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This monograph describes different robot programming methods from the point of view of
the programmer and the one who has to devise the structure of the system and to implement it.
This work gives some insight into the theory that should underlie robot programming. This dis-
sertation shows how the science of robot programming evolved. The author’s own experience,
gained by defining and implementing different robot programming and control systems, led to
a generalisation and formalisation which is described in this work. The formalism is based on the
decomposition of a robot system into three parts: effectors, receptors and control sub-system. In-
fluence of instruction execution on the state of each of the system components is considered. The
method of utilising sensors during the execution of an instruction is dealt with. The complete-
ness of the language is checked by looking at the possibility of controlling through instructions
each part of the system. Different types of instruction semantics are considered. Languages with
few but complex instructions are compared with languages with large sets of instructions but sim-
ple semantics. The intermediate solution is regarded as the most promising. Robot languages are
classified into joint, manipulator, object and task level. Examples of languages of these classes
are presented, e.g. WAVE, VAL II, AL, RAPT, TORBOL. On-line, off-line and hybrid program-
ming techniques are discussed. Different methods of implementing robot programming languages
are dealt with. In the case of robot programming for research purposes, the implementation of
robot specific libraries of procedures and processes submerged in a universal programming lan-
guage is considered superior to the implementation of specialised languages. Implementation of
libraries by using structured (e.g. ROPAS, PASRO) and object-oriented (e.g. ROOPL) program-
ming paradigms are also discussed. The issue of robot programming is inseparable from the
problems of robot controller design. Industrial controllers have a closed structure and are well
suited to simple industrial tasks. Complex, often changing tasks, especially those requiring the
incorporation of many diverse sensors, need controllers with open structures. Research-oriented
controllers with an open structure for single– (e.g. RORC) and multi-robot (e.g. MRROC) systems
are dealt with. The structures of those systems were deduced using the above-mentioned formal-
ism. Moreover, it proved instrumental in designing new control algorithms (e.g. sensor-based
reactive robot control).
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Notation

bj – instance of reaction Bj

Bj – j–th reaction

B0 – main reaction – task goal pursuing reaction

c – control subsystem state

C – control subsystem state space

ci – control subsystem state in instant i

cd – state of instruction designator (in the control subsystem)

cp – state of the part of the control subsystem containing the executed

program

cv – state of variables (in the control subsystem)

cvv – state of variables not containing the virtual sensor reading

e – state of effectors

E – effector state space

e∗ – single planned effector state

e∗∗ – sequence of planned effector states

ei – state of effectors in instant i

ei∗ – i–th planned effector state

EE – effector state sub-space in which the error condition is satisfied

ET – effector state sub-space in which the terminal condition is satisfied

fe j – j = 0, . . . , 7 — effector transfer functions

fd j – j = 0, . . . , 8 — program designator transfer functions

fv j – j = 0, . . . , 7 — all variables transfer functions

f ′v j – j = 0, . . . , 7 — only civv variables transfer functions

f ′′v – real sensor reading aggregating function

i0 – label of the initial state

ik – label of the state in which the initial condition is satisfied

im – label of the terminal state

ii – instruction

II – set of instructions

jR – jR+1 is the number of reactions
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r – state of real sensors

R – real sensor reading space

ri – state of the real sensors in instant i

rint – internal receptor reading

RE
int – internal receptor reading error space

s – state of the system

S – system state space

si – state of the system in instant i

s∗ – sequence of states

S∗ – set of all sequences of states

s∗∗ – evolution of state

S∗∗ – set of all evolutions of state

sem – semantics of an instruction

v – state of virtual sensors

V – virtual sensor reading space

VE – sub-space of virtual sensor readings satisfying the error condition

VE – closure of VE

vi – state of virtual sensors in instant i

V I – sub-space of virtual sensor readings satisfying the initial condition

VT – sub-space of virtual sensor readings satisfying the terminal

condition

Vj – virtual sensor reading sub-space associated with reaction Bj

V0 – neutral reading sub-space

δ – search direction marker

2Q – set of all subsets of set Q
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1 Introduction

1.1 Robot software

In 1920 Karel Čapek wrote his famous drama “R.U.R” (Rossum’s Universal Robots),
in which he described a factory mass-producing biomechanical people. They were sup-
posed to blindly obey humans, but eventually they rebelled, seized power, and ultimately
wiped out the human race. Not only did Karel Čapek coin the term robot – derived from
Czech words: robota and robotnik, the former meaning labour and the latter worker –
but also he associated with this term anthropomorphic features. Anthropomorphism of
robots has been stressed by the majority of science fiction novelists since then. That is
why encyclopedic dictionaries tend to underscore humanlike features in robots, e.g. in
[195] the following definitions are given:
– a machine that resembles a man and does mechanical routine tasks on command as

though it were alive,
– any machine or mechanical device that operates automatically with humanlike skill.

In the early sixties the first industrial robots were produced by Unimation and Ver-
satran. They resembled human upper limbs very vaguely, if at all. Robots created
industrially or in scientific laboratories very rarely resemble the whole human body. On
the contrary, only a slight similarity with some parts of the human body can be detected.
Sometimes, especially in the case of walking machines [135, 156, 96], lower animal ex-
tremities (mammal or insect) are used as models. In the case of manipulators, besides
human arms, the elephant’s trunk and man’s spine [98] have been the inspiration for de-
signers. Moreover, the kind of locomotion the robot utilises strongly influences its shape
(e.g. wall climbing [58], brachiation1 [121]). In the scientific community there is no
uniformity of views as to the exact definition of a robot. Nevertheless, the majority of
scientists dealing with robots would agree that a robot should have:
– either a manipulative2 or a translocative3 capability, or both,
– the ability to change its behaviour.
The second postulate demands that there should be some external means of changing
the robot’s actions (e.g. motions). This can be achieved either by changing the program
of these actions or, if the robot is to some extent capable of autonomous operation, by
detecting through its sensors the changes in the environment and automatically undertak-
ing modifying actions. In the first case the robot is treated as a reprogrammable device,
and in the second its internal program of functioning is flexible enough to modify its
behaviour according to external circumstances.

The job that a robot is designed to perform has a decisive influence on the definition.
Currently the diversity of robot applications is so vast, that the number of different defi-
nitions is abundant. Robots are put to such unusual tasks that even the Robot Olympics
are held. The First International Robot Olympic Games were hosted by the Turing
Institute, and were held in Glasgow, United Kingdom, 27–28 September 1990. The

1 Dynamic swinging motion that enables long-armed apes to move from branch to branch.
2 The ability to manipulate objects in its environment.
3 The ability to translocate itself in the environment.
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following events took place: wall climbing; biped race; four-, six-, eight-legged race;
obstacle avoidance, wall following, talking, pole balancing, javelin throwing; and many
other strange behaviour presentations. Nevertheless, primary robot tasks are industrial,
although the emergence of service robots in recent years might cause in the near future
their predominance over industrial robots.

The Robot Institute of America (RIA) specifies an industrial robot as a repro-
grammable multi-functional manipulator designed to move materials, parts, tools, or
specialised devices, through variable programmed motions for the performance of a va-
riety of tasks ([38]). There the robot is treated in a narrower sense4 – rather as a repro-
grammable manipulator than as a self-translocating or an autonomous device. The RIA
definition underscores reprogrammability, while the above postulates either implied it or
assumed a single, but intelligent, program of actions. Currently all modern robots are
computer controlled, so programming is done by software means.

Robots besides being used in manufacturing industry are currently being employed
in, e.g.: agriculture [124], construction industry [95], outer space [87], health care [36],
and the service sector [35]. As it was mentioned above, each of these applications is
reflected in the definition of an adequate robot. Fraunhofer-Institute for Manufacturing
Engineering and Automation (IPA) defines a service robot [122] as a free programmable
system to execute movements (mostly handling tasks) with 3 or more axes of movement.
Such a robot typically is movable and performs partly or fully automatically service
tasks. Service tasks are tasks not used for the manufacturing of products but for the ex-
ecution of services for men or installations and public utilities. In this definition, as in
all the others, again, the ability to program robots is of primary importance.

Regardless of the exact wording of the definition, it is obvious that the software com-
ponent of a robot is of paramount importance. In a robot, treated as a system, usually
three subsystems are distinguished: effectors, receptors and control subsystem (e.g. [93]).
The control subsystem, hierarchically in the upper layer, is responsible for controlling
both the effectors and receptors, and moreover for reasoning and external communica-
tions. Each of these functions is at least partially realised by software – either controlling
the hardware (e.g. manipulator, sensors) or realising adequate functions (e.g. reasoning,
communication with an operator). Reprogrammability can either mean supplying a new
program of actions through the communication channel to an unalterable robot system
or a modification of the internal robot system structure (robot software). In the first case
the program of actions is usually coded in a robot programming language and delivered
through the communication channel to the control subsystem for interpretation and – ul-
timately – execution. In the second case the internal robot software is altered directly.
Once this modification is done, the robot functions in a different manner. Although both
methods of reprogramming need different implementation techniques and effort, they can
be equivalent in outcome.

This is a very broad view of robot programming. The following survey of robot soft-
ware will show the vastness of this field of knowledge (mainly due to its interdisciplinary
character). In consequence, the dissertation will focus only on robot programming treated
as a method of specifying actions that the robot has to perform. Nevertheless, the survey

4 Although this is the definition of an industrial robot, not a robot in general, the main difference is the
neglect of the translocative capability.
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will locate the area of interest of this monograph in relation to robot software treated as
a whole.

Each of the afore-mentioned functions has its own proprietary software:

– effector control software:
- manipulator or pedipulator dynamics control (including link drives),
- arm or leg kinematics control (co-ordinate transformations),
- manipulator or pedipulator trajectory generation,
- tool (e.g. gripper) control,
- integration of sensor data into motion control,

– sensor software:
- sensor initialisation, termination, and control,
- data acquisition software (reading hardware sensors),
- data aggregation software,

– reasoning and application specific software:
- world model (maintaining and updating),
- action plan generation,
- task specific software,

– operator communication software:
- control of input/output devices,
- robot programming language interpreter,
- operator command interpreter.

1.1.1 Effector control software

The science of kinematics deals with geometry of motion regardless of the forces
which cause it. The forces that are the cause of the motion and the internal forces in
a system are accounted for by the science of dynamics. The kinematic model includes
both the solution of direct5 and inverse6 kinematics problems. Dynamics considerations
are also partitioned into the direct problem7 and inverse problem8. Both kinematics and
dynamics models of robots are highly nonlinear. The former is a system of algebraic
and the latter of differential equations.

The closed form solution of direct kinematics problem for the serial kinematic chains
always exists [24, 110]. The inverse kinematics solution for these chains exists in a closed
form only for some kinematic configurations of manipulator arms [24, 110]. For the par-
allel manipulators (Stuart platforms) the reverse is true [61, 103]. If the closed form
solution is not found, an iterative numerical method has to be applied. Closed form solu-
tions are superior, as they are much less time demanding, and so better suited to control
purposes.

5 Calculation of the position and orientation of the end-effector in relation to a global reference frame when
the joint angles (for revolute kinematic pairs) and positions (for prismatic kinematic pairs) are given.

6 Calculation of the joint angles and positions when position and orientation of the end-effector is known.
7 When the generalised forces driving the joints are known, generalised co-ordinates, velocities and accel-

erations are computed.
8 When the joint generalised co-ordinates, velocities and accelerations are known, joint generalised forces

are computed.
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There are several methods of formulating robot arm dynamics: Lagrange-Euler, re-
cursive Lagrange-Euler, Newton-Euler, and d’Alambert principle [80, 72, 74, 75]. De-
pending on the approach followed, the computational efficiency of the obtained model is
different. As the robot arm dynamics equations are highly nonlinear coupled differential
equations, for the purpose of control the obtained model usually has to be simplified.
The simplifications are also introduced while developing the model. If the arm motions
are slow or the accuracy of trajectory following can be low, PID9 controllers for each
joint will suffice. New control laws and structures are the subject of on-going research.
Robot arms are not only position-controlled but also force-controlled (e.g. compliance,
exerting forces and torques) [147, 50]. Besides the manipulator dynamics, the actuator
dynamics has to be taken into consideration too.

The motion of the robot is defined as an evolution of positions in time – a trajectory.
Trajectories can be expressed in different spaces10. The most common are Cartesian and
joint spaces. The trajectory of an end-effector is usually specified as a sequence of co-
-ordinate frames in space that the frame affixed to the end-effector has to follow. These
co-ordinate frames are specified in relation to the global reference frame by: the X , Y ,
Z co-ordinates of their origins and a suitable set of angles (e.g. Euler angles; roll, pitch
and yaw angles) describing their orientations. Other methods of specification are also
used (e.g. homogeneous transforms [28, 110], quaternions [57, 39]). Regardless of the
space that the trajectory is expressed in, different methods of interpolating between the
specified positions are employed (e.g. linear interpolation, splines). Also, different ve-
locity profiles along the trajectory have to be attained. Not all trajectories are executable:
some of them may violate the work space boundary, some pass through manipulator sin-
gularities11, yet for some others the actuators cannot develop enough power to overcome
dynamical interactions. The obstacles that are in the work space have to be avoided too.
The trajectory generator should take into account all of the above facts.

The trajectory generator produces consecutive trajectory positions. If the positions
are not expressed in joint space, then the inverse kinematics problem is solved, and the
resulting joint angles are in turn transformed into drive increments, which are the set
points for the drive servos. The servo can incorporate the dynamics model in the feed-
back loop or the dynamics model can be outside the feedback loop, depending on the
assumed structure of the controller. The degree of simplification of the employed dynam-
ics model also varies considerably with the method of implementation of the controller
(analog or digital). In the case of digital implementation the computational power of the
processor used is of fundamental importance.

The software associated with kinematics and dynamics of the robot usually remains
unaltered by the user of the system, unless a more efficient control algorithm has to be
employed. There is no provision for that in industrial robots, but investigative setups
sometimes possess this feature. The ability to change the method of interpolation be-
tween the intermediate positions of the trajectory is much more useful, but only rarely
in industrial robots can the user choose between more than a few, let alone devise their

9 The letters stand for: Proportional-Integral-Derivative.
10 In mathematics the term space is defined as a set with a metric, but in robotics the term space is usually

associated with the robot work space, i.e. the set of attainable positions and orientations, and rarely a metric
is defined for this set.

11 In these positions the manipulator loses a degree of freedom.



10 Introduction

own methods of interpolation. As research-oriented robot controllers are dealt with in
this dissertation, effector control software must be mentioned.

1.1.2 Sensor software

Sensor software is responsible for the proper initialisation and termination of sen-
sor hardware operation, reading sensor data and transforming it into a form useful for
current or future robot motion control and decision making. The utilisation of sensors
allows a robot to control its motions and to interact with the environment in a flexible
way. Robot sensors are divided into two groups: internal sensors and external sensors
(e.g. [38]). Internal sensors are used for low-level actuator control (e.g. joint position
encoders, joint velocity sensors) – sensing components of joint servo systems. They
sense the internal state of a robot. The software dealing with internal sensors is usually
a part of effector control software. External sensors are used for detecting the state of
the environment external to the robot itself.

Usually sensors12 are divided into categories by looking at the living creature senses
their operation resembles. Most of the human senses have been mimicked in robots: vi-
sion [38, 4, 25, 133, 132], touch [118, 26, 19, 115, 152] (including heat sensing [26,
19]), smell [29], and hearing [46, 150]. Animal senses, that are not present in humans,
are employed in robots too (e.g. ultrasonic sonar systems13, infrared proximity sensors14,
range-finders [148, 59]). Another classification takes into account the distance from
which the measurements are taken. In this case contact and non-contact sensors are dis-
tinguished. Contact sensors need to come into contact with an object to detect it (e.g.
touch and force/torque sensors [38, 59]). Non-contact sensors acquire the information
about the state of the environment by remote measurements. These sensors are further
subdivided into long-distance sensors (e.g. cameras, range finders, ultrasonic sensors)
and short-distance sensors (e.g. infrared proximity sensors [21], visual light proximity
and colour sensors [97]).

