
6th Int. Conf. on Control, Automation, Robotics and Vision, ICARCV’2000, 5–8 December 2000, Singapore. (on CD-ROM)

Implementation of Control Systems for Autonomous Robots

Cezary Zieliński∗

School of MPE, Nanyang Technological University,
Nanyang Avenue, Singapore 639798.

MCZielinski@ntu.edu.sg

Abstract
The paper presents diverse control system imple-

mentation techniques for autonomous robots. It
takes into account that such control systems require
programming means for communicating the tasks
that have to be executed by the robots and that
those devices must have both considerable sensor
data gathering capability and technical means for
communicating and cooperating with other devices,
presumably robots too.

1. Introduction
The encyclopedic definitions of the term “au-

tonomous” usually underscore that a certain entity
is independent of a greater whole or that it works
without outside control. Speaking of technical de-
vices we do not intend to make them independent
to such an extent that they will be utterly outside
our control. Our intention is to make them capa-
ble of attaining goals formulated by humans, but in
a manner that will not require human intervention.
This understanding of autonomy requires that, on
the one hand, there will be some means of communi-
cating the task to the device that is to carry it out,
and, on the other hand, that the device will have
adequate means of perception of the environment to
execute the task, although the state of the environ-
ment might change to a considerable extent. In other
words, autonomous devices require adequate sensing
and programming capabilities. This paper discusses
possible control system structures for autonomous
robots, taking into account several factors:
• method of conveying to the robot the task that is

to be executed (i.e. programming method),
• method of implementing the control system,
• incorporation of diverse sensors,
• cooperation with other devices (including other

autonomous robots).
The discussion of diverse implementation options
that the system designer has at his or her disposal is
of utmost importance, as misjudgment at the concep-
tual stage of constructing a controller usually brings
about very tedious and costly alterations later on.

∗Currently on long term leave from Warsaw University
of Technology, Institute of Control and Computation En-
gineering, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland,
C.Zielinski@ia.pw.edu.pl

The paper systematizes and brings together possible
robot programming language implementations tak-
ing into account both sensor incorporation and differ-
ent modes of cooperation between the system mod-
ules, and thus points out what are the most gen-
eral control system structures that can be used. A
neat system structure fosters easy implementation
and simplifies modifications, if they become neces-
sary. Moreover, reusability of code is a by-product,
which results in faster implementation of new gener-
ations of systems.

The paper deals with diverse autonomous robots,
e.g. manipulators, mobile robots, walking, climb-
ing, swimming and flying machines. All of those
machines exert their influence on the environment
through effectors, e.g.: arms, legs, wheels. Both sin-
gle and multi-effector robots will be dealt with here.

2. Robot Programming Methods
There are two extreme approaches to robot pro-

gramming: on-line (i.e. utilizing the robot for cre-
ating a program) and off-line (i.e. writing programs
without using the robot). In the former the robot is
used to teach in the trajectory positions that have to
be subsequently reproduced. In the latter the task
that is to be executed is expressed in a textual (and
sometimes graphical) form. The first one is easy to
master and invariant to imprecision of manufactur-
ing of robots, but it makes the robot unproductive
during programming and causes considerable prob-
lems to sensor incorporation. In the second, sensor
incorporation is relatively simple and the robot is
not needed during programming, but it is consider-
ably more difficult to learn and – most important –
requires calibration. This is due to finite precision
of manufacturing, assembly and location of robots.
On-line programming relies on high repeatability of
robots. Off-line programming suffers from their low
accuracy. In the same robot repeatability can be well
below a fraction of a millimeter while its accuracy
can be of an order of centimeters. Nevertheless the
advantages of off-line programming are so compelling
that the industry is now introducing this method
of programming into their robot controllers, but re-
tains, to a certain extent, the teach-in capability (e.g.
VAL II [16], RobotScript [5]), thus rendering a hy-
brid method of programming. The teach-in method

