showing how the intro-
duced formalism was used to arrive at the structure of
the MRROC++, but the same methodology can be used to
derive other structures. The formalism is implementation
independent, so it is not limited by the real-time operating
system, the language used for coding the software or the
means of communication between the processes.

The presented classification of motion generators and
condition functions could be attained intuitively, but then
there would be no way of showing that it is complete. By
using the arguments of functions f∗e , fI and fT as a classi-
fication criterion, completeness is guaranteed (all possible
combinations of arguments are taken into account). Com-
pleteness is important from the point of view of implemen-
tation of multi-robot control software. This software must
be designed in such a way that none of the above mentioned
categories of motion generators and conditions is neglected.
It also shows what are the internal communication capa-
bilities of the system as a whole.

References
[1] Ambler A. P., Corner D. F.: RAPT1 User’s Manual . Depart-

ment of Artificial Intelligence, University of Edinburgh, 1984.
[2] Arkin R.C.: Behavior-Based Robotics. MIT Press, Cambridge,

Mass., 1998.
[3] Brooks R.A.: Inteligence Without Representation. Artificial In-

telligence. No.47. 1991. pp. 139–159.
[4] Brooks R.A.: Intelligence Without Reason. MIT, Artificial In-

telligence Laboratory, A.I. Memo No.1293, April 1991.
[5] Backes P., Hayati S., Hayward V., Tso K.: The KALI Multi-Arm

Robot Programming and Control Environment . Proc. NASA
Conf. on Space Telerobotics, 1989.

[6] Bidziński J., Mianowski K., Nazarczuk K., Słomkowski T.: A
manipulator with an arm of serial parallel structure. Archives
of Mechanical Engineering, Vol.39, No.1-2, 1992, pp.65-78.

[7] Blume C., Jakob W.: Design of the Structured Robot Language
(SRL). in: Advanced Software in Robotics, Eds. Danthiene A.,
Géradin M., Elsevier, North Holand, 1984. pp.127–143.

[8] Blume C., Jakob W.: PASRO: Pascal for Robots. Springer-
Verlag, Berlin 1985.

[9] Blume C., Jakob W.: Programming Languages for Industrial
Robots. Springer-Verlag, 1986.

[10] Corke P., Kirkham R.: The ARCL Robot Programming System.
Proc. Int. Conf. Robots for Competitive Industries, Brisbane,
Australia, 14-16 July 1993. pp.484-493.

[11] Frączek J., Buśko Z.: Calibration of Multi Robot System Without
and Under Load Using Electronic Theodolites. Proc. of the 1st
Workshop on Robot Motion and Control RoMoCo’99, Kiekrz,
Poland, 28–29 June 1999. pp. 71-75.

[12] Fra̧czek J., Buśko Z.: Calibration of Serial and Serial-Parallel
Robot Systems Using Electronic Theodolites and Error Correc-
tion Procedure. Proc. of the 10th World Congress on the Theory
of Machines and Mechanisms, Oulu, Finland, 20–24 July 1999.
Vol.3. pp.972–977.

[13] Hayward V., Paul R. P.: Robot Manipulator Control Under Unix
RCCL: A Robot Control C Library . Int. J. Robotics Research,
Vol.5, No.4, Winter 1986. pp.94-111.

[14] Hayward V., Hayati S.: KALI: An Environment for the Pro-
gramming and Control of Cooperative Manipulators. Proc.
American Control Conf., 1988. pp.473-478.

[15] Hayward V., Daneshmend L., Hayati S.: An Overview of KALI:
A System to Program and Control Cooperative Manipulators.
In: Advanced Robotics. Ed. Waldron K., Springer-Verlag, 1989.
pp.547–558.

[16] Lapham J.: RobotScript: The introduction of a universal robot
programming language. Industrial Robot, Vol.26, No.1, 1999,
pp.17–27.

[17] Lloyd J., Parker M., McClain R.: Extending the RCCL Program-
ming Environment to Multiple Robots and Processors. Proc.
IEEE Int. Conf. Robotics and Automation, 1988. pp.465-469.

[18] Lloyd J., Hayward V.: Real-Time Trajectory Generation in
Multi-RCCL. Journal of Robotics Systems, 10 (3), 1993. pp.369–
390.

[19] Mianowski K., Nazarczuk K., Wojtyra M., Szynkiewicz W.,
Zieliński C., Woźniak A.: Application of the RNT Robot to
Milling and Polishing . Proc. of the 13-th CISM-IFToMM Sym-
posium on Theory and Practice of Robots and Manipulators
Ro.Man.Sy’13, 3–6 July 2000, Zakopane, Poland.

[20] Mujtaba S., Goldman R.: AL Users’ Manual . Stanford Artificial
Intelligence Lab., AI Memo 323, January 1979.

