
Proc. 14th CISM-IFToMM Symp. on Robotics, RoManSy’02, 1–4 July 2002, Udine, Italy, pp.299-306.

Motion generators in MRROC++ based robot controllers
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Institute of Control and Computation Engineering, Warsaw University of Technology, Poland

Abstract. This paper presents the method of generating effector motions in MRROC++
(Multi-Robot Research-Oriented Controller) based systems. MRROC++ is a C++ library
of objects and processes that can be assembled into a robot controller executing a user
defined task. The presented formal approach to motion generation is general in nature
and not only can it be used as a basis for the implementation of any robot programming
language or library, but also as a means of classification of motion generators.

1 Introduction

MRROC++ (e.g.: Zieliński (1997), Zieliński (1999), Zieliński (2001a), Zieliński (2001b)) be-
longs to a family of software libraries facilitating the implementation of single- and multi-robot
system controllers (e.g. RCCL: Hayward and Paul (1986), Multi-RCCL: Lloyd and Hayward
(1993) KALI: Hayward and Hayati (1988), Hayward et al. (1989), RORC: Zieliński (1995a),
Zieliński (1993), MRROC: Zieliński (1995a), PASRO: Blume and Jakob (1985)). Sometimes
those libraries are also called robot programming languages (RPLs), because besides contain-
ing components used for constructing a robot controller they also enable the expression of robot
tasks. In this case the user’s task and the system controller are inseparably bound together to
form a single program solving the task at hand. Those libraries consist of components (proce-
dures or objects) that can be inserted into a general framework to create a structure executing
the user’s task. If the task changes, the program has to be altered, thus either the components
have to be modified or reassembled in a different way. The components can be parametrised. In
such a case the values of parameters are altered through external means rendering the overall
modification of the controller unnecessary (Zieliński (2000)).

This paper presents a formalised approach to the implementation of library components
responsible for robot motion generation. No distinction is made as to manipulators, walking
machines or other vehicles – all are treated as robotic agents. The paper also prresents the
general structure of MRROC++ based controllers. Although this structure is hierarchical, by
switching off the coordinator, independent functioning of robots is possible. This is especially
important from the point of view of distributed systems, where no explicit coordination or
direct communication between robots is anticipated (e.g. robots perceiving each other and the
environment only through their own sensors – as postulated by behavioural robotics, e.g. Brooks
(1991), Arkin (1998)).

Regardless of the approach followed (i.e. sense–plan–act or sense–react) the library must
provide facilities for effector motion generation. This paper focuses on such specification of
motion generators that any needed type of motion can be caused. As formal description based
on transition functions is utilised the implementation of postulated specifications is straight
forward. This is due to the fact that the concept of function is the foundation of general
purpose programming languages – and those are the basis for the considered libraries.
1 This work was supported by CATID, Warsaw University of Technology.



2 Multi-robot system decomposition

A robot system S is composed of three subsystems:

S =< C;E;R >, (1)

C – control subsystem, (i.e. memory: variables, program etc.),
E – effectors (manipulator arms, tools, legs, wheels, etc.),
R – receptors — include all the measuring devices gathering information from the environment

of the system. Devices for measuring the internal state of the system (e.g. position encoders,
resolvers) are not treated here as sensors. They supply data about the state of E.

The state of the system S is denoted as:

s =< c; e; r >, (2)

where: c – state of the control subsystem C, e – state of the effectors E,
r – state of the real (hardware) sensors R.

Motion instructions of the user’s program, in the most general case, take into account the
the current states of: the effectors e, the control subsystem c and the current readings r of the
receptors, and exert influence over effectors E by enforcing the new desired state e. Usually the
motion instructions compute the new desired locations of the effectors and the servos ensure
that those locations are attained by the effectors. The computations are performed at servo
sampling rate or at a low multiple of that. The state of each component of the system can
be expressed in terms of diverse abstract notions. In the case of effectors these can be: joint
positions, end-effector locations or grasped object Cartesian-Euler coordinates. Data obtained
from real sensors usually cannot be used directly in robot motion control, e.g. to control the
arm motion, only the grasping location of the object that is to be picked would be necessary –
in the case of a camera a bit-map has to be processed to obtain the grasping location. In some
other cases a simple sensor in its own right would not suffice to control the motion (e.g. a
single touch sensor), but several such sensors deliver meaningful data. The process of extracting
meaningful information for the purpose of motion control is named data aggregation and is
performed by virtual sensors V . As a result virtual sensor readings v are obtained.