of programming is retained, because calibration is
both expensive and difficult, nevertheless there are
industrial examples of successful implementation of
shop-floor calibration techniques (e.g. [4]). In the re-
search community the off-line method is favored, as it
is more flexible, especially regarding sensor integra-
tion. Even if the robots are assembled as imprecisely
as they are now, calibration would not be needed,
if the robots would be equipped with diverse sensors
detecting misalignments. The control strategy would
have to be intelligent enough to take into account
the sensory information to cope with the variations
in the expected state of the environment. This strat-
egy aims at increasing the the degree of autonomy of
industrial robots, but it is also valid for any other
robots. Not only accuracy can be enhanced by using
adequate sensors, but also the decision making ca-
pabilities of robots can be greatly extended. Before
calibration and on-line programming methods can be
given up totally in the industry, several conditions
must be fulfilled:
• sensor technology must become cheaper,
• efficient motion control strategies utilizing sensory

data must be devised,
• improved methods of specifying tasks must be in-

troduced,
• controller implementation methods taking into ac-

count the above three conditions have to be de-
fined.

The enumerated conditions are exactly the same as
those for producing autonomous robots. Solving the
above mentioned problems will benefit both the in-
dustrial robots and non-industrial ones (e.g. mobile
robots, walking machines). The industrial robots
will be capable of dealing with inexactness in posi-
tions and non-industrial ones with unstructured en-
vironments.

3. Implementation of Programming in
Control Systems

Regardless of the method of programming (on-line
or off-line) the task that is to be executed by a robot
can be treated as data. In the case of on-line pro-
gramming this data is a sequence of end-effector lo-
cations, and in the case of off-line programming this
is either a textual description of the task or, rarely,
its graphic representation (e.g. [7]). In both cases the
controller of the robot has to interpret this data to
execute the task. As this data has a certain syntactic
form (although in the case of on-line programming it
is very simple) we can treat it as a program expressed
in a certain programming language.

Generally, two approaches are followed regard-
ing implementation of robot programming languages
(RPLs). Either a specialized RPL is defined or a li-
brary of modules is created using a general purpose
programming language (GPPL). In the former case
we shall be speaking of specialized RPLs and in the

User’s program in
a specialized RPL

?
RPL Interpreter

Controller
hardware and software

?

6

Robot system hardware

Control
signals

Load

Fig. 1

Direct interpretation of a specialized RPL user’s

program

latter of submerged RPLs. This section intends to
look at the consequences that those two approaches
have for possible implementation techniques of robot
controllers.

Both specialized RPLs (e.g. AL [6], AML [8], VAL II
[16], SRL [1], TORBOL [9], ROBICON [7]) and sub-
merged RPLs (e.g. PASRO [1], RCCL [2], KALI [3], RORC
[11], MRROC [12], MRROC++ [14], [15], RobotScript [5])
have been implemented in abundance. The latter use
diverse GPPL platforms, e.g.: PASRO – Pascal; RCCL,
KALI, RORC, MRROC – C; MRROC++ – C++; RobotScript
– Visual Basic.

User’s program in
a specialized RPL

?
RPL Compiler

?
RPL IC Interpreter

Controller
hardware and software

?

6

Robot system hardware

Control
signals

Load

Intermediate code of
the user’s program Load

Fig. 2

Precompilation followed by interpretation of the

intermediate code of a specialized RPL user’s program

In the case of specialized RPLs the most obvious
solution is presented in fig. 1. The program expressed
in a specialized RPL is directly interpreted by the
controller, which in turn produces the control sig-
nals driving the effector or effectors in the case of a
multi-effector system. The drawback of this solution

is that in the case of complex RPLs the instruction
interpretation process may take considerable time.
To remedy this issue specialized RPL can undergo
initial compilation to obtain a simpler intermediate
code (IC) that in turn is interpreted (fig. 2). The
compilation process can be multi-phase utilizing sev-
eral intermediate RPLs.

Following this line of thought there is a theoreti-
cal possibility of compiling an RPL program straight
away onto the target controller hardware, which is
an embedded computer with adequate input-output
hardware (fig. 3). Although this might result in the
most efficient code, the effort of creating such a com-
piler is not worth it. Even a slightest change in the
hardware would bring about changes to the compiler.