[21] Nazarczuk K., Mianowski K., Olȩdzki A., Rzymkowski C.: Ex-
perimental Investigation of the Robot Arm with Serial-Parallel
Structure. Proc. 9-th World Congress on the Theory of Machines
and Mechanisms, Milan, Italy, 1995, pp. 2112-2116.

[22] Nazarczuk K., Mianowski K.: Polycrank – Fast Robot Without
Joint Limits. Proc. of the 12-th CISM-IFToMM Symposium on
Theory and Practice of Robots and Manipulators Ro.Man.Sy’12,
6-9 June 1998. Springer-Verlag, Wien, pp.317-324.

[23] Paul R.: WAVE – A Model Based Language for Manipulator
Control . The Industrial Robot, March 1977. pp.10–17.

[24] Pacut A., Brudka M., Jaworski M.: Neural Processing of Ul-
trasound Images in Robotic Applications. Proc. of the IEEE
Int. Workshop on Emerging Technologies, Intelligent Measure-
ments and Virtual Systems for Instrumentation and Measure-
ments ETIMVIS’98, St. Paul, USA, May 1998. pp. 59–66

[25] Brudka M., Pacut A.: Intelligent Robot Control Using Ultra-
sonic Measurements. Proc. of the 16-th IEEE Instrumentation
and Measurement Technology Conference IMTC/99, Venice,
Italy, vol. 2, May 1999. pp. 727–732.

[26] Taylor R. H., Summers P. D., Meyer J. M.: AML: A Manu-
facturing Language. The International Journal of Robotics Re-
search, Vol. 1, No. 3, 1982. pp.842–856.

[27] Zieliński C.: TORBOL: An Object Level Robot Programming
Language. Mechatronics, Vol.1, No.4, Pergamon Press, 1991.
pp.469-485.

[28] Zieliński C.: Object Level Robot Programming Languages. In:
Robotics Research and Applications. Ed.: A. Morecki et.al.,
Warsaw 1992. pp.221-235.

[29] Zieliński C.: Flexible Controller for Robots Equipped with Sen-
sors. 9th Symp. Theory and Practice of Robots & Manipulators,
Ro.Man.Sy’92, 1-4 Sept. 1992, Udine, Italy, Lect. Notes: Control
& Information Sciences 187, Springer-Verlag, 1993. pp.205-214.

[30] Zieliński C.: Reaction Based Robot Control . Mechatronics,
Vol.4, no.8, 1994. pp.843–860

[31] Zieliński C.: Robot Programming Methods. Publishing House of
Warsaw University of Technology, 1995.

[32] Zieliński C.: Control of a Multi-Robot System, 2nd Int. Symp.
Methods and Models in Automation and Robotics MMAR’95,
30 Aug.–2 Sept. 1995, Midzyzdroje, Poland. pp.603-608.

[33] Zieliński C.: Sensorimotor robot control . 7-th
IFAC/IFORS/IMACS Symposium on Large Scale Systems:
Theory and Applications, 10–13 July 1995, London, United
Kingdom. Vol.2, pp.797–802.

[34] Zieliński C., Szynkiewicz W.: Control of Two 5 d.o.f. Robots
Manipulating a Rigid Object , IEEE Int. Symp. on Industrial
Electronics ISIE’96, 17–20 June 1996, Warsaw, Poland. Vol.2,
pp.979–984.

[35] Zieliński C.: Reactive Robot Control Applied to Acquiring Mov-
ing Objects. Proc. of the 3rd International Symposium on Meth-
ods and Models in Automation and Robotics MMAR’96, 10–13
September 1996, Międzyzdroje, Poland. Vol.3, pp.893–898.

[36] Zieliński C.: Object-Oriented Robot Programming , Robotica,
Vol.15, 1997. pp.41–48.

[37] Zieliński C.: Object–Oriented Programming of Multi–Robot
Systems, Proc. 4th Int. Symp. Methods and Models in Automa-
tion and Robotics MMAR’97, 26–29 August 1997, Międzyzdroje,
Poland, pp.1121–1126.

[38] Zieliński C., Rydzewski A., Szynkiewicz W.: Multi-Robot Sys-
tem Controllers. Proc. of the 5th International Symposium on
Methods and Models in Automation and Robotics MMAR’98,
25–29 August 1998, Międzyzdroje, Poland, Vol.3, pp.795–800.

[39] Zieliński C.: The MRROC++ System, 1st Workshop on Robot
Motion and Control, RoMoCo’99, 28–29 June, 1999, Kiekrz,
Poland. pp.147–152.

[40] QNX System Architecture. Quantum Software, 1992.
[41] User’s Guide to VAL II: Programming Manual . Ver.2.0, Uni-

mation Incorporated, A Westinghouse Company, August 1986.

	INTRODUCTION
	ROBOT SYSTEM DECOMPOSITION
	SENSOR UTILIZATION
	MRROC++
	MOTION INSTRUCTIONS
	MOTION GENERATORS
	Initial and terminal conditions
	CONCLUSIONS