As we are dealing with multi-effector systems, a finer granularity of decomposition is
necessary. Thus the system S, as described by (1), is further divided by taking into account that
there are ne effectors Ej , j = 1, . . . , ne. For this situation a centralised control subsystem can
calculate the next effector state for all of the effectors, but a much better and clearer structure is
obtained, if a hierarchical distributed control subsystem is considered. In this case the control
subsystem C is partitioned into ne + 1 parts, where there is a single coordinator C0 (in
MRROC++ called: Master Process) and ne effector controllers Cj (in MRROC++ called Effector
Control Processes) each responsible for control of the effector Ej , j = 1, . . . , ne (fig. 1). If
the coordinator C0 is inactive (dormant) we obtain a purely distributed control system with
independent robot (effector) agents. We assume that those agents do not communicate directly
– only implicit communication is possible by observing the actions of other entities through
the agent’s own sensors. This assumption diminishes the complexity of implementation of such
a system (detailed discussion is in Zieliński (2001b)). As a system with a dormant coordinator,
on the one hand, is equivalent to a system without a coordinator and, on the offer hand, is
a special case of a system with a coordinator, we shall focus only on the latter case. Such a
structure was assumed by the MRROC/MRROC++ based systems.

Usually virtual sensors are grouped into bundles (MRROC++ does not impose this constraint,
but experience does). Each bundle is associated with a separate effector. The actions of effector
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Figure 1. Structure of a MRROC++ based system

Ek rely on nvk virtual sensors. Moreover the coordinator reads its own nv0 virtual sensors.
In consequence the system has nv virtual sensors: nv =

∑ne
k=0 nvk (fig. 1). As a result of the

above (1) can be transformed into:

S = < C0, C1, . . . , Cne ;E1, . . . , Ene ;V0, . . . , Vne > (3)

where each Vk, k = 0, . . . , ne represents a bundle of virtual sensors. It is composed of virtual
sensors Vkl , l = 1, . . . , nvk . The reading of each of those sensors is represented by vkl .

The state of each component of (3) changes at sampling rate (or a low integer multiple of that
– depending on the implementation). To note that, discrete time i is introduced, where i is the
current time and i+1 is the next time instant. Moreover, in each subcontroller Cj we distinguish
parts containing the information obtained from subsystems connected to this Cj . Those parts
are called images of the connected subsystems, because this is how the subcontroller perceives
the surrounding entities. The distinction of those parts is important because the information
contained in them is used by the motion instructions to compute the desired states of the
connected components (i.e. effectors, coordinator, virtual sensor configuration). Thus the state
of each Cj can be represented by:

cij = < cicj , e
i
cj , e

i+1
cj , V icj , V

i+1
cj , ai0j , a

i+1
j0 > (4)

where: cicj – current state of the subcontroller’s Cj intrinsic internal variables
eicj – current state of the effector Ej image
ei+1
cj – next (desired) state of the effector Ej image (computed in i, utilised in i+ 1)
V icj – current image of the readings of the virtual sensor bundle
V i+1
cj – desired configuration of the virtual sensor bundle (commands) (computed in i)
ai0j – current command of the coordinator C0 for the subcontroller Cj
ai+1
j0 – response of the subcontroller Cj to the coordinator C0 (computed in i)

