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Abstract

The paper presents a formalized approach to design-
ing the structure of a controller and its programming
method for a multi-robot system equipped with di-
verse external sensors. It shows that it is sufficient to
extend a universal programming language by a single
robot specific instruction to program such a system.
Although, a single complex instruction would suffice,
it is much more convenient to introduce two, but sim-
pler ones. The paper shows how to implement such
instructions using object-oriented approach. This
approach has been used to implement Multi-Robot
Research-Oriented Controller MRROC++.

1. Introduction

Considerable effort has been concentrated on devel-
oping new robot programming languages (RPLs),
both specially defined for robots [1], [11], [12], and li-
braries of robot specific procedures coded in a general
purpose computer programming language [1], [2], [4],
[15]. Specialised languages exhibit a closed struc-
ture. If new hardware is to be added to the system,
usually some changes to the language itself have to
be done. If new sensors are to be incorporated the
hardware specific software has to be supplied and
the method of sensor reading utilisation in motion
control has to be coded. Those changes have to be
reflected in the language and this brings about the
necessity of modifying the language compiler or in-
terpreter. This makes specialised RPLs of little use
when an open structure, reconfigurable system, pos-
sibly incorporating new hardware, is considered. In
such cases libraries of software modules submerged
in a general purpose language are more appropriate.
As robot tasks are described in terms of invocations
of those modules and control flow instructions of the
general purpose language supplemented by its data
processing capabilities, the resulting program can be
viewed as being expressed in another language – a
robot programming language derived from the gen-
eral purpose language. This is why the term library
and language are often used interchangeably.
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Usually Pascal or C are used as language platforms
e.g.: C: RCCL [4], ARCL [2], RCI [7], KALI [6], RORC
[15]; MRROC [15], [16]; Pascal: PASRO [1], ROPAS [14];
object-oriented version of Pascal: ROOPL [13]; and
C++: MRROC++ [19], [20].
The following discussion shows what should the ex-
tension of a general purpose language instruction set
look like to transform it into a language for program-
ming multi-robot, multi-sensor systems and how to
structure the controller of such a system.

2. System Structure
A robot system is composed of three subsystems:
effectors (e.g. manipulators), receptors (sensors),
and the control subsystem (e.g. user program and
variables). Effectors are any devices that can change
the state of the environment, e.g. by shifting objects
or machining materials. Receptors are the devices
acquiring information about the environment. The
control subsystem uses the information gathered by
the receptors in conjunction with the information
stored in its internal memory in the form of a pro-
gram describing the task at hand, to influence the
effectors in such a way as to execute this task. The
system state s is denoted as:

s =< e, r, c > (1)

e — state of the effectors,
r — state of the receptors (hardware sensors),
c — state of the control subsystem.
For brevity, here and in the subsequent discussion,
the subsystems and their state use the same symbols.
The main instructions of RPLs are the ones causing
the motion of the effectors, i.e. motion instruc-
tions. They influence the state of the effectors. That
state can be expressed in diverse terms (using dif-
ferent abstract notions), depending on the type of
the effector and the way the system designer wants
the programmer to perceive the effector. In the case
of the manipulator level RPLs [3] the abstract no-
tions that these instructions refer to are: actuator
positions, manipulator joint angles or displacements,
locations of coordinate frames affixed to the end-
effector or the grasped objects.
Raw data obtained from hardware sensors usually
cannot be used directly to control the system. It has



to be transformed. There are cases when only several
hardware sensors simultaneously can deliver mean-
ingful data for motion control (e.g. several strain
gauges produce a force or a torque vector). On the
other hand there are complex sensors that deliver
data that has to be processed in order to obtain in-
formation that can be used in motion control (e.g.
CCD camera delivering a bit-map out of which a
centre of gravity of the object must be extracted to
locate the best grasping position). Sensor reading
transformation is called data aggregation. As a
result a virtual sensor reading v is obtained:

v = fv(c, e, r) (2)

Vector function fv is called an aggregating func-
tion. This function always depends on r, sometimes
on c too, and on e very rarely, but for the sake of
completeness all possible arguments have been enu-
merated.
The job of a robot system is to execute a task sup-
plied to it in the form of a user program. If the robot
system is programmed using a specialised language,
the user program is read by an input device of the
controller and is subsequently interpreted. Prior to
reading it the program may be compiled. If the robot
system is programmed using a library submerged in
a general purpose language, the user program and
the controller software are bound together. The con-
troller is created for the task at hand. The user pro-
gram and the controller software are compiled to-
gether to create an executable code of the controller
software carrying out the task.