Each of the afore-mentioned groups of sensors has its proprietary software for taking
measurements and utilising the obtained results. Especially the second function varies
with the task that the robot has to perform. This is why, while programming a robot,
there should be means for interference with how the sensor data is collected (e.g. sam-
ple time) and how it is utilised (used for motion modification or generation). There
should be a provision for the trajectory generator to take into account in real-time the
data obtained from sensors.

The sensors that the system uses may vary with the task it has to execute. It is diffi-
cult to foresee in advance what sensors will have to be used by the system, as the tasks
that will have to be executed are not known at the moment when the robot is produced.
Usually, addition of new hardware sensors to the system brings about either a modifica-
tion of the existing or an addition of entirely new software to the system. That is why
sensor software causes so many problems in robot programming. Robot programming
means must be such that the incorporation of new sensors into the system will allow an
easy access to and utilisation of the data obtained through them. Sensors in the aspect
of robot programming are dealt with comprehensively in this monograph.

12 External sensors.
13 Bats, dolphins.
14 Snakes.
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1.1.3 Reasoning and application software

If a robot is to function autonomously it should have a considerable knowledge of its
surroundings. As the environment is not static, the changes have to be detected by sen-
sors, and the world model has to be updated accordingly. If a discrepancy arises between
the state of the environment and the world model, inadequate decisions will be made by
the reasoning subsystem. The application software is highly dependent on the class of
tasks the robot has to execute (e.g. assembly, table tennis playing). The action plan for
the execution of a task can either be delivered by a user in the form of a program or it
can be generated by a plan generator. In the latter case artificial intelligence methods
are used to code such a generator. Even if the robot reasoning subsystem is incapable
of generating the action plan, the application software has to include huge amounts of
data concerning the realised complex task. In complex tasks very diverse situations may
arise, and they have to be handled appropriately, so the software has to include code
reacting to each of such situations. This software directly interacts with the trajectory
generator – translating task actions into robot motions.

As reasoning and application software is task specific, and the tasks that a robot can
be put to vary immensely, only some aspects of robot programming regarding this issue
are dealt with in this work. The concept of sensor-based reactive robot control [184,
185, 188] are at the focus of interest.

1.1.4 Operator communication software

A robot has to obey a human operator who supplies it with either a detailed program,
that it has to execute, or a general description of the task at hand. In both cases the op-
erator communication software must input the description of the task, interpret it, and
command its execution. Moreover, while the task is being executed the operator may
want to abort or suspend its execution. This also is the job of the communication soft-
ware. On the lower level this software has to control the input/output devices that enable
the robot-operator communication. This kind of software is central to the implementa-
tion of robot programming means. This is the reason why this subject is mentioned in
this dissertation.

1.2 The aim and subject of the dissertation

As different aspects of robot programming have been described in hundreds of pa-
pers, not necessarily primarily devoted to this subject, the aim of this dissertation is to
bring this dispersed knowledge into one place. There exists a very good textbook [12]
on robot programming languages. It briefly surveys programming as perceived by com-
puter science (i.e. data types, procedures, functions, execution control flow, etc.) and
points out extensions to computer programming that have to be introduced due to speci-
ficity of controlling robots. Several existing robot programming languages are described
and compared. The methods of implementing these languages and structures of the sys-
tems they run on are not dealt with. Moreover, the limitations and extensibility of these
languages and systems are not discussed.

Most books devoted to robotics (e.g. [5, 24, 25, 38, 72, 99, 110, 154]) are written
by authors having mechanical engineering or control sciences background, so although
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kinematics and dynamics models, position and force control, and trajectory generation
are treated comprehensively, they cover the subject of robot programming superficially, if
at all. Nevertheless, most of the knowledge regarding robot programming is distributed
over conference reports and journal papers. The majority of them describe new robot
programming languages (RPLs) (e.g. AL/POINTY [100, 101, 10, 41], AML [134, 51,
86], AUTOPASS [83, 13], HELP [51, 25, 12], LM [78, 86], MCL [149, 25, 13, 51],
PAL [25, 88], PASRO [11, 12], RAPT [2, 112, 113, 153], RCCL/KALI [53, 84, 6,
136, 54, 55], SRL [12], VAL/VAL II [193, 194], WAVE [109, 25, 86], and tens of oth-
ers). This multitude of RPLs caused the emergence of survey works (e.g. [12, 164, 167,
157, 158, 25, 86, 51, 13]), trying to classify the languages and describe their intrinsic
properties.

The papers concerned with RPLs usually describe, using natural language, the robot
specific instructions, the hardware that runs the executable code obtained by compiling
or interpreting the language, and the programming environment (e.g. operator interface,
editing facilities, program execution simulation), and are very moderate on the subject
of implementation. Moreover, no theoretical background is given as to the choice of
the instruction set. As it has been mentioned, the instruction semantics is stated in nat-
ural language, rather than formally. For languages submerged in universal computer
languages, that universal language is the means of expressing robot specific semantics.
Some insight into RPL semantics is given in [42, 164].

Quite a considerable robot programming effort has been associated with motion tra-
jectory generation, task planning and world modelling (e.g. [110, 24, 57, 40]). Robot
action and motion planning is inherently associated with robot programming, so a con-
siderable research effort has been put into solution of these problems (e.g. [64, 65, 62,
63, 68, 117]). In [64, 62, 63, 117, 65] automatic synthesis of programs for robots op-
erating in a flexible manufacturing cell is presented. Program generation takes place in
two stages. In the first stage a work-plan is generated in a robot-independent manner.
In the second stage this plan is transformed into sequences of instructions causing the
execution of adequate robot motion trajectories. Finally, the execution of the program is
simulated to select the most effective variant of its realisation.

Although some work has been done on diverse computing architectures for single–
and multi-robot systems (e.g. [120, 106, 107, 20, 67, 136, 144, 104, 45, 9]), work on
software architectures of upper levels of robot system controllers is rather scarce. In this
field the best known is KALI [54, 55, 6, 105, 136], and Brooks’ behavioural approach
to robot control [15, 16, 17]. Although a lot of work has been done on specific sen-
sors (e.g. proximity [21, 89, 97], tactile [118, 26, 115], force/torque [147, 50], ultrasonic
[151] or vision [38, 4, 25, 133]) and the incorporation of single or groups of homoge-
neous simple sensors into a robotic system, much less effort has been concentrated on
open control architectures integrating many diverse sensors. Quite considerable knowl-
edge regarding a utilisation of diverse sensors can be gained by studying the literature
concerning mobile robots (Automatically Guided Vehicles) (e.g. [151]).

The issue of robot programming is inseparable from the problems of robot controller
design. Many research teams treat both problems jointly. Industrial robot controllers
have a closed structure and are well suited to simple industrial tasks. Complex, often
changing tasks, especially those requiring the incorporation of many diverse sensors,
need controllers with open structures. Both hardware and software aspects of open robot



Robot software 13

controllers are investigated by many university and industrial research teams around the
world (e.g. [53, 136, 6, 23]). Moreover, several universities in Poland, besides Warsaw
University of Technology [181, 182, 187, 178, 179, 169], have undertaken the effort
of building robot controllers for research purposes (e.g. Technical University of Poznań
[33, 32, 34, 145], Technical University of Rzeszów [81, 82, 140] and Silesian University
of Technology [141]). Traditionally the servo-control level has received much attention.
Both position and force control is of utmost importance (e.g. [88, 44, 47, 48, 49, 50,
126, 127, 108, 77]). Technical University of Wrocław deals with upper layers of robot
control, i.e. work-plan generation, work-scheduling and trajectory generation [64, 65, 62,
63, 68, 117].

Most robot programming systems have been constructed as certain extensions to ex-
isting computer programming systems, without trying to establish a theory similar to
computer science theory (especially regarding semantics). The aim of this monograph is
to describe different robot programming methods, not only from the point of view of the
programmer, but also from the point of view of the one who has to devise the structure
of the system and to implement it. This work tries to give some insight into the theory
that should underlie robot programming. Last but not least, the aim of this dissertation
is to show how the science of robot programming evolved. Author’s own experience
gained by defining and implementing different robot programming and control systems
led to a certain generalisation and formalisation which is described in this work.

To be brief: the subject of this monograph is the programming of robots as per-
ceived by a user and implementer of robot systems. As it was pointed out above, the
scope of such a dissertation can be vast, depending on the degree of interference with
the functioning of the system its operator has to possess. Moreover, due to a high vari-
ety of tasks that the considered system can be put to, it is not defined precisely – it is
an open system. Nevertheless, this work presents a method of describing such systems.
This method was instrumental in defining a general structure, as well as programming
means for such systems.

This dissertation reflects a certain line of thought which underlies the evolution of
robot programming. Initially considerable effort was put into devising new robot pro-
gramming languages [157, 158, 163, 164, 167, 176, 160]. Later specialised languages
gave way to robot specific libraries of functions coded in universal programming lan-
guages [11, 53, 23, 84, 54, 6, 105, 178, 179, 181]. This was due to the limitations of
the former, especially in the research environment.

The author’s own research is presented with the achievements of other scientists in
the background. Initially the author defined and implemented on two different systems
an object level robot programming language TORBOL [162, 164, 168, 173, 176, 165,
166]. This work pointed out the limitations of specialised robot programming languages,
regardless of their level. The main drawback of such systems is their lack of flexibil-
ity when the class of tasks that they were initially designed for changes considerably –
and this is usually the case when new research is undertaken. Nevertheless, TORBOL
proved that there is a method of devising languages operating on notions comprehensi-
ble to humans, and yet that can be translated into robot motions without using artificial
intelligence techniques. When the class of tasks that have to be executed by the robot
system does not vary considerably this approach can be followed.
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The degree of robot autonomy depends on the possibility of acquiring diverse infor-
mation from the environment and executing a decision making process. As the tasks that
the robot will be put to are a priori unknown, it is difficult and uneconomic to define
a closed structure system that will execute all possible jobs, hence open structure systems
are investigated. It is much easier to implement extensible libraries of control functions
than to define either an extensible specialised language or a very universal specialised
language taking into account all possibilities. Due to that the author defined several such
libraries: ROPAS [177, 183], ROOPL [177, 180] and the Research-Oriented Robot
Controller library RORC [178, 179, 175, 181, 187].

While working on robot programming languages the author has come up with a clas-
sification of their instructions and a method of their formal specification [159, 161, 164,
170, 174]. The formalism is based on the decomposition of a robot system into parts.
It is an extension of operational semantics [27] defined for computer programming lan-
guages. Influence of instruction execution on the state of each of the system components
is considered. Depending on the parts of the system that are influenced by the instruc-
tion, it is assigned to a certain class. Moreover the method of utilising sensors during
the execution of an instruction is dealt with herein. The completeness of the language
is checked by looking at the possibility of controlling through instructions each part of
the system. Different types of instruction semantics are considered. Languages with few
but complex instructions are compared with languages with large sets of instructions but
simple semantics. As usual, an intermediate solution looks most promising.

Implementation issues are at the focus of this dissertation. As robot specific li-
braries of functions coded in a universal programming language are preferred, both the
base languages (e.g. Pascal, C) as well as the programming methodology are discussed
(e.g. object-oriented or structured programming). The incorporation of diverse sensors
into a robotic system is treated comprehensively. Both the sensor data fusion and the
environment data utilisation in control are dealt with.

Different system structures are described [169, 181, 188]. These structures are im-
plied by the formalism devised by the author for specifying instruction semantics. A
single-robot structure is enhanced to a multi-robot one [189, 186]. The same formalism
was used by the author to specify sensor-based reactive robot control, in which a robot
reaction is associated with each sensor reading sub-space [188, 185, 184]. During ex-
ecution of the primary task the sensors are constantly monitored. Whenever the sensor
readings enter a specific sub-space, an adequate reaction is activated to avoid an unde-
sirable event. When a corrective action is successively accomplished, the primary task
is resumed. If not, other reactions are invoked.

2 Model of a robot system

At the focus of attention of this dissertation is a robot system as it is perceived by
a programmer or an implementer of the human interface with such a system. This model
has to take into account the fact that a robot system actively influences its environment,
gathers data from this environment, and changes its own internal state.
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2.1 Decomposition of a robot system

A robot system is composed of three subsystems: effectors (manipulator arm or arms,
tool and the devices cooperating with the robot), receptors – real sensors, and the con-
trol subsystem (i.e. memory: variables, program and program execution control). The
state s ∈ S of such a system is denoted in the following way:

s = < e, r, c >, s ∈ S, e ∈ E, r ∈ R, c ∈ C, (2.1)

where:

s – the state of the system, S – the system state space,
e – the state of the effectors, E – the effector state space,
r – the state of the real sensors, R – the real sensor reading space,
c – the control subsystem state, C – its state space.

The values of s, e, r, c are usually expressed as vectors.
The raw data obtained from real sensors usually cannot be utilized directly to control

the system. It has to be transformed into a useful form. This transformation is called
data aggregation. As a result of this a virtual sensor reading v is obtained:

v = f ′′v (r), v ∈ V (2.2)

Vector function f ′′v is called an aggregating function. V is the virtual sensor reading
space.

2.2 Description of the state of a robot system

The description of the state of a robot system s consists of the descriptions of the
state of each of its three parts.

The description of the state of receptors r is strongly influenced by the type of real
sensors connected to the system. The readings of these sensors vary from simple binary
values to complex multidimensional bit maps. At the most complex end multidimen-
sional arrays of real values (e.g. matrices) are the most appropriate abstract notions
describing the state of real sensors. Real vectors and Boolean values are much more
common in industrial systems.

The state of the effectors e is expressed in terms of: the state of the joints of the
manipulator – joint specification, state of the end-effector e.g., tool mounted on the ma-
nipulator – tool specification, or the state of the objects of the work space – object
specification. The motivation for treating objects that are in the work space as effectors
is the following. If the robot is equipped with a gripper, it can pick an object and use it
as a tool in its own right, so this object has to be treated as an effector. If all the objects
that can be transferred would not be included in the description of the state of the ef-
fectors, the description would vary whenever the robot picks a new object. That would
highly complicate this description. Obviously, not all objects can be used by the robot
as tools, so not all real objects need to be included in the description. As the trans-
ferred objects can be placed on immobile objects, the latter also can be included in the
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specification. In the case of inclusion of some of the static objects, the objects that re-
main immobile simply do not change their state, but the description remains unaltered.
Another reason for treating all objects from the work space as effectors is that devices
cooperating with the robot are also objects out of its work space, and those usually can
influence the environment actively, as effectors can. Which objects are included in the
description as effectors and which are excluded from this specification to a certain ex-
tent is a matter of choice. All the objects that are transferred by the robot directly or
indirectly must be treated as effectors. Others, depending on their role in the executed
task, can either be treated as external agents, and so their existence is detected by sen-
sors causing changes of r only, or can be treated as effectors and so their state change
would directly, or indirectly through r, be reflected in e.

In the case of joint specification of effector state, usually the generalized position
and velocity of each joint are used. In the case of tool specification, position is usually
expressed in terms of Cartesian co-ordinates and orientation in terms of a set of three
adequately chosen angles (e.g. Euler angles [110]) or a rotation angle and axis of rota-
tion [24]. Homogeneous co-ordinates, although redundant, are commonly used too [28,
110, 24, 25]. Velocity is expressed as an adequate time derivative of position and ori-
entation. Quaternion description is rarely used [39, 57]. Moreover, the torque or force
exerted by the end-effector on the environment can be included.

Object specification of effector state is rather complex, because not only must the po-
sition and orientation of each object be included, but also relations between these objects
are important. Furthermore, objects are characterized by many properties which have to
be reflected by the description of their state. A rather complicated solution to this prob-
lem is the attribute graph presented in [170, 174]. Inclusion of objects other than the
robot into the system caused the system to be also called the virtual environment.

The description of the state of the control subsystem c must include the description
of the state of all relevant variables (that will include data bases) and the description
of the state of execution of the control program (program itself and the pointer to the
currently executed instruction and the next one that is to be executed):

c = < cp, cd , cv >, (2.3)

where:

cp – the state of the part of the control subsystem containing the executed program –
control program state,

cd – the state of instruction designator,
cv – the state of variables.