User’s program in
a specialized RPL

?
RPL Compiler

?

Controller hardware

?

6

Robot system hardware

Control
signals

Load

Executable code of
the user’s program Load

Fig. 3

Compilation followed by execution of the executable

code of a specialized RPL user’s program

The general problem with specialized RPLs is that
either the language is tailored to a limited class of
tasks, and then any task outside this class cannot
be described and in consequence carried out, or the
capabilities of the language are very large and so the
majority of tasks can be expressed in it, but then, on
the one hand, the language and its compiler become
very complex and in effect expensive in implementa-
tion, and on the other hand, the language becomes
difficult to master. Obviously a certain compromise
is possible, so this approach is favored by the indus-
try. In industry the robot itself usually performs a
very limited class of tasks defined by the end-effectors
and sensors that can be incorporated into the system
and so the language can be kept within a reasonable
complexity. In the academia the hardware configu-
ration of the system can vary considerably and the
simplicity of the language is not that much of an is-
sue. In this case, instead of defining a complex RPL,
a GPPL is used as a platform and only a library
of modules (procedures, functions or objects) is de-
fined which renderes this language an RPL. In this
way a standard compiler can be used slashing the de-

velopment costs and the full potential of GPPLs is
at the fingertips of the programmer. Any changes
to the hardware configuration or any new control
algorithms simply result in the extension of the li-
brary. As the library gives extra functionality to the
GPPL the new entity is treated as an RPL. Let us
look at the implementation possibilities within this
paradigm, and see if this excludes the use of special-
ized RPLs from the university laboratories.

User’s program in
a submerged RPL

?

RPL library
in GPPL

?
GPPL Compiler

?
Controller hardware, software

and user’s program

?

6

Robot system hardware

Control
signals

Load Load

Executable code of
the user’s program
and the controller

Download

Fig. 4

Compilation followed by execution of the executable

code of a submerged RPL user’s program and

controller

The basic concept of submerged RPL implemen-
tation is presented in fig. 4. The user’s program, ex-
pressed as a sequence of invocations of library mod-
ules, is jointly compiled and linked to the library and
so an executable code results. This code is directly
executed by the embedded computer (or computers)
of the controller. What really is created in this case
is an amalgamated user’s program and the robot con-
trol software. The concept introduced in fig. 3 is valid
in this case, because a GPPL compiler is used and
so no new compiler has to be implemented. More-
over, any addition to the system of new hardware
is accommodated through upending code to the li-
brary and not through changes to the compiler. In
this case programming is really carried out in the
GPPL. Obviously the task is expressed by calling
adequate modules, and the control software is hid-
den from the normal user within the library. Only,
if new hardware is incorporated into the system, the
library must be extended. This solution implicates
that even the slightest change to the user’s program
brings about recompilation of the whole system soft-
ware.

The remedy to this problem is to input into the
working controller parametric data for the user’s pro-
gram. It can be delivered in the form of a special-
ized RPL, which will be processed by an interpreter
contained within the library. The additional lan-

guage can be extremely simple, e.g. define a syn-
tactic form for the taught-in end-effector locations.
To avoid confusion, the RPL derived from the GPPL
is termed RPL1 and the specialized language RPL2.
RPL1 is used to code the overall structure of the con-
troller and to render it capable of executing a class
of tasks. The vastness of the class depends on the
RPL2 interpreter coded in RPL1 and included in the
controller. RPL2 is used to code the execution of a
specific task within the class boundaries. This solu-
tion encompasses the one presented in fig. 1. If RPL2

is subjected to precompilation then this solution also
includes the one shown fig. 2.

User’s program in
a submerged RPL1

?

RPL1 library
in GPPL

?
GPPL Compiler

?

Controller hardware, software
and RPL1 user’s program

?