3. Sensor Utilization

Motion instructions in a user program cause changes
of the state of effectors e. The execution of a mo-
tion instruction begins in an initial state, ends in a
terminal state, and traverses a sequence of inter-
mediate states. The execution of each instruction
is subdivided into steps. Each step results in the
change of system state from one intermediate state
to the next. The step duration is equal to the servo
sampling rate or is a multiple of that.
In each intermediate state (or while attaining it) the
state of the system can be measured – monitored
by sensors. The current state of the system can only
be monitored, but the future intermediate states can
be influenced – controlled. The initial state can be
treated as a current intermediate state at the begin-
ning of motion instruction execution. The terminal
state is the current intermediate state in which the
execution of the instruction terminates. This enables
us to treat all kinds of states in the same manner.
Three distinct purposes of monitoring can be named:
• initial condition monitoring,
• terminal condition monitoring,
• error condition monitoring.

Let the initial state of an execution of a motion in-
struction be labeled i0 and the consecutive interme-
diate states i = i0+1, . . . , im, where im is the label of
the terminal state. If the system has executed i steps,
and is currently in intermediate state si, the next
intermediate state of effectors ei+1 is computed by
means of the effector transfer function fe(ci, ei)
or f∗e (ci, ei, vi).
In the case of initial condition monitoring the
system tests the initial condition in consecutive
steps. When the condition is satisfied the monitoring
ends. The most general semantics of initial condition
monitoring is:

ei+1 =





ei = ei0 when
fI(ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
eim = ei0 when

fI(ci, ei, vi) = true
∧

fE(ci, ei, ri) = false
eim∗ = ei0 when

fE(ci, ei, ri) = true
for i = i0, . . . , im, im∗ ≤ im (3)

fI(ci, ei, vi) – initial condition function,
fE(ci, ei, ri) – error condition function,
i0 – initial step number,
im – step in which fI becomes true (at that moment
initial condition monitoring is interrupted),
im∗ is the step number in which fE is satisfied (i.e.
an error occurs – instruction execution is terminated
prematurely).
The error condition fE is caused by computational
errors (hence ci as its argument), robot or sensor
hardware malfunction (hence ei and ri). In error
detection rather ri is used directly than vi.
Terminal condition monitoring consists in
changing the system state until the terminal condi-
tion is satisfied.




ei+1 = fe(ci, ei) when
fT (ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
ei = eim when

fT (ci, ei, vi) = true
∧

fE(ci, ei, ri) = false
ei = eim∗ when

fE(ci, ei, ri) = true
for i = i0, . . . , im, im∗ ≤ im (4)

fe(ci, ei) – effector transfer function (it does not de-
pend on vi, because here the state is only monitored
and not controlled using sensor readings),
fT (ci, ei, vi) – terminal condition function,
im – step number in which fT becomes true (at
that moment terminal condition monitoring is inter-
rupted),
im∗ – step number in which fE is satisfied, i.e. an
error occurs – instruction execution has to be termi-
nated prematurely.



The control of future intermediate states is usu-
ally combined with monitoring of the terminal con-
dition, so it can be expressed as:




ei+1 = f∗e (ci, ei, vi) when
fT (ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
ei = eim when

fT (ci, ei, vi) = true
∧

fE(ci, ei, ri) = false
ei = eim∗ when

fE(ci, ei, ri) = true
for i = i0, . . . , im, im∗ ≤ im (5)

where f∗e (ci, ei, vi) is the effector transfer function (it
depends on vi, because the state is not only moni-
tored, but also controlled using sensor readings).
If (3), (4), and (5) are combined, the semantics of
the most general motion instruction becomes:




ei+1 = ei = ei0 when
fI(ci, ei, vi) = false

∧

fE(ci, ei, ri) = false
then i = i0, . . . , ik

ei = eik when
fI(ci, ei, vi) = true,

then i = ik
ei+1 = f∗e (ci, ei, vi) when

fT (ci, ei, vi) = false
∧

fE(ci, ei, ri) = false
then i = ik, . . . , im

ei = eim when
fT (ci, ei, vi) = true,

then i = im
ei = eim∗ when

fE(ci, ei, ri) = true,
then i = im∗ (6)

Usually the most general form of the motion instruc-
tion is not implemented, because rarely both the
initial and the terminal conditions are monitored in
one motion instruction. It is quite reasonable to as-
sume that the initial condition monitoring will be
conducted separately. Moreover, as it has been men-
tioned, terminal condition monitoring is combined
with control of future intermediate states. In this
way two separate instructions are obtained:
Wait – monitoring the initial condition (3), Fig. 1,
Move – monitoring the terminal condition and simul-
taneously controlling the future states (5), Fig. 2.
It should be noted that error condition monitoring is
not included in the flow diagrams (Fig. 1, Fig. 2) –
this is handled as an exception.