The control program state remains unaltered during the execution of the program.
Systems with self-modifying programs are not considered here, as they are very diffi-
cult to manage and debug. Because of this, self-modifying programs are considered by
computer scientists to be a bad programming practice. Only cd and cv change during the
execution of a program.
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2.3 Instructions and the description of their semantics

Once the decision has been made as to how the state of a robotic system will be de-
scribed, another important decision has to be made. This decision concerns: how, under
the influence of a program, the change of the system state in time will be described. The
system changes its state under the influence of the program that is executed by its con-
trol subsystem and any disturbance external to the system. This disturbance is caused
by external agents changing the state of the system (including effectors). The detec-
tion of these state changes is only possible through receptors or by explicitly informing
the system about the anticipated state change by including in the program an instruction
containing the information about the modification. In both cases an adequate instruction
has to be issued to the system. Although the robot itself is not the cause of the effector
state change (an external agent causes the change), in both cases the instruction will be
treated as the cause of this change – for reasons of uniformity. For example, if a robot
is force-controlled and the tool should be compliant in all directions, then pushing the
tool with a finger (external agent) will cause the arm to retreat from the applied pressure
(i.e. change the effector state). Obviously, for the robot to do this, it has to be instructed
to be compliant. The same is even more evident when an object that is treated as an
effector is transferred by an external agent (e.g. conveyor).

The program consists of instructions. Execution of each program instruction causes
a certain change in the state of the system. It is important to know what influence an
instruction will exert on the state of the system, i.e. what its semantics will be.

An obvious solution to the above-stated problem is to associate with an instruction
a state transition pair: initial state, terminal state. Let ii be an instruction and II the set
of instructions, ii ∈ II . Semantics of an instruction is defined as the mapping sem:

sem : II → [S → S] (2.4)

where [S → S] is a set of operators that is assigned to the set of instructions II . This
is the way the operational semantics of computer instructions is stated. Unfortunately,
in the case of a robot system this is an oversimplification, because it is important to
know how the system will behave in between the initial and the terminal states (e.g. not
only are the end-points of a trajectory important, but also the path that the manipulator
follows, because it can collide with obstacles). Another solution to this problem is to
determine the initial state and the continuum of states that follow while the instruction
is being executed.

A sequence of elements of a set (e.g. of set A) will be denoted by a∗, and the set
of such sequences by A∗ .
Definition 1
If T is a linearly ordered continuous set and T ′ is its 1–connected subset and there exists
a function f : T → A , t ∈ T, a ∈ A, a = f (t), then f (T ′) is denoted by a∗∗ and called
the evolution of the elements of set A.

The set of all the evolutions of a will be denoted by A∗∗, a∗∗ ∈ A∗∗. Hereafter, T ′

will be the time interval.
Now the mapping sem is defined as:

sem : II → [S → S∗∗] (2.5)
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Usually, complete knowledge of the evolution of state that results from the execution
of an instruction is unnecessary, and moreover the description becomes too complicated.
An intermediate solution seems most appropriate.

The quantity upon which bounds were imposed is called the transition parameter
t p ∈ TP. The set of all bounds imposed on the transition parameters is denoted by Q.
The set of all subsets of Q is denoted as 2Q, so the mapping sem is defined as:

sem : II → [S → 2Q × S] (2.6)

The bounds can be imposed on any component of the state of the system. This no-
tation specifies both the initial and the terminal states precisely, but it only imposes
constraints on the continuum of intermediate states. Possibly many evolutions of state
can satisfy these constraints. The most useful form of this specification of system state
transition is the one in which some intermediate states are specified explicitly. In this
case the bounds are expressed in terms of a finite number of discrete time states of the
system. In such a case the mapping sem is defined as:

sem : II → [S → S∗] (2.7)

This definition can also be viewed as a discrete form of (2.5). This specification of
instruction semantics has one more advantage. Most robot systems are computer-con-
trolled, and so the set values for the joint controllers are updated at discrete instants.
In this way the specification is closely related to the method of implementation. This
definition of RPL instruction semantics is favoured in this dissertation.

3 Robot programming

Methods of robot programming can be assigned to two broad classes: on-line and off-
-line programming methods. On-line programming utilizes the robot while the program
is being created. Off-line programming does not use the robot to write the program.

3.1 On-line programming

On-line programming is based on teaching a robot the trajectories it has to follow.
Teaching is done by leading the robot arm through a sequence of motions and recording
these motions, so that later they can be replayed automatically. The arm during teach-
ing can be propelled either manually (i.e. the operator uses his muscles to shift the arm
from one position to the other) or by its drives (i.e. the operator uses the joystick, the
keyboard of the teach pendant, or a scaled down replica of the manipulator to command
the drives to appropriate positions). Regardless of the way of propelling the arm during
teaching, there are two ways of recording the trajectory of the arm motion. In the PTP
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(Point To Point1) method the arm is transferred to each characteristic point of the trajec-
tory, stopped there, and by pressing a special button on the control panel, this position
is memorized by the control system. During playback the robot arm goes through these
points using some form of interpolation between them. In the CP (Continuous Path)
method, as the arm is transferred, the positions are being recorded automatically at con-
stant intervals of time. As the points are very near each other no special interpolation
routines are necessary. Moreover, the motions can be played back with different speeds
by changing the time base (the interval of time allowed for reaching the next point).

The main advantage of teaching is its simplicity, so that even an operator with vir-
tually no qualifications can do it. The main drawbacks of this method, in its pure form,
are that: it is very difficult to incorporate the data gathered by sensors, no documenta-
tion of the program is created, it is easier to create a new program than to modify an old
one, and last but not least, during teaching the robot is occupied by the programming
and not by the production task.

3.2 Off-line programming

Off-line programming is based on textual means of expressing the task that the robot
system has to accomplish. The task is expressed in a robot programming language (RPL).
This can be either a specially defined language for robots or a universal computer pro-
gramming language (CPL). The advantage of using RPLs is associated with making the
robot more productive (e.g. it is not used for programming), the ease of utilization of
sensor data, and creation of program documentation.

To make a robot more productive, the phase in which it is required for programming
has to be as short as possible. In other words, robot programming has to be made in-
dependent of the robot. The program is developed off-line and later only loaded to the
control system for execution. The problem with this approach is that although currently
manufactured robots feature high repeatability, they exhibit low accuracy. This necessi-
tates the calibration of the program created off-line. As the solution to this is an open
research problem [60], the industrial robots used currently cannot be programmed strictly
off-line. Nevertheless, RPLs draw quite a lot of attention. The solution to the calibra-
tion problem is one cause of this and the other is the simplification of coding programs
in these languages. In addtion, only RPLs fully solve the problem of sensor integration.

Every programming language operates on specific abstract concepts. An instruction
of a language is composed of one or more keywords and zero or more arguments. These
arguments express abstract concepts. Computer languages operate on variables of dif-
ferent types. The values of these variables describe the state of certain abstract notions.
The instructions, and therefore the languages, are classified according to the abstract
notions they refer to.

The main instructions of RPLs are the ones causing the motion of the effectors, i.e.
motion instructions. The abstract notions that these instructions refer to are: the ma-

1 A more adequate name, although rarely used, is: Pose To Pose., where pose, unlike point which in math-
ematics specifies only the position, includes both position and orientation. In this work pose is equivalent to
location.
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nipulator joints, the end-effector or the objects of the work space. These notions were
used in subsection 2.2 to express the state of the effectors2.

Each of the enumerated notions creates a certain virtual environment [161, 170,
164], in which the instructions of the language operate. In other words, those elements
which had been considered important were selected from the real environment to consti-
tute the virtual environment. Only some elements of the real environment (including the
robot) are the basis for creating abstract notions that compose the virtual environment.
The virtual environment is a simplified model of the real environment. On the degree
of this simplification and on the abstract notions that were chosen to make up the virtual
environment depends the complexity of the control system of a robot. The programmer
through each level of the control structure perceives the real environment as a simplified
model – he perceives the virtual environment. In the case of RPLs the above-mentioned
abstract concepts are hierarchically related and so these languages can be classified into
levels [43]. It should be noted that the virtual environment is a certain abstraction of the
robot system.

The languages of the lowest level are called joint level languages. The instructions
of those languages cause the generation of sequences of signals controlling the drives
of the manipulator. So in this case the manipulator joints form the virtual environment.
The design of a control system accepting these instructions is quite routine, but to fore-
cast how the tool will behave when all the drives are in motion is not as simple. For
simplification of the design we have to pay the price of the programming complexity.

The languages of the next level free the users from this disadvantage. The main con-
cept of the virtual environment of this level is the manipulator’s end-effector, so these
languages are called the manipulator level languages. Although it is easy to predict
the trajectory of the robot tool when using languages of this level, the programmer still
has to be concerned with the description of all the motions of the manipulator instead
of simply stating what actions have to be performed to accomplish the task.

The instructions of object level languages operate in virtual environments composed
of models of objects existing in the work space. The programmer states only which ob-
jects should be transferred, so that the task will be accomplished. The robot control
system, using its knowledge of the objects and the relations between them, will relocate
the manipulator in such a way so as to complete the job. From this level onward the
programmer does not have to busy himself with the motions of the robot arm, but can
concentrate on the operations that have to be executed.

On the fourth level, instead of specifying all operations, only a general description
of the goal should suffice. In this case the control system has to generate the plan of
actions, and later carry it out. The task level languages are the subject of the current
research. The prime difference between the third and fourth level languages is that to
express tasks in the former we supply the plan of actions and in the latter the plan is
generated automatically.

Till now over a hundred robot programming languages have been implemented.
A comprehensive survey of RPLs can be found in [164, 12, 51, 167, 163, 157, 158,
13, 79, 125]. Unfortunately, most of them have only single-site implementations, and
their manuals are unavailable. Only some out of this multitude will be described briefly

2 The virtual environment is a model of a robot system as perceived by the programmer through the pro-
gramming language he uses.
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in the following sections (either better known or more characteristic ones have been
chosen).

3.2.1 Joint and manipulator level robot programming languages

In the case of joint level robot programming languages, the motions of the robot
are expressed in terms of relative positions (translation for prismatic joints and angle of
rotation for revolute joints) of consecutive links of the manipulator. Manipulators are
multi-degree of freedom devices, so it is extremely difficult to judge where the end-effec-
tor will be located when an adequate set of joint angles and displacements is given (e.g.
for articulated robots). As joint level languages are very difficult to use, there are not
many examples of them. Currently such languages are mainly used by Cartesian robots3.
On the other hand, languages for Cartesian robots can also be treated as manipulator
level languages, as the joint co-ordinates are equivalent to end-effector co-ordinates.

As examples of manipulator level robot programming languages two have been se-
lected: WAVE and VAL II; the former – because it was one of the first well-developed
manipulator level languages and had a great impact on quite a few languages defined
later (e.g. VAL, AL), and the latter – because it is widely used with PUMA industrial
robots.

WAVE
WAVE [109, 163] was developed in the early 1970s at Stanford Artificial Intelligence

Laboratory for research purposes. It operates on three data types: co-ordinate frames
(TRANS), vectors (VECT) and loop counters. Arithmetic on those types is very limited.

There are special instructions for incrementing and decrementing loop counters. They
are used in conjunction with the JUMP instruction to construct program loops. Moreover,
SKIPE and SKIPN skip (or not) to the next instruction if the error number argument is
equal to the program error state number – those instructions can be used for conditional
execution.

OPEN and CLOSE instructions deal with the gripper. MOVE, CHANGE and CEN-
TER instructions move the arm. The MOVE instruction transfers the end-effector to the
goal position through two intermediate points using cubic spline interpolation in joint
co-ordinates. The CHANGE instruction is used for incremental motion of the arm. The
CENTER instruction causes closing of the gripper. When one of the fingers makes
contact with the object, the position of the arm is modified in such a way that eventu-
ally the gripper is fully closed without shifting the object. Monitoring of exerted forces
during motion is possible, if prior to the motion instruction the STOP instruction is
issued. Straight line and circular motion is possible by using the DRAW instruction,
which performs functionally defined motion through a series of positions.

FREE and SPIN are used to select the direction and axis of rotation respectively for
which the arm is compliant. Out of this data the control system will select the joints
which will be force-controlled and those which will be position-controlled. FORCE
causes the exertion of a specified force or torque. WOBBLE is an instruction causing
small sinusoidal motions to be superimposed on the main motion.

3 In this case the joint space is equivalent to end-effector space.
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VAL II
VAL II [194, 14] evolved from VAL [193]. VAL was developed in 1975. In 1978

VAL had been rewritten as VAL II, and was offered commercially with PUMA robots.
VAL II is a BASIC like interpreted language, so it is composed of a mix of instructions
necessary for robot control and monitor commands for creating and manipulating robot
programs (e.g. editing, loading, storing, deleting, printing, listing, executing, aborting,
debugging). Only robot control instructions are within the scope of this dissertation.

VAL II, besides integer and real arithmetic, has geometric data types necessary in
robot programming (e.g. co-ordinate frames – named locations; and joint co-ordinates
– named precision points). All of its variables are global.

It has goto, if then else, case, for, while, repeat and call, return program exe-
cution control constructs. Moreover, the program can be made to wait for an operator
reaction (PAUSE), stopped (STOP, HALT), delayed by a certain time (DELAY) or forced
to wait for an external event (WAIT). VAL II enables asynchronous processing of process
control programs. REACT, REACTI, REACTE instructions cause constant monitoring
of external input signals or errors, and if a certain event occurs and its priority is high
enough, they invoke a subprogram handling it.

MOVE is the basic motion instruction. It causes the robot arm to move to a speci-
fied location or a precision point. Joint (MOVE) or Cartesian (MOVES) interpolation
can be used during motion. If during motion the gripper has to be opened or closed,
MOVET or MOVEST with an adequate argument are used. Intermediate locations can
be specified too (e.g. APRO, APROS, DEPART, DEPARTS). Either waiting for the ter-
mination of motion or simultaneous execution of the following non-motion instructions
can be caused. Speed of motion can also be determined (SPEED). Arm configuration
control is also possible (e.g. RIGHTY, LEFTY, ABOVE, BELOW, FLIP, NOFLIP). The
accuracy of attaining path segment transition points can also be controlled (COARSE,
FINE, NONULL, NULL, INTOFF, INTON). A single joint can be moved by the DRIVE
instruction.

The RS–232C interface can be accessed from VAL II by reading/writing to a suitable
port address. There are special instructions for reading binary inputs and A/D converters,
to which sensors can be connected.

Because VAL II is implemented on an LSI–11 based microcomputer, its computa-
tional capabilities are rather limited. Most of its computational power is used up by
inverse kinematics and arm control. Moreover, VAL II is an interpreted language. This
leaves very little computational power for sensor data processing.

3.2.2 Object level robot programming languages

Only three object level RPLs are chosen for the presentation in this dissertation. For
the same reason only some features of these languages will be described. From the
point of view of robotics three features of these languages seem most important. These
features are:

– description of motion (i.e. motion instructions),
– operation of the data base holding the state of the virtual environment (i.e. world

model instructions),
– program structure.
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The three languages are: AL (Assembly Language) [10, 12, 100, 101] developed at
Stanford University, RAPT (Robot Automatically Programmed Tool) [1, 2, 112, 113] im-
plemented at the University of Edinburgh and TORBOL (Transformation Of Relations
Between Objects Language) [162, 168, 173] elaborated at Warsaw University of Technol-
ogy (later also implemented at Loughborough University of Technology). Each of these
languages has been chosen for its distinct approach to object level robot programming.