6

Robot system hardware

Control
signals

Load Load

Executable code of
the user’s program
and the controller

Down–
load

?

specialized RPL2

user’s program

Load

RPL2 Interpreter

Fig. 5

Compilation followed by execution of the executable

code of a submerged RPL1 controller and user’s

program with a specialized RPL2 interpreter

There still exists another method of merging
the specialized and submerged language approaches
(fig. 6). In this case a specialized language RPL3 is
developed. It is compiled into an intermediate code
in RPL1, which in turn is subjected to any of the
forms of processing presented in fig. 4 or 5. The case
shown in fig. 6 is the most general one. However, the
use of supplementary RPL2 in this case is not very
probable, but theoretically possible.

It turns out that the structure in fig. 6 is the most
general one, as not only does it permit the use of
two specialized RPLs, but also suggests a feasible
method of implementation of the controller execut-
ing programs coded in those RPLs. However, the
complexity of this structure might discourage its full
implementation, but its substructures can be used
then.

Program in
a specialized RPL3

?
RPL3 Compiler

?

RPL1 library
in GPPL

?
GPPL Compiler

?

Controller hardware, software
and RPL1 user’s program

?

6

Robot system hardware

Control
signals

Load

Load

Controller
structure in

a submerged
RPL1

Load

Executable code of
the user’s program
and the controller

Down–
load

?

specialized RPL2

user’s program

Load

RPL2 Interpreter

Fig. 6

Compilation of RPL3 program resulting in an RPL1

program describing the controller capable of

interpreting a user’s program expressed in RPL2

4. Structure of the Controller

Once one of the above methods of communicating
the task to the controller is selected, the problem
of the controller structure has to be tackled. Two
problems have to be considered in that respect:

• how the information from sensors will be utilized,
• how will multiple effectors cooperate.

Raw data obtained from hardware sensors usu-
ally cannot be used directly to control the system.
It has to be transformed. There are cases when
only several hardware sensors simultaneously can de-
liver meaningful data for motion control (e.g. several
strain gauges produce a force/torque vector). On
the other hand there are complex sensors that de-
liver data that has to be processed in order to obtain
information that can be used in motion control (e.g.
CCD camera delivering a bit-map out of which a cen-
ter of mass of the object must be extracted to locate
the best grasping position). Sensor reading trans-
formation is called data aggregation. As a result a
virtual sensor reading is obtained. This necessitates
the inclusion in the controller of a module perform-
ing this function. Modern control software usually
utilizes real-time operating systems. In such a case
it is reasonable to assign the sensor data aggrega-
tion to a process. This will be called a Virtual Sensor
Process (VSP).

Three forms of effector cooperation within a single
multi-effector robot are distinguished:
• independent operation (effectors are not coordi-

nated),
• loose cooperation (effectors are synchronized from

time to time),
• tight cooperation (effectors are coupled).
The same applies to cooperation between robots in
a group, so the same control structure can be used
both to coordinate effectors within a single robot
or the robots among each other. To make the fur-
ther discussion brief we shall not distinguish between
robots and effectors, and the latter term will be used
for both (unless ambiguity would result). It is as-
sumed that there are ne effectors in the system and
that each effector uses nvi virtual sensors, where
i = 1, . . . , ne.

The controller structure for the effectors (or
robots) operating independently of each other is pre-
sented in fig. 7. It should be pointed out that in-
dependent operation means that there is no explicit
form of communication between the effectors, i.e. the
Effector Control Processes (ECPs) do not exchange
data explicitly. Obviously implicit communication is
possible. This can be attained by perceiving the ac-
tions of the other effectors through the effector’s own
sensors. In this structure each ECP would be respon-
sible for interpretation of its own RPL (presumably
each RPL would be the same, but the programs ex-
pressed in this RPL might be different).

Both forms of cooperation, loose and tight, require
a coordinator. In the case of the structure shown in
fig. 8 it is called the Master Processes (MP). For loose
cooperation MP synchronizes the ECPs from time to
time, so between those instants each ECP operates on
its own. However during tight cooperation the MP
drives the ECPs continuously. It can be easily noticed
that if MP is kept constantly dormant, the structure
off fig. 8 degenerates to the one off fig. 7. That struc-
ture has been used in all investigations, because it is
generic and includes as a specific case the uncoordi-
nated one. If interpretation of a specialized language
(i.e. RPL2) is necessary in the coordinated case then
the MP is responsible for it. In the uncoordinated
case the MP simply distributes the RPL2 programs
to the respective ECPs for local interpretation. If no
specialized language is employed the user’s program
is dispersed between the ECPs and the MP – it is
amalgamated with the library software.