4. Control System
The system state s (1) is further decomposed by tak-
ing into account that it consists of distinct effectors
and virtual sensors.

s = < e1, . . . , ene , v1, . . . , vnv , c > (7)
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Wait instruction flow chart

ne – number of effectors,
nv – number of virtual sensors.

The control subsystem calculates the next effector
state. This can be done by a single centralised con-
trol subsystem, but a much better and clearer struc-
ture is obtained, if the state of the control subsystem
c is partitioned into ne + 1 parts.

c = < c0, c1, . . . , cne > (8)

Let each subsystem cl, l = 1, . . . , ne, be responsible
for controlling an effector associated with it, and the
subsystem c0 coordinate all effectors. Hence, with
each of the effectors el, l = 1, . . . , ne an Effector
Control Process (ECP) is associated. Its state is
expressed by cl, l = 1, . . . , ne. The coordinating pro-
cess is called the Master Process (MP) and its state
is expressed by c0.
The interconnections between the system compo-
nents can be deduced from the general forms of ef-
fector and control subsystem transfer functions.

ei+1 = f∗e (ci, ei, vi) (9)

ci+1 = fc(ci, ei, vi) (10)

An interconnection between two subsystems has to
be produced, if the next state of one system compo-
nent (i.e. its transfer function) depends on the cur-
rent state of the other component (i.e. takes the state
of this element as a transfer function argument).
Reasonable forms do not cause, on the one hand,
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Move instruction flow chart

too many interconnections and, on the other hand,
enable the execution of any control algorithm. Let:

ei+1
j = f∗ej (c

i
0, c

i
j , e

i
j , v

i
1, . . . , v

i
nv ) (11)

ci+1
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(12)
ci+1
j = fcj (c

i
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i
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i
1, . . . , v

i
nv ) (13)

This produces the structure presented in Fig. 3.
Each ECP executes its Move and Wait instructions,
so adequate functions: fel , f

∗
el

, fIl , fTl , fEl , l =
1, . . . , ne, are computed by it. The MP also executes
its Move and Wait instructions and so it computes:
fe0 , f∗e0 , fI0 , fT0 , fE0 . The ECP and MP instructions
communicate through c0. In the case of tight coop-
eration between robots (e.g. transfer of a rigid object
by several robots) most of the control and monitor-
ing tasks will be done by the Wait and Move instruc-
tions of the MP. If the robots cooperate loosely or
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Hierarchical structure of a multi-robot controller

do not interact at all, control and monitoring will
be executed mainly by appropriate ECPs. The Move
instructions of the MP produce control data for the
Move instructions of the ECP, which in turn generate
the control signals for the servos. This structure was
utilised in MRROC++.

Each virtual sensor vp, p = 1, . . . , nv is implemented
as a Virtual Sensor Processes (VSP) running con-
currently to the other processes. In consequence of
(2):

vip = fvp(c
i
0, c

i
l, e

i
l , r

i) (14)

where el is the state of the l-th effector (the one
associated with vp). Here it is assumed that only
a single effector (if any) influences directly a virtual
sensor, because an effector can change the locations
of the hardware sensors that are affixed to it.

The processes communicate through messages. The
communication of each ECP with the VSPs it uses
can be of two kinds: interactive and non-inter-
active. In the case of interactive communica-
tion the ECP sends a data request message to an
adequate VSP. The VSP reads the hardware sensors,
aggregates the obtained data (computes fvp using
(14)) and sends the result to the ECP. In the case of
non-interactive communication the VSP reads
the hardware sensors, aggregates data and leaves
the resulting reading in a buffer without any request
from any ECP. The ECP can access the latest sensor
data at any moment by reading the buffer where the
aggregated data is stored. In both cases the ECP can
obtain sensor data in each step i or, if necessary, less
frequently.