AL
AL has a Pascal-like syntax. Its principal data types are: SCALAR, VECTOR,

ROTATION, FRAME and TRANSFORM. Each variable, besides its name and type,
has a unit associated with it (e.g. m/s for velocity). This enhances the possibility of
error checking. A notion of object does not exist in this language. Usually, FRAMEs
are given names that make us associate them with objects or their distinct parts. When
two objects are bound together or two frames describe two parts of the same object, the
system is instructed by an AFFIX command that this is the case. There are two kinds
of this command distinguished by an extra keyword: RIGIDLY or NONRIGIDLY. Rigid
affixture is symmetric, that is if two objects (frames) are affixed rigidly, no matter which
of them is transferred the other will follow its movement. In the case of the non-rigid
affixture the motion of one of the frames brings about the motion of the other but not
vice versa. Two frames can be disjoined by an UNFIX command. From the point in
the program where the system encounters this instruction, it subsequently treats the two
frames as separate. The AFFIX and UNFIX instructions are the only means of specify-
ing relationships occurring in the virtual environment. The values of variables, including
frames, can be changed by an assignment statement. In this case the programmer can
exert totally unlimited influence over the world model – including the introduction of
discrepancies between the state of the world model and the real environment, so utmost
care has to be taken.

The basic motion statement has the following form:
MOVE <controllable frame> TO <destination> [<modifying clauses>];
where the angle brackets contain the non-terminal symbols and the square brackets
enclose optional parts of the instruction. The <controllable frame> is the name of
the robot arm or the name of the frame (object) affixed to the arm directly or indi-
rectly. The <destination> is a frame expressing the goal position for the <controllable
frame>. As the current position of the manipulator specifies the initial position and the
<destination> specifies the goal position of the motion, when we want to influence the
intermediate motion, we use the <modifying clauses>. They determine how the mo-
tion is to be performed. The <modifying clauses> can specify intermediate points on
the trajectory of motion (VIA) or approach to the goal position (APPROACH) or depar-
ture point in the vicinity of the initial location (DEPARTURE). Moreover, the velocity
of motion can be defined (VELOCITY) or its duration (DURATION). One aspect of mo-
tion is transferring objects. The other is exerting forces. AL enables the specification of
force along a vector (FORCE) or a torque about a vector (TORQUE) to be exerted dur-
ing the motion. Force components must be orthogonal to avoid incompatible requests.
Applying force of magnitude zero causes the arm to avoid exerting force in the speci-
fied direction (i.e. causing compliance). If the motion is to be performed with zigzag
imposed on the main trajectory, a WOBBLE clause can be used (this kind of motion is
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necessary in the case of welding). As the AL system evolved, many other clauses have
been introduced into it.

RAPT
RAPT has a somewhat obsolete syntax due to the fact that it evolved from a language

for programming numerically controlled tools (APT). The structure of the program is
composed of the following elements:
– body definition statements which use:

- construction features (e.g. POINT, LINE, CIRCLE) to define:
- external features of bodies (e.g. FACE, SHAFT, HOLE, EDGE, VERTEX, SPH-

FACE, i.e. spherical face),
– relational statements describing the relationships between external features of the

body (e.g. AGAINST, COPLANAR, FITS, ALIGNED, TIED, UNTIED, ISSUB,
i.e. is a subassembly, NOTSUB),

– motion statements (e.g. MOVE, TURN) causing the motion of AGENTs (e.g. robot),
– situation description statements which use the same keywords and syntax as the re-

lational statements.
First, all the bodies (objects) existing in the virtual environment have to be defined

by using body definition statements and relational statements. Each body is a 3-D ob-
ject with a name, a set of features and a position associated with it. Once this is done
the program executing the task can be written. It is composed of descriptions of situa-
tions which must come into existence during the execution of the task (e.g. assembly).
The situations can be treated as snapshots of important phases of the task. Situations
are expressed in terms of spatial relationships between objects. Between each situation
must come a movement. Motion is caused by agents. Only agents (e.g. robot) or bod-
ies connected to agents can move. The connections between bodies and the agents are
specified by TIED/UNTIED and ISSUB/NOTSUB statements. Ties are strong links be-
tween bodies, so no relative motion can occur between them. Subassemblies are weaker
links between bodies, so they permit constrained relative motion. By using these state-
ments the robot and its tools can also be defined. Subassemblies can be permanent or
temporary.

The RAPT system possesses its rules of motion. It knows that any body TIED to the
world cannot move and that any agent or body TIED (directly or indirectly) to an agent
can move. Moreover, any body which is related to a subassembly of a body which can
move can also move. The system starts inferring the intermediate positions in a path
from a known position. It can either be the initial or the goal situation. Forward or back-
ward inference is used (artificial intelligence methods are employed). The world model
is constructed by using body definition and relational statements. As the execution of
the task proceeds, the world model is updated in such a way that it will match each sit-
uation. Simultaneously, changes are performed in the real world. Motion statements are
only to simplify the process of inferring actions which will transfer the system state from
the initial to the goal situation. As all motions are defined in relation to some features of
the objects, the necessity of defining virtual (nonexistent) objects arises sometimes. The
following few lines of code should give the flavour of programming in this language.
This program shifts a bottle with a square cross-subsection from one place on the ta-
ble to another. The goal location of the bottle is expressed in terms of the position of
a certain point (vertex) on the bottom circumference of the bottle.
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REMARK lift the bottle off the table
MOVE/bottle,PERPTO,table;
REMARK describe the situation: the bottle is above the table
AGAINST/VERTEX of bottle, virtual plane;
REMARK transfer the bottle to the new location
MOVE/bottle,PARLEL,table
MOVE/bottle,PERPTO,table
REMARK describe the goal situation
AGAINST/VERTEX of bottle, new vertex

MOVE statements cause the robot and objects to move, but the range of motion is
determined from the description of the situation following the MOVE instructions.

TORBOL
In the following sub-sections the basic notions that are used in TORBOL will be

outlined.

Virtual and real environment
The real environment is composed of the robot itself, its surroundings, and the coop-

erating devices. A full and exact description of such an environment is neither necessary
nor possible. From the point of view of the class of tasks that have to be executed (even
by a very universal robot) only specific features of the real environment are important. So
the model of the real environment, that takes into account all the necessary details (from
the point of view of the realized task), is called the virtual environment. The program-
mer, through a programming language, perceives only the virtual environment. In other
words, in a programming language only some features of the real environment can be
described. A real environment reduced in such a way is called the virtual environment.

Objects
The virtual environment, in which TORBOL instructions operate, is constructed out

of models of real objects. Each object possesses certain properties which characterize
it. These can be such features as: the position of its base, its shape, or the description
of the place most suitable for getting hold of it. An important characteristic is the path
of safe approach to the object. The set of features is described by the attributes of the
object.

Two kinds of objects were introduced in TORBOL: indexed and non-indexed objects.
A non-indexed object is identified only by its name, and an indexed object is identified
by both its name and the values of the indices. Up to three indices can be used. It was
assumed that all the objects with the same name (the values of indices can vary) pos-
sess the same features and thus the same attributes. This characteristic of the language
is very useful in the case of objects placed on pallets or in containers.

Attributes of objects
The language contains a pre-defined constant set of possible attributes. Each object

is characterized by a non-empty subset of the set of attributes. The choice of attributes
featuring an object is left to the programmer and is made according to the requirements
imposed by the executed task.
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The geometric properties of the objects are described by co-ordinate frames (or in
short, simply, frames), that is: orthogonal, right-handed sets of Cartesian basis vec-
tors with common origin. The primary co-ordinate frame affixed to an object is called
BASE. The other four pre-defined frames are named TOP, BOTTOM, INSIDE and
HANDLE. Their locations (position and orientation) are relative to the BASE frame.
They specify certain characteristic places on or in the object. In principle:

TOP – a place where another object can be placed,
BOTTOM – a place where contact between the object and its support can occur,
INSIDE – the interior of the object (in case of hollow objects),
HANDLE – is the location best suited for grasping the object.

Moreover, an attribute named PATH was introduced. It determines a route of safe
approach to the object. PATH is an ordered list of frames specified relative to BASE.
When an object is to be grasped, the frame affixed to the tool centre point (TCP) must
pass through all the frames listed in the PATH. This attribute allows an implementation
of elementary collision avoidance.

The attribute GRASPED decides whether the object is held by the gripper.
The attribute INPUT specifies the signal inputs to the object (e.g. input to a cooperat-

ing device – turning it on or off). To such an input an output of the robot control system
has to be connected. The last attribute is called SHAPE. This attribute was introduced
only for the sake of simulation of the execution of a program written in TORBOL. It en-
ables a graphical representation of an object. The shape of the object can be represented
as a concatenation of the following primitive shapes:
CUBOID,
PRISM with an equilateral polygon in its base,
PYRAMID with an equilateral polygon in its base.

Object classes
Essentially an object class is a set of objects described by the same set of attributes.

Various objects of the same class will have different values of their attributes. Nev-
ertheless, the language makes possible the specification of several classes of objects
possessing the same sets of attributes. This possibility was introduced because the set
of attributes defined in the language is not very abundant and it increases the readabil-
ity of programs. Moreover, for the sake of automatic verification of semantic validity of
a program it may be important that the objects with the same sets of attributes belong
to classes with differing names.

Relations
Since a program in TORBOL is treated as a sequence of situations (relations) which

the objects have to attain, a mechanism for defining such relations has to be created.
A higher level relation4 is defined by supplying lower level relations5. The compiler
will automatically generate such motion commands for the robot, so that the lower level
relation becomes valid. The occurrence of the lower level relation is equivalent (by def-
inition) to a situation in which the pertinent high level relation takes place. The above
considerations will become much clearer after reading the following example.

4 A relation between objects.
5 Relations between the values of attributes of objects.
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If two classes of objects named bolts and plates respectively are specified in a pro-
gram, then between the objects of these classes a relation named “in” can be defined.
A situation in which a bolt will be in relation “in” with a plate occurs when the bolt is
placed inside the plate hole (Fig. 3.1). The relation “in” is a higher order relation. Now

Figure 3.1. Definition of the relation In between a Bolt and a Plate

it has to be described in terms of its equivalent lower level relations. A lower level re-
lation can be represented by an “equal to” relation between the values of the BOTTOM
attribute of the bolt and the BOTTOM attribute of the plate. Of course, the values of
both attributes (frames) have to be expressed in the same co-ordinate system, that is in
the global co-ordinate frame. A formal method of defining high level relations in terms
of low level (mathematical) relations is presented in [164, 170, 174].
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In TORBOL both unary and binary relations can be defined, where the latter can be
of two types: symmetric and asymmetric. A unary relation determines the feature which
we want the object (being an argument of this relation) to acquire. For instance, if we
consider a lathe to be our object, then we may demand the lathe to be activated (ACTI-
VATED LATHE). ACTIVATED is the name of a unary relation, and the LATHE is the
object being the argument of this relation. Whether the LATHE is activated or not is
its feature. The higher order relation (ACTIVATED) must be defined in terms of lower
order relations [194] between the value of the attribute INPUT (of an object named the
LATHE) and a constant value (here a binary value). The robot control system will output
this value causing the activation of the lathe.

An example of a binary relation has been cited above. Only the symmetric and asym-
metric binary relations have to be differentiated. If two objects named OB1 and OB2
are in a relation REL with each other, what can be written down as (REL OB1 OB2),
then in the case of a symmetric relation the displacement of object OB1 causes the dis-
placement of object OB2, and vice versa. When the relation REL is an asymmetric one,
the motion of object OB2 brings about the motion of object OB1, but not the opposite.
Symmetric relations take place when two objects are fixed to each other in some way
(e.g. glued or screwed together). Asymmetric relations occur when one object is placed
on top of the other or inside the other (with a loose fit).

Signals and events
The robot control system may obtain information from the environment through sig-

nal lines. This information can be utilized to synchronize the actions of the robot with the
production process. With every signal line (IN SIGNAL) we can associate one or more
names of events. If the signal attains the value specified in the definition of the event
(EVENT), then we consider that this event took place. TORBOL has an instruction wait-
ing for an event to take place. In the system a signal named TIME was distinguished. It
is responsible for measuring the elapsed time. Usually, this signal indicates that a certain
amount of time has passed.

Supplementary data types
TORBOL has four supplementary data types: INTEGER, REAL, LOGICAL and

FRAME. The application of the former three is obvious. The last data type is used
for specifying positions and orientations of certain characteristic places of an object
and points (locations) along a path. On these data types all mathematical operations
appropriate to them can be performed.

Initialization directives
Initialization directives assign initial values to supplementary variables and attributes

of objects, and moreover characterize the initial relations taking place between the ob-
jects of the virtual environment. A supplementary variable can be assigned an initial
value by a variable initialization directive (<<). To assign initial values to attributes of
objects, an OBJECTS initialization directive must be used. To enter into the database
the information about the initial relations occurring between the objects, a RELATIONS
initialization has to be employed. All the initialization directives can only be used in-
side the initialization subsection of a program (starting with the INITIALIZATION and
ending with ENDINIT keyword).
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Instructions
The DO instruction is the principal command of the language. It enforces a relation.

In other words, it causes a situation in which a binary relation between two objects (be-
ing its arguments) takes place, or a situation in which an unary relation occurs, causing
a specified object to acquire a particular feature.

The WAIT instruction causes the robot to wait for an event to occur. While the robot
is waiting, other devices may make some changes in the real environment. These changes
have to be reflected in the data base holding the state of the virtual environment. That
is why the definition of the event has to contain all the information about the changes
in the values of attributes of objects and new relations that will take place after the oc-
currence of the event. Due to such a definition of the event, the updating of the internal
data base is possible.

To the supplementary variables as well as to the attributes of objects new values can
be assigned by an assignment instruction (:=). Nevertheless, the programmer is warned
against doing so, because it is easy to introduce false data into the data base in such
a way. The values of attributes of objects being moved by the robot are updated auto-
matically, but sometimes, when the robot is not the cause of motion of the object, the
programmer may have to change the values of attributes using this instruction. Practice
shows that these are rather rare cases.

Finally, four instructions (well-known from the general purpose high-level languages,
e.g. Pascal) controlling the execution of a program have been introduced into the
language. These are: IF THEN ELSE ENDIF, WHILE PERFORM ENDWHILE, RE-
PEAT UNTIL ENDREPEAT, and FOR ENDFOR loop. The first three are executed
depending on the condition being their argument. The condition may be constructed out
of logical expressions, binary relations (the fact of a binary relation taking place between
the indicated objects is being checked) and events (the fact that an event took place is
being checked).

DO instruction
The basic instruction of the language causing changes in the virtual environment is

the DO instruction. This is why it will be dealt with in more detail here. Its syntactic
form is as below:

DO (<relation name> <object name> [<object name>]) [<modification>];
where the angle brackets contain the non-terminal symbols and the square brackets en-
close optional parts of the instruction. When the specified relation is a unary relation,
then the name of the second object is obviously not needed, but if it is a binary relation,
the names of both objects are necessary. The optional <modification> part states how
the motion is to be executed: CAUTIOUSLY, MODERATELY or QUICKLY. It influ-
ences only the speed of motion during the execution of a binary relation. In the future
implementations <modification> will be the name of the modifying process influencing
the execution of the DO instruction according to the information received from sensors
[153] or imposing oscillations on the basic motion.
EXAMPLE:
DO (IN BOLT PLATE) SLOWLY;

The execution of this instruction will cause the BOLT to be placed IN the PLATE
(Fig. 3.1). The relation IN between the specified objects will be realized. The speed of
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motions will be 20% of the maximum possible speed. The details of the algorithm that
executes the binary relation are shown in Fig. 3.2.

The motion of the gripper along the approach-departure trajectory is performed in
the following manner. When the gripper approaches the object, then it moves from the
last to the first frame in the list being the value of the PATH attribute of this object.
When the gripper departs from the object, then it passes through these frames in the re-
verse order. If the movable object is in a symmetric relation with any other object, then
this object will be transferred too, and the values of its attributes will be suitably up-
-dated. The same thing happens to the objects that are in an asymmetric relation with
the movable object if the movable object had been the second argument of this relation
when it was created. The asymmetric relations in which the movable object was the first
argument are automatically deleted from the data base. In other words, the asymmetric
relations are dealt with in the following manner. All the objects that are standing on top
of the movable object are displaced with it, and all the objects that are supporting the
movable object are left behind.