Fig.2 presents the internal structure of the subcontroller Cj . In the most general case the
subcontroller Cj uses the current state of: its intrinsic internal variables cicj , the effector Ej
image eicj , images of readings of the virtual sensor bundle V i

cj and the coordinator command
ai0j , to compute: the desired state of the effector Ej (i.e. ei+1

cj ), the next command for the virtual
sensor bundle V i+1

cj and a certain information for the coordinator C0 (i.e. ai+1
j0 ). Subsequently

the images are passed on to the appropriate components of the system for execution or a proper
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Figure 2. Internal structure of subcontroller (Effector Control Process) data

reaction. Thus, ei+1
cj → ei+1

j – due to this transfer the effector will attain the desired location
(if this is impossible an error condition will occur – we shall deal with this further on). The
data ai+1

j0 and V i+1
cj will be transferred to the coordinator and each virtual sensor in the bundle,

respectively. In the next control step new effector state will be obtained: eij → eicj . In reaction to
the data transferred to the coordinator and the virtual sensor bundle new coordinator command
ai0j will be issued and new virtual sensor readings V i

cj will be acquired. Hence, in each control
step the following functions are computed:

ei+1
cj = fej (c

i
cj , e

i
cj , V

i
cj , a

i
0j) (5)

V i+1
cj = fvj (c

i
cj , e

i
cj , V

i
cj , a

i
0j) (6)

ai+1
j0 = faj0(cicj , e

i
cj , V

i
cj , a

i
0j) (7)

ci+1
cj = fcj (c

i
cj , e

i
cj , V

i
cj , a

i
0j) (8)

The evaluation of those functions is the responsibility of the motion generator. Besides the eval-
uation of (5), (6), (7) and (8) a decision has to be made wether the motion should be continued
or terminated. This involves the computation of the terminal condition fTj (cicj , e

i
cj , V

i
cj , a

i
0j).

This is a condition determining when the currently executed motion instruction should be ter-
minated. Its evaluation also rests with the motion generator. All of the above computations and
data transfers can be assembled into a flow chart determining their sequence in time (fig. 3).
Motion generator of each motion instruction is responsible for the computations contained in
the first operational block of this flow diagram and in the part enclosed by the dashed box.
Using C++ terms one can say that those two areas constitute two separate methods of an object
named motion generator in MRROC++. During the execution of a motion instruction all kinds
of unforeseen events can take place. Those we call error conditions. As error conditions are
usually dealt with by exception handling, which is asynchronous in nature, the error handling
has not been included in fig. 3.

The structure and the general contents of the blocks in the flow chart do not vary with
different motions. The only elements that change are the functions: (5), (6), (7) and fTj . Thus
the MRROC++ programmer has to deliver just the code of those functions for each global effector
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Figure 3. Motion instruction flow chart

motion – a rather simple programming task, considering that this code has to be expressed in
C++.

3 MOTION GENERATORS

An interesting point is that motion generators can be classified on the basis of the arguments
of the function (5), i.e. fej (c

i
cj , e

i
cj , V

i
cj , a

i
0j). Functions (7) and (6) have the same argument

lists, so it suffices to consider just (5). Function fej has four arguments. The argument cicj must
always be present, because the intrinsic resources of Cj must be employed in the determination
of the next effector state – e.g. they are used as temporary variables in the computations and
reflect the current state of Cj . This produces eight possible cases f qej , q = 0, . . . , 7 – all of
them valid. When ai0j is not present in the argument list the effectors are not coordinated – no
contact with the coordinator is anticipated. If ai0j is present, then the effectors are coordinated.
Two forms of coordination are possible:



loose – where the coordinator synchronises (in time and space) the effectors sporadically,
tight – where effectors are synchronised in each motion step (e.g. joint transfer of an object).

In the case of loose coordination the coordinator transmits only decision information (an item
from a finite set), and in the case of tight coordination numeric information (describing the
next location to be attained) is being sent to the subcontrollers. It should be noted that even
if the effectors are not coordinated by the coordinator they still can cooperate. In that case an
effector perceives the actions of the other effectors with the sensors from its bundle. For the
purpose of this paper coordination and cooperation should be distinguished.

When eicj is present in the argument list of f qej , the effector state feedback is taken into
account during motion generation. An obvious example of that is any form of interpolation
between the current arm position and the desired one. To compute the absolute locations of the
interpolation nodes the current arm position must be obtained by the subcontroller from lower
control level (hardware). As the feedback is required only once per each trajectory section, this
is the case of sporadic feedback. More frequent feedback is also possible. Effector state image
eicj can be absent from the argument list of f qej . For instance, motion generation relative to the
current arm location (motion by an offset) does not require such feedback.