5. Implementation Considerations

The hardware dependent subprocesses (ECPs and
VSPs) change only when new hardware (e.g. robot
or sensor) is added to the system. The upper layers
of ECPs and MP change whenever the system has to
execute a new task. Although MRROC++ enables easy
incorporation of new hardware, the programmer usu-
ally deals with changing tasks for a stable hardware
configuration. That is why the coding of motion in-
structions at the level of ECP and MP has to be as
simple as possible.
Because there is a contradiction between changing
numbers of hardware devices used in each motion,
and preferably constant number of Move and Wait
instruction arguments, it was decided that rather
robot (effector) and sensor object lists will be
the formal parameters of instructions than robot
or sensor objects themselves. Moreover, object
classes named condition and generator are needed
(Fig. 4). The condition supplies methods for com-
puting the initial condition fI (executes the part of
the algorithm in Fig. 1 circumscribed by the dashed
line). The generator is responsible for computing
the transfer function f∗e as well as the terminal condi-
tion fT (executes the part of the algorithm in Fig. 2
circumscribed by the dashed line). The Move and
Wait instructions (procedures) use within their bod-
ies: robot, sensor, condition and generator base
classes, but at run-time they invoke descendant ob-
jects of these classes. The programmer creates de-
scendants of robot and sensor classes in confor-
mance with the hardware used and descendants of
condition and generator according to the task at
hand. This is due to polymorphism.
The programmer creates the MP by supplying ad-
equate robot and sensor lists, as well as conditions
and generators. It should be noted that the variabil-
ity of system structure has been contained in several
independent objects. For each motion the program-
mer points out which robot and which sensor ob-
jects will be used. Each specific robot or sensor
“knows” how to interact with its MP/ECP or VSP.
Path generation for the cooperating robots is done
by the specific generator that is supplied by the
programmer. If tight cooperation is needed the MP
level generator supplies a pose for each step of the
trajectory, and if the robots are loosely coupled or
do not interact it supplies only a few poses and the
ECPs do the path interpolation.
For a number of reasons errors can occur during task
execution. Those are:
• non-fatal errors,
• hardware fatal errors,
• system fatal errors.
A reaction to each type of error has to be different.
Non-fatal errors are due to programmer’s mistakes
and result in computation errors. Hardware fatal
errors are due to improper functioning of hardware.
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MRROC++ motion instructions

From the above mentioned errors the controller must
be able to recover and continue functioning. System
fatal errors are caused by improper functioning of
the computer network. In this case the operator has
to be informed about the cause of the problem and
the system has to be halted. In MRROC++ the first
two kinds of errors are treated as exceptions and ad-
equate exception handlers deal with them separately.
Separation of the code dealing with errors from the
code handling normal operation greatly simplifies
programming, rendering the code more reliable and
easier to debug and modify. Error handling depends
not only on the cause of error but also on the place in
the code that the error has been detected. The same
error occurring in different system states might need
different actions.

6. Conclusions
The reduction of RPL implementation effort sug-
gests the utilisation of general purpose program-
ming languages extended by robot specific libraries
rather than the definition of specialised languages.
Initially MRROC was implemented using procedural
approach, but currently this has been changed to
object-oriented approach, and hence MRROC++ re-
sulted. The switch of programming approach not
only simplified robot task coding, but also proved
to be much more effective in the implementation.



Polymorphism enables late binding, so Move and
Wait procedures could be coded without the spe-
cific knowledge of what types of robots and sensors
will be used. Objects, i.e. data and code operat-
ing on it, caused a significant reduction of function
parameter lists, so a much more intelligible code re-
sulted. Last but not least, exception handling en-
abled the separation of the code processing normal
system functioning from the code dealing with error
situations. Finally, the formal approach pointed out
what should be the structure of the software and lim-
ited the user interference with the system to a few ob-
ject classes that the programmer has to derive from:
robot, sensor, generator and condition classes.
MRROC++ can currently control modified ASEA type
IRb-6 and IRb-60 robots, a prototype serial-parallel
structure robot [8] and the Polycrank robot [9].
Force/torque, ultrasonic [10] and infrared sensors,
CCD cameras and a conveyor belt have been in-
cluded in the system. The described approach to
programming has been validated on different tasks.
Cooperative transfer of a rigid body by two IRb-6
robots [17] and engraving inscriptions in wood by the
prototype robot equipped with a milling tool were
among them.
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