It should be explained why during the creation of a new binary relation, when the
movable object was already in an asymmetric relation as its first argument, the gripper
would traverse a different trajectory than when the movable object was in a symmetric
relation or in no relation at all. If the movable object is in no relation with other objects
and the gripper, while approaching this object, did not collide with any obstacles, then
it is assumed that when the arm is retracted, it will also avoid obstacles (this reasoning
does not guarantee that the retracted object will not hit obstacles, but such a situation
is rather improbable in the case of relatively small objects). In the case when the mov-
able object was in an asymmetric relation (as its first argument), and this relation had
been created without collisions, then by tracing the same trajectory in the opposite di-
rection the obstacles will probably also be avoided (an obstacle can be encountered, if
from the time of the creation of this relation the immediate surroundings of the object
have been changed considerably). When the object is relatively big or the surroundings
have been altered, the value of the attribute PATH has to be changed. In the case of an
object being in no relation with other objects the gripper will move through the same
approach trajectory twice – once approaching the object and once retracting it. In the
case of the movable object being already in an asymmetric relation, the gripper will tra-
verse such a trajectory that the characteristic place of this object will pass through the
approach trajectory of the object with which the movable object is in a relation. The
symmetric relation does not distinguish any of the objects, so it was decided that this
case would be treated in the same way as the case of the movable object being in no re-
lation with other objects. Such an approach to the realization of a binary relation gives
us a “coarse” version of a program quickly. Then, during simulation, if collisions are
detected, the program can be “tuned” by adjusting appropriate PATH attributes.

The execution of a unary relation amounts to output, from the control system of the
robot, of a signal with a magnitude specified in the definition of this relation. The out-
put OUT SIGNAL(i), where i is the number of the output, must be physically connected
to the INPUT of the object.

TORBOL program structure
A program written in TORBOL consists of four parts (possibly empty):

– program heading,
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✎✍ �✌BEGIN

��
❅❅

❅❅
��

❄
YES Is the gripper open? NO

��
❅❅

❅❅
��

❄
NO Is the movable object grasped? YES

✛

✲

Open the gripper. Depart from the object along its approach-departure trajectory
❄

Move the gripper along the approach-departure trajectory of the movable object
❄

Move the gripper to the HANDLE of the movable object.
Close the gripper.

❄

�
�

❅
❅

❅
❅

�
�

❄
NO Is the movable object in an asymmetric relation

(as its first argument) with an object?

YES

Move the gripper along the trajectory
which had been traced when

the relation (in which the movable
object is now) was realised.

❄

Move the gripper along the approach-
-departure trajectory which had
been traced when the movable
object was being grasped.

❄

Move the characteristic place of the movable object along
the approach-departure trajectory of the non-movable object

❄

Move the characteristic place of the movable object
to the characteristic place of the non-movable object

❄

��
❅❅

❅❅
��

❄
NO Is the movable object to be released? YES

Open the gripper. Move the gripper along the
approach-departure trajectory of the movable object

❄

❄✎✍ �✌END

❄✎✍ �✌END

Figure 3.2. Flowchart of the execution of a binary relation
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– declaration subsection,
– initialization subsection,
– program subsection.

The program starts with the keyword TITLE followed by the program name (this is
the heading). The declaration subsection contains the declarations of supplementary vari-
ables, object classes, objects, relations, and events. The initialization subsection holds
the initial state of the virtual environment and supplementary variables. If the system
has a camera, then the state of the virtual environment can be read in by “looking” at
the real environment. For the time being the initial state of the virtual environment has
to be supplied by the programmer (a rather time-consuming activity). He has to assign
initial values to all the attributes of objects and some of the supplementary variables.
Moreover, he has to state which relations already exist in the environment. The program
subsection contains the instructions which determine the task that the robot is to execute.
The program is terminated by the keyword FINISH.

TORBOL example
The basic properties of the language will be illustrated by a programming example.

For this purpose one of the tasks that are common to robots installed in factories has
been chosen. The effects of simulating the execution of this program are illustrated by
Fig. 3.3. The braces contain comments.

TITLE EXAMPLE;
{ Robot transfers WorkPiece from the Source conveyor to the hydraulic Press, ac-

tivates the Press and waits for the Press to signal that its job is done. It then
retrieves the machined WorkPiece from the Press and places it on the Receiver
conveyor }

DECLARE
OBJECT CLASS Conveyor ATTRIBUTES

BASE, TOP, SHAPE, PATH, INPUT
END ;
OBJECT CLASS Machine ATTRIBUTES

BASE, TOP, INPUT, SHAPE, PATH
END ;
OBJECT CLASS Material ATTRIBUTES

BASE, BOTTOM, HANDLE, SHAPE, GRASPED, PATH
END ;
OBJECT Source CLASS Conveyor

SHAPE : CUBOID (3000 , 300 , 575 )
( CUBOID (100 , 100 , 100 ) AFFIXED AT [ 0 , 1200 , 575 , 0 , 0 , 0 ] !

CUBOID (100 , 100 , 100 ) AFFIXED AT [ 0 , 800 , 575 , 0 , 0 , 0 ] !
CUBOID (100 , 100 , 100 ) AFFIXED AT [ 0 , 400 , 575 , 0 , 0 , 0 ] ),

INPUT : OUT SIGNAL(1)
END;
OBJECT Press CLASS Machine

SHAPE : CUBOID (1000 , 600 , 130 )
( PRISM (10 , 60 , 1300 ) AFFIXED AT [ 0 , 300 , 130 , 0 , 0 , 0 ]

( PRISM (10 , 60 , 1300 ) AFFIXED AT [ 0 , –600 , 0 , 0 , 0 , 0 ]
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Figure 3.3. Exemplary TORBOL program simulation

( CUBOID (1000 , 600 , 300 ) AFFIXED AT [ 0 , 300 , 800 , 0 , 0 , 0 ]
( CUBOID (400 , 400 , 300 ) AFFIXED AT [ 0 , 0 , 0 , 0 , –PI , 0 ]

( PRISM (10 , 60 , 100 ) AFFIXED AT [ 0 , 0 , 300 , 0 , 0 , 0 ]
( CUBOID (400 , 400 , 50 ) AFFIXED AT [ 0 , 0 , 500 , 0 , –PI , 0 ]

( PRISM (10 , 90 , 80 ) AFFIXED AT [ 0 , 0 , 50 , 0 , 0 , 0 ]
))))))),

INPUT : OUT SIGNAL(2)
END;
OBJECT Receiver CLASS Conveyor
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SHAPE : CUBOID (1000 , 300 , 565 )
( CUBOID (100 , 100 , 100 ) AFFIXED AT [ 0 , −400 , 565 , 0 , 0 , 0 ] !

CUBOID (100 , 100 , 100 ) AFFIXED AT [ 0 , 0 , 565 , 0 , 0 , 0 ] ),
INPUT : OUT SIGNAL(4)

END;
OBJECT WorkPiece CLASS Material

SHAPE : CUBOID (100,100,100)
END ;
RELATION On Material Conveyor :

BOTTOM = TOP ,
GRASPED = NO

END ; { On }
RELATION In Material Machine :

BOTTOM = TOP,
GRASPED = NO

END ; { In }
EVENT WorkPiece in position : IN SIGNAL(3) = 1

OBJECTS
WorkPiece = [ −750 , 300 , 575 , 0 , 0 , 0 ]

RELATIONS
On WorkPiece Source

END ;
EVENT Work done : IN SIGNAL(1) = 1 END ;
EVENT Pressed : IN SIGNAL(2) = 1 END ;
UNARY RELATION Loaded Conveyor :

INPUT = 1
END ;
UNARY RELATION Unloaded Conveyor :

INPUT = 0
END ;
UNARY RELATION Working Machine :

INPUT = 1
END ;
UNARY RELATION Disabled Machine :

INPUT = 0
END ;

ENDDECL

INITIALIZE
OBJECTS

Source
BASE = [ −750 , 300 , 0 , 0 , 0 , 0 ],
TOP = [ 0 , 0 , 575 , 0 , 0 , 0 ],
PATH = # 2, Source.TOP∗[ 0 , 0 , 150 , 0 , 0 , 0 ],

Source.TOP∗[ 200 , 0 , 200 , 0 , 0 , 0 ]#;
Receiver

BASE = [ 1150, −400, 0 , PI/2 , 0 , 0 ] ,
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TOP = [ 0 , 400 , 565 , PI/2 , 0 , 0 ],
PATH = # 2, Receiver.TOP∗[0 , 0 , 50 , 0 , 0 , 0 ],

Receiver.TOP∗[100 , −100 , 50 , 0 , 0 , 0 ] #;
Press

BASE = [ 850 , 400 , 0 , PI , 0 , 0 ] ,
TOP = [ 0 , 0 , 260 , 0 , 0 , 0 ],
PATH = # 3, Press.TOP∗[ 0 , 0 , 50 , 0 , 0 , 0 ],

Press.TOP∗[ 50 , 0 , 50 , 0 , 0 , 0 ],
Press.TOP∗[ 100 , 0 , 50 , 0 , 0 , 0 ] #;

WorkPiece
BASE = Source.BASE ∗ Source.TOP,
BOTTOM = [ 0 , 0 , 0 , 0 , 0 , 0 ] ,
HANDLE = [ −10 , 0 , 50 , PI , PI/2 , 0 ] ,
GRASPED = NO ,
PATH = # 2, [ 0 , 0 , 100 , PI , PI/2 , 0 ],

[ 100 , 0 , 100 , PI , PI/2 , 0 ] #
END { OBJECTS } ;

ENDINIT

PROGRAM { for the robot }
{ Execute the loop until signaled that the work is done }

WHILE not ( ? Work done ) PERFORM
{ Wait for the WorkPiece to be in position }
WAIT WorkPiece in position;
{ Put the WorkPiece in the Press }
DO ( In WorkPiece Press );
{ Signal the Source conveyor that it is empty }
DO ( Unloaded Source );
{ Activate the Press }
DO ( Working Press );
{ Wait for the WorkPiece to be pressed }
WAIT Pressed;
{ Turn off the Press }
DO ( Disabled Press );
{ Take the WorkPiece from the press and put it on the Receiver conveyor }
DO ( On WorkPiece Receiver );
{ Signal that the Receiver conveyor is loaded (thus activate it) }
DO ( Loaded Receiver );
DELETE ( On WorkPiece Receiver );
{ Turn off the Receiver conveyor }
DO ( Unloaded Receiver );
{ Activate the Source conveyor }
DO ( Loaded Source );

ENDWHILE
FINISH.
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Comparison of object level RPLs

AL and TORBOL rely on frames in the description of objects. TORBOL and RAPT
use shape to describe bodies. If an object changes its shape during machining (the shape
has to be redefined), or if the object is flexible (e.g. rubber pads), some problems arise
in the description of the task in RAPT. On the other hand, most CAD programs gener-
ate as an output descriptions of shapes of objects. RAPT could readily use this output in
the description of the virtual environment, thus cutting down the program development
time. AL and RAPT do not differentiate the relationships between parts of objects and
between objects themselves. TORBOL uses different means to define the relationships
between parts of an object (attributes) and different to specify relationships between ob-
jects (relations). In AL the definition of an object is a bit fuzzy, in RAPT it is much
stricter, whilst in TORBOL an object is a very distinct entity. The systems relying on
frames have problems with specifying motions of robots with less than six degrees of
freedom. If, for instance, the tool is axially-symmetric and the robot has five degrees
of freedom, it is very difficult to specify attainable positions, although the task can be
realized without problem (when programmed by teaching). TORBOL solves this prob-
lem by defining a rotational virtual degree of freedom about the axis of the tool. RAPT
relies on artificial intelligence techniques for generating motions, so these methods have
also to be used to solve the above problem.

In the case of AL, motion is specified in terms of motions of frames and the system
relies partly on the programmer for the proper actualization of the world model. This
procedure is error prone. As in RAPT the motion of an object is specified as a motion
of a body satisfying a goal situation, no discrepancy between the real and the virtual en-
vironments can arise here. The problem is that artificial intelligence methods have to be
employed to deduce the motions of the arm. This cannot be done on-line. As a TOR-
BOL program is a sequence of relations that have to be created during the execution
of the task, here again no discrepancy between the real world and the world model can
arise.

Only AL can exert considerable influence on the execution of the intermediate part of
the trajectory (by modification clauses). When information is gathered by sensors it can
readily be used if an adequate clause is present in the implementation of the language;
if not – the language can be enhanced. Some enhancements have been introduced to
RAPT [153] and TORBOL [172] to accommodate sensors, but they are not very natu-
ral. The problem of incorporation of sensors into object level systems is as yet an open
research problem.

From what has been said, it is very difficult to judge which system is the best. Each
has its advantages and drawbacks. Object level robot programming languages will have
to undergo further development to be used on the factory floor. A language treating
objects as distinct entities with attributes, where one of them would be a variable (flex-
ible) shape, and enabling dual definition of relations (i.e. utilizing frames as well as the
shapes of objects), emerges as the target for the future research. Moreover, such a future
language must take into account the diversity of sensors that can be incorporated into
a robotic system and deal properly with aggregation and utilization of data from these
sensors. Last but not least, unexpected events occurring during normal execution of the
program have to be dealt with, i.e. error handling and error recovery procedures should
be easy to implement in such a language.
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3.3 Hybrid programming

The drawbacks of pure off-line and on-line programming methods caused an inten-
sive search for solutions of the afore-mentioned problems. One of the solutions consists
in enhancing teaching by a textual method of programming – hybrid programming. In
this case the control system is equipped with an interpreter of a language and only the
arguments of motion instructions are supplied by teaching. In many cases the program
can be created off-line and only these arguments are supplied on the factory floor. This
solution partially eliminates the problems of handling sensors and program calibration,
but still the robot is not productive during teaching. In this case program documentation
is obtained too.

VAL II [194] can be treated as a hybrid robot programming language, because besides
the possibility of supplying numeric arguments to the motion instructions (e.g. MOVE,
MOVES6), the location to which the arm is commanded can be taught-in. The arm is
transferred to the goal location by the teach-pendant. This location will be stored as an
argument of the motion instruction when it is typed in. Usually, not many of such loca-
tions have to be taught-in. The remaining locations that the robot arm must attain either
do not have to be stated very precisely or can be specified in relation to the exact ones
that have been taught-in.

Until the calibration problem has been solved satisfactorily, some form of “calibra-
tion by teaching” will have to exist, so the hybrid programming will be used rather than
the pure off-line method. Nevertheless, the off-line component of programming will be
dominating, especially due to the tendency of incorporating sensors into modern robotic
systems. Moreover, in the author’s opinion, for reasons explained in chapters 5 and 6,
rather robot specific libraries of procedures coded in universal computer programming
languages will be used than such specialised languages as AL, RAPT or TORBOL. In
the next section the influence of RPL instructions on the components of a robotic sys-
tem will be discussed. This discussion will point out the necessary components of an
RPL instruction set and will give some hints of its implementation.

4 Robot language instructions

The following discussion will show what influence the RPL instructions must exert
on the robotic system, for the system to be fully controllable by this instruction set. The
influence of RPL instructions on the system will be described in terms of system state
changes.

Substitution of (2.3) into (2.1) yields the following:

s = < e, r, < cp, cd , cv >> (4.1)

When the description (2.7) of instruction semantics is assumed, two cases arise. For
certain instructions the sequence of intermediate states is reduced to zero (only the ini-
tial and terminal states exist). Other instructions require that the number of intermediate

6 In this case the motion instruction is followed by an exclamation mark.
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states should be greater than zero. In the former case the instruction will be called a sin-
gle-step instruction and in the latter a multi-step instruction. CPL instructions are
considered to be single-step, unless they are compound instructions.

Regardless of whether an instruction is single– or multi-step, it is of utmost impor-
tance to know what the state si+1 of the system will be after it has executed a single step
from the current state si , where superscript i denotes the discrete state number.