A similar situation arises in the case of virtual sensor readings V i
j . If they are present in

the argument list of f qej , the motion is generated on the basis of information contained in the
sensor readings or this data is used to modify a predefined trajectory present in cicj . If V ij is
missing from the argument list sensorless motion generation takes place.

It should be pointed out that proper design of such a library as MRROC++ should enable the
programmer to create all types of functions: f qej , q = 0, . . . , 7. Otherwise motion capabilities
of the system will be unnecessarily limited by the software.

4 Conclusions

MRROC++ is submerged in C++. It utilises the real-time operating system QNX capable of
supervising a computer network. Initially MRROC (Zieliński (1995b)) was implemented using
procedural approach, but currently this has been changed to object-oriented approach, and hence
MRROC++ resulted. The switch of programming approach not only simplified robot task coding,
but also proved to be much more effective in the implementation. Polymorphism enables late
binding, so procedures could be coded without the specific knowledge of what types of effectors
and sensors will be used. Exception handling enabled the separation of the code processing
normal system functioning from the code dealing with error situations. Using C++ instead of
C functions further simplifies programming, as the former have access to all the data members
of objects, while functions either have to rely on global variables or long parameter lists. The
programming of such a system consists in assembling out of library objects and procedures a
controller dedicated to the execution of the task at hand. The user’s program is incorporated
into the controller code. The user delivers the code for just a few object classes that are used
by motion instructions. The formal approach presented in this paper not only facilitated the
structuring of the whole system software, but also helped in distinguishing the few objects that
the user has to modify while creating a user’s program.

The approach followed in implementing MRROC++ based controllers has been tested on
diverse robots and tasks. MRROC++ can currently control ASEA type IRb-6 robots (one of them
mounted on a track), prototype serial-parallel structure RNT robot (Nazarczuk et al. (1995)), and
a prototype fast robot without joint limits – Polycrank (Nazarczuk and Mianowski (1998)). All
of those robots require specialised hardware controllers (Zieliński et al. (1998)). Force/torque,



ultrasonic, and infrared sensors, CCD cameras and a conveyor belt have been included in the
implemented systems. The described approach to programming has been validated on different
tasks – both industrial and research.

MRROC++ has been successfully used to build a typical industrial controller for a task
consisting in engraving inscriptions in soft materials (e.g. wood) by a robot equipped with a
milling machine (Mianowski et al. (2000)). In this case the shape was defined to be a series
of B-spline curves.

Cooperative transfer of a rigid body by two robots having 5 d.o.f. each has been demon-
strated by using MRROC (Zieliński and Szynkiewicz (1996a)). To automate the tedious process
of calibrating the two-robot system another controller was built. For calibration two high pre-
cision electronic theodolites were used (Frączek and Buśko (1999a)). The same procedure and
software was later used in the case of the RNT robot (Frączek and Buśko (1999b)).

MRROC based software was also used to build a system containing a robot and an ultrasonic
matrix overhanging a conveyor. The 3D image obtained through that matrix enabled the de-
tection, localisation and recognition of objects moving on a conveyor. For that purpose neural
networks were incorporated into the controller (Pacut et al. (1998), Brudka and Pacut (1998)).

This software can also be applied to create reactive controllers (Zieliński (1994), Zieliński
(1995a), Zieliński (1995c)), which have gained much attention (e.g. Arkin (1998), Brooks
(1991)). Originally a controller was built for a robot transferring inside a maze a touch probe
and later a force sensor. The robot gradually gained information on its surroundings by reacting
to collisions with the walls of the maze while trying to attain a global goal of finding a way out
of the maze. Reactive control was also used to acquire moving objects from a conveyor. In this
case infra-red sensors were the source of information both about velocity and position of the
object (Zieliński (1996b)). An interesting aspect of this research was that the same formalism
that was presented in this paper can be extended to describe reactive robot systems and that
the hierarchical distributed controllers can be used as a platform to implement reactive control.
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