5. Examples
The majority of the above described structures has

been used for the implementation of various RPLs.
For instance, from the point of view of the user,
TORBOL [9], being a specialized language, used the
structure presented in fig. 2. In reality the control
system implementation used a library of procedures,
but the existence of this library was not disclosed to
the user. The intermediate code and the library were

expressed in Pascal, so the implementation struc-
ture resembled the one shown in fig. 6, but RPL2

was not present. TORBOL is an object-level RPL,
i.e. the task to be executed is expressed in terms of
models of real objects (possessing certain attributes)
and relations between them (e.g. IN, ON). The run-
time system maintained a world model (an attribute
graph), so the positions of all the objects could be
tracked down. Even if an object was displaced due
to being located on top of or affixed to another ob-
ject that was being moved its position was updated
adequately. The language was intended to simplify
the description of complex pick-and-place or assem-
bly tasks.
RORC [11] was implemented using the structure pre-

sented in fig. 4. It could control only a single robot.
Diverse controllers were produced subsequently. One
of them was used for the investigation of reactive
robot control [10], [11]. A manipulator carrying a
touch probe had to find a way out of a maze by
using only the local knowledge of the environment
obtained through sensors.
MRROC used a similar implementation technique to

RORC, but could control multiple robots and cooper-
ating devices. One of the so produced controllers was
used for the investigation of cooperative transfer of
rigid objects by two robots [13].
MRROC++ initially used the same structure as MRROC

(fig. 4), but instead of following a procedural im-
plementation approach the object-oriented one was
used. Later the structure presented in fig. 5 was
adopted. It controlled a robot equipped with a
milling machine. The specialized RPL2 was used to
describe tool positions and orientations generated by
a Unigraphics CAD system. The trajectories pro-
duced by the CAD system had to be pre-processed
off-line to create a program in RPL2, which subse-
quently was loaded into the controller.

All of the above examples pertain to single or
multi-manipulator systems, but the developed struc-
tures are not limited only to such systems. For ex-
ample, a walking machine is a multi-effector system,
in which each leg would be controlled by its own ECP
and the legs would be coordinated by the MP. The
tasks for the machine might be communicated using
a specialized RPL2, which would be interpreted by
the MP, so the structures of fig. 5 would be appro-
priate for the implementation of such a system.

Robot soccer has become popular lately. In this
case a team of mobile robots, each using local sen-
sors (to detect the ball and other players in their
vicinity) and a global sensor (the overhead camera
enabling the assessment of the overall situation), co-
operates in pushing a golf ball into opposing team’s
goal. Each mobile robot would be controlled by its
own ECPi, i = 1, . . . , ne, where ne is the number
of teammates. Readings from local sensors would
be processed by VSPpi , pi = 1, . . . , nvi , where , nvi
is the number of virtual sensors used by the robot

. . .

#
"

!

Effector Control
Process ECPne

?6

Effectorne

-�

#
"

!

Virtual Sensor
Processes VSPpne ,
pne=1,...,nvne

?6
Real Sensorspne

#
"

!

Effector Control
Process ECP1

?6

Effector1

�-

#
"

!

Virtual Sensor
Processes VSPp1 ,
p1 = 1, . . . , nv1

?6

Real Sensorsp1

Fig. 7

Uncoordinated operation of effectors

�
�

�
�Master Process MP

?
6

?
6

. . .

#
"

!

Effector Control
Process ECPne

?6
Effectorne

-�

#
"

!

Virtual Sensor
Processes VSPpne ,
pne=1,...,nvne

?6
Real Sensorspne

#
"

!

Effector Control
Process ECP1

?6
Effector1

�-

#
"

!