In the following discussion the influence of a single instruction on the state of the
system will be considered. This influence will be described as a set of certain mappings.
It is assumed that cp will not be affected by the execution of any instruction, so cp =
const, hence cp will not be an argument of the mappings describing the semantics of an
instruction.

4.1 Influence of instruction execution on the state of the system components

Each and every RPL instruction influences cd , because the program counter changes
its state with the execution of an instruction. It designates both the next step and the
subsequent instruction that will be executed, so it has to be incremented with the execu-
tion of each step and instruction in the program. The next instruction to be executed can
be determined by the value of an expression computed out of all or any combination of
the terms: e, r, cd , cv. If attention is concentrated on the changes in the state of cd , then
the following cases are possible:

ci+1d =
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(4.2)

Functions fd j , j = 0, . . . , 7 are special cases of function fd8 . It is important to note that
from (4.2) two distinct cases result: fd0 , fd1 – where the next step or instruction to be
executed is determined only on the basis of the information contained in the program
designator and the executed instruction itself (i.e. program counter is incremented by
a constant value or a constant value is assigned to it); and all the other cases – where the
next instruction depends on the value of an expression formed by variable values, sensor
readings and the current state of effectors. In the latter case the value of the expression
can be used to control the execution of a loop, conditional branch or a delay. The above
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distinction divides the instruction set into two categories: unconditional instructions,
and conditional instructions.

If the state of variables (memory) changes due to the execution of an instruction, then
the following cases are possible:

ci+1v =



fv0 () = const − store constants

fv1 (c
i
v) − store value of variable expression

fv2 (r
i) − store aggregated receptor state

fv3 (e
i) − store processed effector state

fv4 (c
i
v, r

i) − store aggregated value of variable expression and receptor
state

fv5 (e
i , ri) − store processed effector and receptor state

fv6 (c
i
v, e

i) − store processed effector state and variable values

fv7 (c
i
v, r

i , ei) − store processed variable values, effector and receptor state
(4.3)

An instruction that is executed implies the choice and form of the functions fv j , j =
0, . . . , 7. Instructions are stored in the memory of the control part of the system. This
is the only influence that cd has on the future state of variables. That is why it is not
expressed explicitly as an argument of functions fv j , j = 0, . . . , 7.

In general, either the value of a certain expression is computed and stored (all possi-
ble forms of expressions are denoted by (4.3)) or no evaluation of expression takes place
and no modification of cv is executed by an instruction. In the former case the instruction
is called the storing instruction and in the latter – the non-storing instruction.

If the state of effectors changes due to the execution of an instruction, then the fol-
lowing cases are possible:

ei+1 =



fe0 () = const − absolute motion to a position defined by a constant

fe1 (c
i
v) − absolute motion to a position defined by a variable expression

fe2 (r
i) − absolute motion to a position defined by receptor readings

fe3 (c
i
v, r

i) − absolute motion to a position defined by variable and receptor
reading expression

fe4 (e
i) − incremental motion defined by a constant

fe5 (e
i , ri) − incremental motion defined by receptor readings

fe6 (e
i , civ) − incremental motion defined by a variable expression

fe7 (e
i , civ, r

i) − incremental motion defined by variable and receptor reading
expression

(4.4)
The instruction, and so cd , implies the choice and form of fe j , j = 0, . . . , 7.

Effectors are influenced by motion instructions. The following possibilities arise:
– either absolute motion (in the computation of the next effector position the cur-

rent position is disregarded – functions: fe j , j = 0, . . . , 3 are used) or incremental
motion (next position is computed on the basis of current position – functions:
fe j , j = 4, . . . , 7 are utilized) takes place. In the former case the instruction is called
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the absolute motion instruction, and in the latter case – the incremental motion
instruction;

– either receptors are used – sensory motions (functions: fe2 , fe3 , fe5 , fe7 are used) or
sensors are not used – sensorless motions (functions: fe0 , fe1 , fe4 , fe6 are utilized).
In the former case the instruction is called the sensory motion instruction, and in
the latter – the sensorless motion instruction.
Formulae (4.2), (4.3), (4.4) point out the factors that can influence the execution of

an instruction. They show by what factor each of the elements of the system state can
be modified. The only element of the system state that cannot be modified in this way is
the state of receptors r. The state of receptors can be influenced indirectly by changing
the state of effectors or by events external to the system (external agents). It should be
remembered that in subsection 2.3 instructions taking into account the changes in effec-
tor state due to the actions of external agents were treated as motion instructions, and
consequently so are now.

Formulae (4.2), (4.3), (4.4) show what can influence each component of the sys-
tem. The arguments of transfer functions fd j , j = 0, . . . , 8; fv j , j = 1, . . . , 7 and
fe j , j = 1, . . . , 7 are at the same time the parameters of instructions. Notation (4.2),
(4.3), (4.4) takes into consideration all possibilities of instruction semantics, disregard-
ing the syntactical form of the instruction.

An instruction can simultaneously belong to several classes. An instruction is:
– either conditional or unconditional,
– either storing or non-storing,
– either motion or non-motion – in the former case the instruction is:

- either absolute motion or incremental motion,
- either sensory motion or sensorless motion.

The definition of an RPL should be such that all the above instruction classes should
be included. In the discussion of RPL instruction semantics, besides knowing what can
possibly influence each component of the system, it is also important to know at which
instant in the execution of the instruction this influence is exerted.

4.2 Utilization of sensors

The job of a robot system is to execute a task supplied to it in the form of a program.
Motion instructions in a program cause changes of the state of effectors e. If notation
(2.7) is assumed, then the execution of a motion instruction begins in an initial state,
ends in a terminal state, and traverses a sequence of intermediate states. The major-
ity of robots are controlled by digital computers, so the execution of each instruction
is subdivided into steps. Each step results in the change of the system state from one
intermediate state to the next.

In each intermediate state (or while attaining it) the state of the system can be mea-
sured – monitored by sensors. The current state of the system can only be monitored,
but the future intermediate states can be influenced – controlled. The initial state can
be treated as a current intermediate state at the beginning of motion instruction exe-
cution. The terminal state is the current intermediate state in which the execution of
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the instruction terminates. As the initial and terminal states are special cases of cur-
rent intermediate states, both of them can only be monitored. These ideas are illustrated
symbolically by Fig. 4.1.
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Figure 4.1. Evolution of the system state during execution of a motion instruction

The monitoring of the system state is performed by receptors. The raw data obtained
from them cannot usually be utilized directly to monitor or control the system. It has
to be transformed into a useful form by data aggregation and the result is stored in
variables. In consequence a virtual sensor reading v is obtained (2.2).

Let the initial state of an execution of a multi-step instruction be labelled i0 and the
consecutive intermediate states i = i0 + 1, . . . , im, where im is the label of the terminal
state. If the system has executed i steps, and is currently in intermediate state si , the next
intermediate state of effectors ei+1 is computed by means of any of the effector transfer
functions fe j , j = 0, . . . , 7 from (4.4).

Three distinct purposes of monitoring can be named:
– initial condition monitoring,
– terminal condition monitoring,
– error condition monitoring.

The monitoring of the initial condition starts in the initial state and causes the sys-
tem to execute a certain number of steps waiting for the initial condition to be satisfied.
If the initial condition is satisfied upon initiation of the execution of the instruction, the
number of steps done in this phase of the instruction execution is zero. Once the ini-
tial condition is satisfied, usually throughout the remaining steps both the error and the
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terminal condition are monitored, until one of them is satisfied. Satisfying either the ter-
minal or the error condition brings the execution of a motion instruction to the terminal
state (Fig. 4.2). Here again, the number of executed steps depends on the moment when
one of these conditions will be satisfied.
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Figure 4.2. Monitoring the execution of a motion instruction

The future intermediate states can be controlled, that is either modified in relation to
the planned states or generated. In both cases virtual sensor readings are utilized.

The variables are divided according to the role they play in the control of the system:
v – the state of variables containing the virtual sensor reading,
cvv – the state of remaining variables.

civ = < vi , civv > (4.5)

It follows from (4.3) that the state of variables after the execution of the i-th step is:

civv =



f ′v0 () = const
f ′v1 (c

i−1
v )

f ′v2 (r
i−1)

f ′v3 (e
i−1)

f ′v4 (c
i−1
v , ri−1)

f ′v5 (e
i−1, ri−1)

f ′v6 (c
i−1
v , ei−1)

f ′v7 (c
i−1
v , ri−1, ei−1)

(4.6)
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From (4.3) it is obvious that only fv j , j = 2, 4, 5, 7 can be used as real sensor
aggregating functions. The virtual sensor reading is then:

vi =



f ′′v2 (r
i−1)

f ′′v4 (c
i−1
v , ri−1)

f ′′v5 (e
i−1, ri−1)

f ′′v7 (c
i−1
v , ri−1, ei−1)

(4.7)

in which f ′′v j , j = 2, 4, 5, 7 is a more precise statement of (2.2).
In the case of initial condition monitoring the system executes consecutive steps

waiting for the initial condition to be satisfied, so that the motion can proceed. The most
general form of initial condition monitoring is obtained by taking into account (4.4):

ei+1 =
{

ei = ei0 when vi �∈ VI

fej (•), j = 0, 1, 4, 6 when vi ∈ VI for i = i0, . . . , ik (4.8)

where:
ik is the number of the first step in which vik ∈ VI ,
VI ⊂ V is the sub-space of virtual sensor readings satisfying the initial condition,
• stands for adequate arguments in functions fe j (•), j = 0, 1, 4, 6.
Terminal condition monitoring consists in detecting a virtual sensor reading that

satisfies the terminal condition. Again from (4.4) the most general form follows:{
ei+1 = fej (•), j = 0, 1, 4, 6 when vi �∈ VT

ei = eim ∈ ET when vi ∈ VT for i = i0, . . . , im (4.9)

where:
VT ⊂ V is the sub-space of virtual sensor readings satisfying the terminal condition,
ET ⊂ E is the effector state sub-space in which the terminal condition is satisfied, and
• stands for adequate arguments in functions fe j (•), j = 0, 1, 4, 6.
Error condition monitoring consists in detecting a virtual sensor reading that sat-

isfies the error condition:{
ei+1 = fe j (•), j = 0, 1, 4, 6 when vi �∈ VE

ei = eim ∈ EE when vi ∈ VE for i = i0, . . . , im, im ≤ im∗ (4.10)

where:
VE ⊂ V is the sub-space of virtual sensor readings satisfying the error condition,
EE ⊂ E is the effector state sub-space in which the error condition is satisfied,
• stands for adequate arguments in functions fe j (•), j = 0, 1, 4, 6.

It should be noted that in this case the instruction terminates its execution either when
the error condition is satisfied or when a fixed number of steps (im∗ − i0) is executed.
Sometimes, instead of VE , its complement VE is used (VE⋃VE = V, VE⋂VE = ∅). ei+1 = fe j (•), j = 0, 1, 4, 6 when vi ∈ VE

ei = eim ∈ EE when vi �∈ VE
for i = i0, . . . , im, im ≤ im∗ (4.11)

It is sometimes easier to detect non-error conditions than to detect errors. When
the virtual sensor reading is within bounds, the instruction execution proceeds.
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Both error and terminal condition can be monitored simultaneously. In this case (4.9)
and (4.10) have to be superimposed:{

ei+1 = fe j (•), j = 0, 1, 4, 6 when vi �∈ VT ∧ vi �∈ VE

ei = eim ∈ ET ∪ EE when vi ∈ VT ∨ vi ∈ VE for i = i0, . . . , im (4.12)

The control of future intermediate states, in the general case, can be expressed as:{
ei+1 = fe7 (e

i , civ, r
i) when vi �∈ VE ∧ vi �∈ VT

ei = eim ∈ EE ∪ ET when vi ∈ VE ∨ vi ∈ VT for i = i0, . . . , im (4.13)

The control is usually combined with monitoring either error or terminal condition
or both. Otherwise, a fixed number of steps has to be executed (im = const, im does not
depend on vi).

If (4.8), (4.9), (4.10), and (4.13) are combined, the execution of the most general
motion instruction assumes the following form (Fig. 4.2):


ei+1 = ei = ei0 when vi �∈ VI , then i = i0, . . . , ik
ei+1 = fe7 (e

i , civ, r
i) when vi �∈ VE∧ vi �∈ VT , then i = ik , . . . , im

ei = eim ∈ ET when vi ∈ VT , then i = im
ei = eim ∈ EE when vi ∈ VE , then i = im

(4.14)

The following subsection will utilise the above formalism to describe the semantics
of some motion instructions taken from several well-known RPLs.

4.3 Examples of RPL motion instructions

The most general RPL instruction semantics assumes the following form:



ci+1d = fd8 (c
i
d , c

i
v, r

i , ei)

ci+1vv = f ′v7 (c
i
v, r

i , ei)

vi+1 = f ′′v4 (c
i
v, r

i) until vi �∈ VI , then i = i0, . . . , ik
vi+1 = f ′′v7 (c

i
v, r

i , ei) after vi �∈ VI , then i = ik , . . . , im
ei+1 = ei = ei0 when vi �∈ VI , then i = i0, . . . , ik
ei+1 = fe7 (e

i , civ, r
i) when vi �∈ VE∧ vi �∈ VT , then i = ik , . . . , im

ei = eim ∈ ET when vi ∈ VT , then i = im
ei = eim ∈ EE when vi ∈ VE , then i = im

(4.15)

This is a multi-step instruction. The program that is to be executed consists of a se-
quence of instructions, and so cp implies the form of: fd8 , fe7 , f

′
v7 , f

′′
v4 , f

′′
v7 .

The semantics of instruction (4.15) are as follows. Initially the system waits for the
initial condition to be satisfied. The structure of this condition depends on the form of
f ′′v4 . Whilst waiting for an initial condition to be satisfied the state of effectors does not
change (ei+1 = ei = e0), hence f ′′v4 is used and not f ′′v7 . During the waiting period, as well
as during the execution of later steps, certain measurements can be processed and stored.
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This depends on the form of f ′v7 . Once the initial condition is fulfilled, the monitoring
of the terminal and error condition commences. As the future effector state depends on
sensor readings ( fe7 ), the effector trajectory is either generated or modified in relation
to the stored value cvv. The next step to be executed is designated by fd8 . Once the in-
struction terminal or error state is detected, fd8 determines the the next instruction to be
executed.

The generic form of functions fd j , j = 0, . . . , 8 from (4.2) can be constrained to the
following:

fd j :
{

increments or modifies the step counter for i0 ≤ i < im
designates the next program instruction for i = im

(4.16)

where i0, im are the labels of the initial and terminal states respectively.
Although a single instruction with such complex semantics would suffice to build

robot programs, its syntax would be very intricate. Usually, RPLs introduce several in-
structions with much less complex semantics. The semantics of several instructions from
different existing RPLs will be defined using the introduced notation.

The VAL II MOVES <location> command, described earlier in subsubsection 17,
is a multi-step, unconditional, non-storing, sensorless absolute motion instruction. This
instruction causes the tool to assume the location (position and orientation) specified by
its argument. The intermediate locations are computed by straight line interpolation be-
tween the initial and terminal location. Location of the tool is specified by the X , Y , Z
Cartesian co-ordinates and O, A, T angles1. The maximum speed of motion depends on
a certain global variable, set by the programmer with the SPEED <value> instruction.
The semantics of this instruction is as follows:

ci+1d = fd1 (c
i
d)

ci+1v = civ
ei+1 = fe1 (c

i
v) when riint �∈ R

E
int

ei = eim when riint ∈ R
E
int

for i = i0, . . . , im (4.17)

where rint is an internal receptor reading and RE
int is its error space. The VAL II sys-

tem monitors the arm position and certain other safety sensors. If the system detects
an error (e.g. violation of work space), the arm is stopped. These sensor readings are
inaccessible to the programmer directly, so they cannot be used for virtual sensor read-
ing evaluation. Although internal sensors, for safety reasons, are always used by motion
instructions, this fact does not change the attitude towards instructions of the MOVES
kind – they are sensorless instructions, because external sensors do not influence their
execution, when no fatal situation2 occurs. Function fd1 increments the step counter and
after executing the MOVES instruction designates the next program instruction for exe-
cution. Function fe1 causes the tool tip to move along the straight line in Cartesian space
and its smooth rotation. No arm configuration changes are allowed. Unfortunately, the
VAL II manual gives no hint of how should function fe1 be specified.

The VAL II WAIT <expression> command is a multi-step, conditional, non-stor-
ing, non-motion instruction. The execution of this instruction causes the system to wait

1 Mutation of Euler angles [194].
2 A situation in which program execution is aborted – the system halts.
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for the <expression> to become TRUE. The form of <expression> implicates both
vi and VI . It can contain information about several external signals (receptors), bit-wise
binary and Boolean operators, relational operators, constant values and variables. The
next step is designated using function fd3 or fd5 :



ci+1d = fd5 (c
i
d , c

i
v, r

i)
ci+1v = civ
ei+1 = ei = ei0 when vi �∈ VI

ei = eim = ei0 when vi ∈ VI

for i = i0, . . . , im (4.18)

Function fd5 (c
i
d , c

i
v, r

i) checks if vi = f ′′v4 (c
i
v, r

i) ∈ VI . If yes, then i = im and waiting
terminates, otherwise the next waiting step is executed. The state of the effectors does
not change during waiting.

The AL MOVE instruction, described earlier in subsubsection 3.2, has a complex
syntax, which can include motions with simultaneous application of forces, e.g.

MOVE < movable frame > TO < non-movable frame >

WITH FORCE = < value > < unit >
ALONG < versor > OF < co-ordinate frame >

This is a multi-step, conditional, non-storing, sensor, incremental motion instruc-
tion:



ci+1d = fd7 (c
i
d , r

i , ei)

ci+1vv = civv
vi+1 = f ′′v7 (c

i
v, r

i , ei) for i = i0, . . . , im
ei+1 = fe7 (e

i , civ, r
i) when vi �∈ VE∧ vi �∈ VT

ei = eim ∈ ET when vi ∈ VT

ei = eim ∈ EE when vi ∈ VE (4.19)

The next step is designated according to fd7 (c
i
d , r

i , ei). The termination of the execu-
tion of this instruction depends on the tool (effector – < movable frame >) reaching
the vicinity of the < non-movable frame > or detection of errors. The variables do
not change their state. Effector state is computed using fe7 (e

i , civ, r
i), which takes into

account the specified force that has to be exerted. The AL manual does not enable the
exact specification of this function.

The TORBOL DO ( relation Object1 Object2 ) instruction, described earlier in
subsubsection 19, is a multi-step, conditional, storing, sensorless absolute motion in-
struction. Object1 and Object2 are treated as effectors. Figure 3.2 shows the flow
diagram of the execution of this instruction, and its formal specification can be found
in [164, 170, 174]. As this specification is very complex and tedious, only its general
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outline will be mentioned here:

ci+1d = fd6 (c
i
d , c

i
v, e

i)

ci+1vv = f ′v1 (c
i
v) for i = i0, . . . , im

ei+1 = fe1 (c
i
v) when vi �∈ VE∧ vi �∈ VT

ei = eim when rint ∈ RE (4.20)

where, as in the case of (4.17), rint is an internal receptor reading and RE
int is its er-

ror space. For the same reasons the DO instruction is treated as a sensorless motion
instruction. This instruction designates the next step on the basis of information con-
tained in the database storing the state of the environment civ and the state of the effectors
ei – namely the gripper – fd6 (c

i
d , c

i
v, e

i). The execution of this instruction brings about
a change in the contents of the database, so cvv is modified, hence it is a storing in-
struction – fv6 (c

i
v). Finally, no sensors (besides internal sensors) are employed and each

motion step is computed in absolute co-ordinates, so fe1 (c
i
v) is used.

The exact form of functions fe j , j = 0, . . . , 7 depends on how the effector state is
expressed and on the employed space and method of interpolation. Usually, cubic or
quintic splines or a linear function with parabolic blends is used as a reference trajectory
[24].

The introduced formalism takes into account all of the system components (i.e. effec-
tors, receptors and the control subsystem), and states the instruction semantics without
predetermining any particular implementation technique. Nevertheless, each of the func-
tions fe(•), fv(•), fd(•) specifies a certain portion of the code (usually a procedure
or function) that together implement the instruction. If these functions are incorporated
into flow-diagrams, which show what the sequence of the execution of these portions is,
the implementation of the instruction is simple and less prone to errors. This technique
has been used by the author in the implementation of: ROPAS, ROOPL, TORBOL
and RORC. It is especially well suited to the implementation of robot specific libraries
of procedures and run-time systems of specialised robot languages.

5 Implementation of robot programming languages

5.1 Methods of implementing robot programming languages

There are three methods of implementing RPLs:
– as a specialised language,
– as an enhancement of an existing CPL,
– as a robot specific library of procedures coded in a universal CPL.

Implementation of a specialised language is a very laborious task. First the defini-
tion of the language (syntax, semantics) has to be elaborated. Usually, it turns out that
such a language has to possess all the properties of a CPL plus robot specific instruc-
tions and data types, which renders it very complex, both to master and even more so to
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implement. VAL II [194, 12], WAVE [109], RAPT [2, 176], AL [100, 176], TORBOL
[162, 168, 173, 176], SRL [12] and many other RPLs were implemented in this way.

As an RPL has to have nearly all the constructs attributed to a CPL, it seems that the
second of the listed ways of implementation would be more appropriate. Unfortunately,
very seldom can the definition of a CPL be enhanced – mainly because the code of the
compiler is available only in an executable (non-modifiable) form (the source code is
a trade secret), and so this way is usually closed to robotics researchers.

The last method is the cheapest, both in terms of funds necessary for the develop-
ment of an RPL and the time spent on this development. Only robot specific procedures
have to be coded, while all the mechanisms of a CPL are still available to a programmer.
Moreover, no modification to the compiler or interpreter of the language is necessary.
The only drawback is that robot specific instructions are a bit more cryptic (procedures
with adequate parameters have to be used instead of explicit robot instructions with ap-
propriate arguments). If library creation is chosen as the means of implementing an
RPL, a CPL that will be the foundation, and the programming methodology, still re-
main to be selected. For instance PASRO [11, 12], POLROB [73], ROPAS [183] and
ROOPL [177, 180] are submerged in Pascal [190], and C [69, 192] is the basis for
RCCL [53] and ARCL [23] and the language of the Research-Oriented Robot Controller
RORC [175, 181].

Sections 5.2 and 5.3 describe two manipulator level robot programming languages
implemented by the author as libraries of procedures coded in Pascal (ROPAS) and in
object-oriented extension of Pascal (ROOPL). They were not described in section 3,
because the definitions of these languages are inseparable from their implementation
platforms. The definition of their instructions is the code (in Pascal) of the procedures
implementing these instructions. In the case of specialised languages the definition of
instructions can be readily separated from their implementation, so this section will only
describe the implementation aspects of TORBOL, which is a specialised language.

5.2 ROPAS

ROPAS (RObot PAScal) is a library of robot specific data types and procedures
coded in Pascal [190], that can be used in programs generating, modifying, and execut-
ing robot arm trajectories. The library does not have a closed form, so new procedures
can be readily added.

Unlike PASRO [11], which is also a library of Pascal procedures for controlling
robots, ROPAS defines two assembly specific data types:
– homogeneous transform matrix (pointed to by MatrixPtr) which can represent a co-

-ordinate frame in relation to some other reference frame, a transformation between
co-ordinate frames, or a translation and rotation operator. As both translation and
rotation are specific cases of a homogeneous transformation, no other geometric data
types are necessary,

– path point (pointed to by PathPointPtr) being an element of a two-way linked list of
frames. Path points are used to describe paths in space relative to a certain reference
co-ordinate frame. Each path point carries information about the X , Y , Z Cartesian
co-ordinates, as well as the orientation of the frame traversing the path. Moreover,
pointers to the previous and next path point are supplied.
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Figure 5.1. Initial condition monitoring

PASRO introduces more geometric data types (vector, rotation and frame), and so
a large portion of its procedures deals with mathematical manipulation of these data
types (makevector, vabs, vadd, vsub, vmul, vdiv, vrot, vdot, vcross, makerotation,
rotrot, rotaxis, rotangle, makeframe, setframe, frametransl, framerot, transframe,
framerel, frameinv). The sensor data processing and utilization has not been a pri-
ority of the PASRO authors. PASRO has several very simple procedures supporting
communication via an interface to external devices or sensors:
sigon ( ad: integer ) – sets a port at address ad,
sigoff ( ad: integer ) – resets a port at address ad,
sigin ( var bout: Boolean; ad: integer) – reads in the value in the port at address ad;

if high, bout is assigned true, else it is assigned false,
anout ( v, ad: integer) – transmits the value of v to a D/A converter via the port at

address ad,
anin ( var v: integer; ad:integer) – stores the data from an A/D converter at port ad

in variable v.
In the case of ROPAS both sensor data aggregation and utilization procedures form the
bulk of the library.

ROPAS has three distinct elementary motion instructions, each implemented as
a Pascal procedure. The first causes the robot to wait for the initial condition to be
satisfied (Fig. 5.1). Its semantics is given by (4.8).
procedure Wait ( InitialCondition: ConditionTemplate;

Trajectory: PathPointPtr );
where ConditionTemplate is a procedural type defining a template which decides
whether the initial condition is satisfied (vi ∈ VI ). It takes into account the desig-
nated virtual sensors. Once the initial condition is satisfied, the sequence of planned
next effector states e∗∗ (Trajectory) is computed (where e∗ is a single planned effector
state).

The second motion instruction monitors the error and terminal conditions (Fig. 5.2).
Its semantics is given by (4.12).
procedure MoveMonitoring ( Tool: MatrixPtr;
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Figure 5.2. Error and terminal condition monitoring

Trajectory: PathPointPtr;
TerminalCondition: ConditionTemplate;
ErrorCondition: ConditionTemplate );

where Tool is the pointer to the co-ordinate frame affixed to the end-effector in relation
to the manipulator flange, and Trajectory is the pointer to the list of frames that de-
fine the planned end-effector state (i.e. trajectory – e∗∗). The remaining parameters are
as before. This procedure causes the tool to traverse the specified trajectory. During the
motion sensors gather information from the environment, so that the terminal and error
conditions can be evaluated. Motion terminates if either of these conditions is satisfied
or all of the trajectory is traversed.

If MoveMonitoring and Wait instructions are executed in a sequence, a compound
instruction monitoring initial, error and terminal condition results.

The third instruction simultaneously monitors terminal end error conditions and con-
trols the future intermediate state (Fig. 5.3). Very rarely is control of future states
exercised without monitoring these conditions, so it was decided that future state con-
trol instruction will not be introduced in its pure form (i.e. without monitoring). Its
semantics is defined by (4.13).
procedure Move ( Tool: MatrixPtr;

Trajectory: PathPointPtr;
TerminalCondition: ConditionTemplate;
ErrorCondition: ConditionTemplate;
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Figure 5.3. The monitoring of current states and control of future states

where TransferTemplate is a procedural type defining the transfer function computing
the next state of the end-effector on the basis of Trajectory (i.e. e∗∗) and the designated
virtual sensors v. The remaining parameters are as above. In this case in each interme-
diate path point the terminal and error conditions are evaluated and the new path point
is computed using the transfer function. The transfer function can generate a path point
based only on the knowledge of the current state of the effectors and sensor readings or
it can take into account an off-line created trajectory (i.e. e∗∗) – modifying it using sensor
data.

The introduction of procedural parameters reduces significantly the number of types
of motion instructions that are defined in a robot programming language. For instance, in
PASRO different types of interpolation between the current robot position and the goal
position need separate instructions. In ROPAS the same instruction (Move) is invoked
with different TransferFunction as its parameter, significantly increasing the readability
of the resulting code.

If the Wait is combined with the Move instruction in a sequence, the most general
compound motion instruction monitoring all three conditions and influencing (modifying
or generating) future effector states results.

The structure of the system executing ROPAS programs is shown in Fig. 5.4.
A ROPAS program is executed on an IBM-PC class host computer. It generates robot
motion commands that are being interpreted by a VAL II [194] program running on
a robot control system computer. Both computers are connected by an RS–232 serial in-
terface. The VAL II control system causes the motion of a PUMA–560 robot arm. The
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Figure 5.4. Structure of the system executing ROPAS and ROOPL programs

sensors can be directly connected either to the host computer or to the control computer.
In the latter case, data obtained from sensors are transmitted through the RS–232 in-
terface to the host computer for processing. The RS–232 is also used for transmitting
to the host computer the information about the current state of the arm (e.g. about mo-
tion termination or the arm location). ROPAS programs can also control cooperating
devices connected either to the host computer directly or indirectly through the control
computer.

The method of processing and executing ROPAS programs is presented in Fig. 5.5.
The source program is written using any text editor. Next the source program is com-
piled by a Pascal compiler. The resulting object code files and the ROPAS library
module are linked, and so the executable code is obtained. This code is run on the host
computer. Simultaneously, a program called a command interpreter, written in VAL II,
is run on the control computer. After an automatic synchronization phase through the
RS–232 interface, the robot task initially coded in ROPAS is executed. The command
interpreter constantly waits for motion commands and status sensor requests from the
host computer. In response to these commands it initiates the execution of motions and
sends back the requested dat a and information about motion termination.
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Figure 5.5. Method of processing a ROPAS or ROOPL program

In ROPAS, out of several possible sets of motion instructions, the one containing
only three instructions was chosen. Nevertheless, the three instructions cover all the pos-
sible uses of sensors for motion monitoring and control. As it was shown, the set can
be reduced to only one instruction, but then very complex semantics result. It was also
shown that at the other extreme the set could have many more instructions but then they
would be much more elementary. In either case the readability of resulting programs
would decrease. So a compromise solution was taken.

All functions (i.e. f ′′v – aggregating functions, fe – transfer functions) and all condi-
tions were coded as separate procedures and are invoked by the Wait, MoveMonitoring
and Move instructions as procedural variables further increasing the readability of the
ROPAS code.

Due to the low transmission rate of the RS–232 interface, the consecutive end-effec-
tor states (positions) that were generated or modified in relation to the Trajectory list
could not be too near each other. Otherwise, either very slow motions had to be executed
or a jerky motion resulted. This drawback could be eliminated either by using a much
faster and parallel interface or by introducing interpolation in each motion step, and re-
ducing the number of trajectory sensory updates. In the case of the current system the
second approach was followed. The end-effector state was up-dated by taking into ac-
count sensor readings only at the positions generated by the transfer function (those were
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quite far apart) and between those positions either joint space or Cartesian-Euler inter-
polation was used. Obviously, this is one remedy to the problem, but the real solution
is obtained by utilizing a fast parallel interface.

It should be noted that some robot programming systems restrict the full utilization
of sensors by:

– reading sensors only between motion instructions – in effect enabling only global
decision making, and so making on-line trajectory modification and monitoring im-
possible,

– implementing only condition monitoring – in effect making the influence over future
intermediate states impossible.

Even if a language has full sensor utilization potential, programmers tend to confine
themselves to monitoring only. In the case of complex tasks (e.g. assembly tasks) error
condition monitoring followed by error recovery techniques are frequently used. If such
a passive method of programming is followed, the system is allowed to make an error,
the error is detected, and finally a recovery procedure is tried. This results in consid-
erable loss of time. Because of that, error recovery is sometimes given up altogether,
and the problem is solved by discarding the material – especially if the material causing
the problem is much cheaper than the time lost on recovering from the error. It is much
better to employ an active method of programming in which errors are avoided by cor-
recting them prior to the system condition deteriorating to an error condition (i.e. future
intermediate state control).