Virtual Sensor
Processes VSPp1 ,
p1 = 1, . . . , nv1

?6
Real Sensorsp1

�-

�
�

�
�Virtual Sensor Processes

VSPp0 , p0 = 1, . . . , nv0

�-Real Sensorsp0

Fig. 8

Coordinated operation of effectors

i. The global sensor readings would be processed
by VSPp0 , and would be delivered to MP. The MP
would communicate with the ECPs through a radio
link. The structure off fig. 8 would be most appro-
priate for this setup. If an operator has to deliver
any instructions to the system, that would be done
by using a certain RPL interpreted by the MP, so in
that respect the implementation structure off fig. 5
would be most appropriate.

6. Conclusions
The presented implementation structures have

been tested on single and multi-robot systems. The
degree of autonomy of the produced systems de-
pended on their: data gathering capability (number
and type of sensors used), flexibility of utilizing thus
obtained data for the purpose of motion control and
decision making process. The submerged RPLs do
not limit the possibility of introducing an extra spe-
cialized language enabling the description of only a
limited class of tasks, thus simplifying the task of
programming such a system.

References
[1] Blume C., Jakob W.: Programming Languages for In-

dustrial Robots. Springer-Verlag, 1986.
[2] Hayward V., Paul R. P.: Robot Manipulator Control

Under Unix RCCL: A Robot Control C Library . Int. J.
Robotics Research, Vol.5, No.4, Winter 1986. pp.94-111.

[3] Hayward V., Hayati S.: KALI: An Environment for the
Programming and Control of Cooperative Manipulators.
Proc. American Control Conf., 1988. pp.473-478.

[4] Hollingum J.: Preprogramming complex welds fast . In-
dustrial Robot, Vol.22, No.3, 1995, pp.35–36.

[5] Lapham J.: RobotScript: The introduction of a universal

robot programming language. Industrial Robot, Vol.26,
No.1, 1999, pp.17–27.

[6] Mujtaba S., Goldman R.: AL Users’ Manual . Stanford
Artificial Intelligence Laboratory, 1979.

[7] Schroeder C., Zuehlke D.: Integration of Sensor Technol-
ogy in Visual Robot Programming Systems. Proc. 30th
Int. Symp. on Robotics, Tokyo, October 27-29, 1999.
pp.297–304.

[8] Taylor R. H., Summers P. D., Meyer J. M.: AML:
A Manufacturing Language. The International Journal
of Robotics Research, Vol. 1, No. 3, 1982. pp.842–856.

[9] Zieliński C.: TORBOL: An Object Level Robot Program-
ming Language. Mechatronics, Vol.1, No.4, 1991. pp.469-
485.

[10] Zieliński C.: Reaction Based Robot Control . Mechatron-
ics, Vol.4, no.8, 1994. pp.843–860.

[11] Zieliński C.: Robot Programming Methods. Publishing
House of Warsaw University of Technology, 1995.

[12] Zieliński C.: Control of a Multi-Robot System. 2nd Int.
Symp. Methods and Models in Automation and Robotics
MMAR’95, 30 Aug.–2 Sept. 1995, Miȩdzyzdroje, Poland.
pp.603-608.

[13] Zieliński C., Szynkiewicz W.: Control of Two 5 d.o.f.
Robots Manipulating a Rigid Object , Proc. IEEE Int.
Symp. on Industrial Electronics ISIE’96, 17–20 June
1996, Warsaw, Poland. Vol.2, pp.979–984.

[14] Zieliński C.: Object–Oriented Programming of Multi–
Robot Systems, Proc. 4th Int. Symp. Methods and Mod-
els in Automation and Robotics MMAR’97, 26–29 Au-
gust 1997, Miȩdzyzdroje, Poland, pp.1121–1126.

[15] Zieliński C.: The MRROC++ System, 1st Workshop
on Robot Motion and Control, RoMoCo’99, 28–29 June,
1999, Kiekrz, Poland. pp.147–152.

[16] —: User’s Guide to VAL II: Programming Manual .
Ver.2.0, Unimation Incorporated, A Westinghouse Com-
pany, August 1986.

	Introduction
	Robot Programming Methods
	Implementation of Programming in Control Systems
	Structure of the Controller
	Examples
	Conclusions