5.3 ROOPL

5.3.1 Object-oriented and structured approach to programming

Object-oriented programming (OOP) methodology evolved from structured program-
ming. Structured programming is a method of describing a programming task in
a hierarchy of modules, each describing the task in increasing detail, until the final stage
of coding is reached (programming by stepwise refinement). Strict adherence to modules
renders GOTO instructions unnecessary, in effect exhibiting a clear program structure.
Nevertheless, initially structured programming treated data and algorithms operating on
this data as two separate entities. The object-oriented programming paradigm integrates
the two. An object is a collection of data (variables of appropriate type, which should
be treated as fields of a record) and procedures and functions, which are called meth-
ods, operating on these variables. Three main properties characterise an object-oriented
programming language:

Encapsulation — treating data and code operating on it as one entity – an object.
Inheritance — defining a hierarchy of objects in which each descendant object acquires

all the properties of the ancestor objects (access to data and code of the ancestors)
and receives some new properties specific to the newly created object.

Polymorphism — using the same name for an action that is carried out on different ob-
jects related by inheritance. The action is semantically similar, but it is implemented
in a manner appropriate to each of the individual objects of the hierarchy.
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Some of the CPLs were created as OOP languages (e.g. Loglan [8]), others which
had been originally used only as structured programming tools were enhanced by adding
OOP mechanisms (e.g. Pascal [190], C++ [192]).

OOP methodology assumes that certain abstract objects will be defined by the pro-
grammer. These objects have their properties (data) and exhibit behaviours (methods).
The program is written in terms of objects behaving in such a way so as to change their
properties, i.e. applying methods to change data. To make this clearer, an example fol-
lows. Let a screw be the object. One of its many characteristics is its location in space
(data). The screw can move in space (movement is its behaviour). The programmer
commands the screw to change its position, and so applies its position changing method
to its data. As the result of applying this method, the screw will be transported to some
other location.

At this point the misunderstanding which can arise from the traditional use of the
term ‘object’ in ‘object level robot programming languages’ and in ‘object-oriented pro-
gramming languages’ (this time CPLs) has to be clarified. In the case of RPLs the notion
of an ‘object’ pertains to the real objects that are located in the robot’s environment or to
abstract models of these objects represented in an RPL. In the case of the CPLs the term
‘object’ represents an abstract notion, which encapsulates data and code, and possesses
the properties of inheritance and polymorphism.

This monograph describes the application of OOP methodology to the creation of
a manipulator level RPL (object library to be strict). For this purpose a version of Pascal
language possessing OOP enhancements [190] was used.

5.3.2 General information about the ROOPL library

To use ROOPL, a Pascal program invoking library objects and their methods has
to be written. At its beginning it should contain the following clause: uses roopl;

A homogeneous transform matrix type representing a dextrorotatory set of orthog-
onal unit axes (co-ordinate frame) – matrix, and a pointer type – MatrixPtr to such
a frame, are defined as supplementary data types. Since a homogeneous transform ma-
trix can also represent transformations (translation and rotation), no other robot specific
data type needs to be introduced.

Two types of objects are defined by the ROOPL library: frame and segment. The
first represents a homogeneous transform representation of a co-ordinate frame. The
later is a descendant type of the former and describes the approach path segment to
the ancestor frame. The objects are defined in the following way:

frame = object
location: MatrixPtr;
constructor Create(x,y,z,fi,theta,psi: real); { Create the frame using Cartesian-Euler

description }
destructor Destroy; virtual; { Release memory }
procedure Copy(F: frame); { Copy F.location into self.location }
procedure Invert; { Invert self.location }
procedure LeftMultiply(F: frame); { left multiply self.location by F.location }
procedure RightMultiply(F: frame); { right multiply self.location by F.location }
function Equal(F: frame): boolean; { Compare self.location and F.location }
procedure WriteLocation; { Write out self.location }
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end; { frame }

segment = object (frame)
motion: MotionType; { type of motion to be executed along the segment

}
Sensor LSB: byte; { VAL input number that is to be treated as a LSB }
Sensor reading: integer; { value obtained from the sensor }
Error: byte; { error code (e.g. errors may occur during

transmission) }

constructor Create(x,y,z,fi,theta,psi: real; SegMotion: MotionType;
SensLSB: byte);

{ Create segment using the listed arguments }
destructor Destroy; virtual; { Release memory }
function SensorData: byte; { Read sensor data byte }
function ErrorOccurred: Boolean; { Get error }
procedure WriteError; { Write out error }
function SegmentType: MotionType; { Get segment type }
procedure Copy(S: segment); { Copy S into self }
procedure InitRobot(A6T: frame); { Initialize the robot }
procedure QuitRobot(A6T: frame); { Deactivate the robot }
function GetSensorData: byte; { Get sensor reading }
function SensorNumber: byte; { Get sensor number }
procedure SetSensorNumber(sn: byte); { Set sensor LSB number }
procedure SetSegmentType(m: MotionType);

{ Set segment type }
procedure SetLocation(x,y,z,fi,theta,psi: real);

{ Set location field to Cartesian-Euler representation }
procedure Homogeneous to Euler(var x,y,z,fi,theta,psi: real);

{ Transform homogeneous to Cartesian-Euler representation }
procedure AttractPumaTool(A6T: frame);

{ Move robot; A6T – Flange to Tool transform }
end; { segment }

The methods defined in the frame object (Copy, Invert, LeftMultiply, RightMulti-
ply, Equal) perform the obvious homogeneous matrix operations. The first argument
of the operations is the location field of the object and the second (where present) is
defined by the method’s actual parameter.

There is only one, but general, method of moving the robot. The AttractPumaTool
method applied to a segment object causes the robot to move towards (be attracted by)
the co-ordinate frame, being one of the fields of the object. The type of motion depends
on the contents of the motion field. Eight different kinds of motions can be performed
– defined by enumerated type MotionType.
PTP JointInterpolated NoSensors causes joint interpolated motion without using sen-
sors; confirmation is sent when the motion terminates

CP JointInterpolated NoSensors causes joint interpolated motion without using sen-
sors; confirmation is sent when the motion is initiated
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PTP JointInterpolated WithSensors causes joint interpolated motion with sensor
feedback; confirmation is sent when the motion terminates

CP JointInterpolated WithSensors causes joint interpolated motion with sensor feed-
back; confirmation is sent when the motion is initiated

PTP Cartesian NoSensors causes Cartesian interpolated motion without using sen-
sors; confirmation is sent when the motion terminates

CP Cartesian NoSensors causes Cartesian interpolated motion without using sensors;
confirmation is sent when the motion is initiated

PTP Cartesian WithSensors causes Cartesian interpolated motion with sensor feed-
back; confirmation is sent when the motion terminates

CP Cartesian WithSensors causes Cartesian interpolated motion with sensor feed-
back; confirmation is sent when the motion is initiated

In the case of PTP (point to point) motion, its termination is signalled, while in the case
of CP (continuous path) motion its initiation is signalled by the VAL II command inter-
preter. A straight line either in the joint angle co-ordinates or in Cartesian-Euler space
can be used while approaching the goal frame. If sensors are used during the motion,
the confirmation byte carries the information about the obtained sensor reading. Oth-
erwise, an asterisk is sent as confirmation token. Sensor reading is obtained from the
eight consecutive VAL inputs, starting at Sensor LSB (inclusive).

Any method that can finish its execution without performing its task causes the Er-
ror field of a segment to change its value to non-zero. This field should be checked
whenever executing an action that can result in an error (e.g. transmission error).

Other methods defined in segment manipulate the data fields of this object (e.g.
read them). It is easier for the programmer to describe frames as three Cartesian co-
-ordinates of the origin and three Euler angles of orientation, so adequate methods for
transforming the internal format into this representation and vice versa are supplied (Ho-
mogeneous to Euler, SetLocation).

As can be seen from the above definitions, nearly all the actions are performed by
executing appropriate methods on the two supplied object types (frame and segment).
Only gripper closing and opening is done by procedures:
procedure Grasp ( var Err: byte );
procedure Release ( var Err: byte );

The robot program consists of sequences of methods executing actions on objects.
Besides these the programmer is free to use any Pascal statements.

5.3.3 Example

A fragment of a program executing a path that is generated on-line will be presented
as an illustration of a program coded in ROOPL. In the case of sensor guided motions
each new location depends on the value obtained through a set of binary sensors con-
nected to the VAL system. Eight kinds of motion can be used by selecting one from
each of the three following pairs: (PTP, CP), (joint interpolated, Cartesian interpolated),
(with sensors, without sensors). The object Seg is the definition of the current path
segment. It is modified for each subsequent motion step. As a result of this program
the operator can lead the robot by exerting forces on the sensor to a goal location that
has non-decreasing co-ordinates in relation to the current location (this assumption was
made to keep the example brief). The sensor can be mounted near the tool tip or be
placed in any other area.
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{ Execute 15 motion steps }
for i := 1 to 15 do

begin

{ Create the next location taking into account the sensor data }
case Seg.SensorData of
{ Sensor supplies a number: 0 – 7 }

0: begin { do nothing } end;
1: begin x := x + xstep; end;
2: begin y := y + ystep; end;
3: begin x := x + xstep; y := y + ystep; end;
4: begin z := z + zstep; end;
5: begin x := x + xstep; z := z + zstep; end;
6: begin y := y + ystep; z := z + zstep; end;
7: begin x := x + xstep; y := y + ystep; z := z + zstep; end;

end { case Seg.SensorData }
Seg.SetLocation ( x, y, z, PI/2, PI/2, 0 );

{ Execute the current step }
Seg.AttractPumaTool ( A6T );

{ Check if an error occurred }
if Seg.ErrorOccurred

then
begin

Seg.WriteError;
Seg.Destroy;
halt;

end;

end; { for }

5.3.4 Implementation

ROOPL (Robot Object-Oriented Pascal Library) is a library of objects and methods,
coded in an OOP version of Pascal [190], that can be used in programs generating,
modifying and executing robot arm trajectories.

The structure of the system executing ROOPL programs is shown in Fig. 5.4.
A ROOPL program is executed on an IBM-PC class host computer. It generates robot
motion commands that are being interpreted by a VAL II [194] program running on
a robot control system computer. Both computers are connected by an RS-232 serial in-
terface. The VAL II control system causes the motion of a PUMA-560 robot arm. The
sensors can either be directly connected to the host computer or to the control computer.
In the latter case, data obtained from sensors is transmitted through the RS-232 inter-
face to the host computer for processing. The RS-232 is also used for transmitting to
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the host computer the information about the current state of the arm (e.g. about mo-
tion termination or the arm location). ROOPL programs can also control cooperating
devices connected either to the host computer directly or indirectly through the control
computer.

The method of processing and executing ROOPL programs is presented in Fig. 5.5.
The source program is written using any text editor. Next the source program is com-
piled by a Pascal compiler. The resulting object code files and the ROOPL library
module are linked, and so the executable code is obtained. This code is run on the host
computer. Simultaneously, a program called command interpreter, which has been writ-
ten in VAL II, is run on the control computer. After an automatic synchronisation phase
through the RS-232 interface, the robot task initially coded in ROOPL is executed. The
command interpreter constantly waits for motion commands and sensor status requests
from the host computer. In response to these commands it initiates the execution of
motions and sends back the requested dat a and information about motion termination.

5.4 Implementation of TORBOL

TORBOL programs are subjected to a two-phase compilation process (Fig. 5.6). Dur-
ing the first phase TORBOL programs are compiled into Pascal programs. As a result,

TORBOL source program

TORBOL compiler
❄

❄
PASCAL program

PASCAL compiler/linker
❄

❄
Executable code

❄
Master computer

Execution Simulation

Robot controller
❄

❄
ROBOT

Drawing of the robot
❄

Library procedures

✲

Figure 5.6. Translation of TORBOL programs
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Figure 5.7. The WUT robot system executing TORBOL programs

Label Instr. code Argument Comment
↓ ↓ ↓ ↓
00 OUT 0 signal that the motion is not finished
10 MOVE X move the TCP to the location X
20 GRIP Y open or close the gripper
30 OUT 1 signal that the motion is finished
40 GOTO L jump to the label L
50 OUT 0 signal that the motion is not finished
60 MOVE X move the TCP to the location X
70 GRIP Y open or close the gripper
80 OUT 1 signal that the motion is finished
90 GOTO L jump to the label L

00 OUT 0 0 0 0 0 0
10 MOVE X1 X1 X3 X3 X5 X5

20 GRIP Y1 Y1 Y3 Y3 Y5 Y5

30 OUT 1 1 1 1 1 1
40 GOTO 40 50 40 50 40 50
50 OUT 0 0 0 0 0 0
60 MOVE X X2 X2 X4 X4 X6

70 GRIP Y Y2 Y2 Y4 Y4 Y6

80 OUT 1 1 1 1 1 1
90 GOTO 00 90 00 90 00 90

↑ ↑ ↑ ↑ ↑ ↑
first second third fourth fifth sixth

motion motion motion motion motion motion

Figure 5.8. Virtual program and the successive modifications of its arguments in the first six motions
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a Pascal program consisting of the definition of the virtual environment data-base, as-
signments of initial values to the attributes, and calls to the library procedures executing
TORBOL instructions, is obtained. During the second phase this program is compiled
by the Pascal compiler and linked with the above-mentioned library procedures. The
set of library procedures that are linked-in is different when the executable code graphi-
cally simulates the execution of the TORBOL program and when this program is to be
executed on the real robot system.

The robot system executing TORBOL programs consists of: an IRb–6 robot, its stan-
dard controller, a master computer (an IBM-PC/AT compatible) and a custom designed
interface between the computer and the controller (Fig. 5.7). The interface enables the
master computer to introduce the robot controller processor into a wait/hold state. When
the robot controller processor is in the wait state, the master computer gains access to the
internal memory of the robot controller. It can either read it or write into it. The pro-
gram running on the master computer (a compiled TORBOL program) exerts influence
on the motions of the robot by modifying the virtual program.

The virtual program is a template of a program that is being constantly executed by
the robot controller. The sequence and the instruction codes of the virtual program re-
main unaltered. The arguments of the instructions are altered with each robot motion
that is to be executed. During the modification of the arguments the processor, which
executes the virtual program, is not functioning (it is in the wait state). The modification
of each argument should be considered to be an indivisible operation and is undetectable
by the robot controller processor executing the virtual program. The successive modifi-
cations of the arguments in successive robot motions are shown in Fig. 5.8. The virtual
program consists of two sequences of instructions, each terminated by an instruction
jumping to itself. While one of the sequences is being executed, the arguments of the
other are being modified. When the motion is finished and all the arguments have been
modified, the label in the appropriate GOTO instruction is switched, and so the other
sequence begins its execution. In this way an infinite number of motions can be executed.

TORBOL was also implemented at Loughborough University of Technology, on the
same system that executed ROPAS and ROOPL programs (Fig. 5.4).

6 Research-Oriented Robot Controller: RORC

Currently, investigations of robot controllers concentrate on several problems. One of
the areas is the development of new methods of programming these controllers. Robot
manufacturers are enhancing teach-in methods by Robot Programming Language (RPL)
constructs to make their controllers even more universal (e.g. [194]). Quite a consid-
erable effort is concentrated on developing new RPLs, both specially defined for robots
[12, 173, 176], and Computer Programming Languages (CPLs) enhanced by libraries of
robot specific procedures [11, 53, 23, 178, 179, 181].

Many hardware architectures have been proposed specifically for:
– solution of manipulator dynamics based usually on the more efficient Newton-Euler

formulation of dynamics equations [67]. The less computationally efficient Lagrange
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formulation has also received some attention, e.g. general purpose parallel proces-
sor implementation [142]. Dynamics equations in different forms imply different
architectures,

– solution of manipulator kinematics. Here, specialised hardware for vector and ma-
trix computations as well as evaluation of trigonometric and cyclometric functions
is usually employed,

– Jacobian computations (e.g. [20]),
– vector and matrix computations being subtasks of the above-mentioned tasks (e.g.

[120, 106]),
– general image processing (e.g. [3]),
– integration of sensor data (e.g. [155]).

All of the above-mentioned architectures are concerned with speeding up compu-
tations. Both the specialized hardware [144] and the general-purpose hardware archi-
tectures have been investigated [104]. Hardware developments are supplemented by
research into more efficient computational algorithms [67, 142]. A very good overview
of processor architectures tailored to robotics applications is given in [45]. As the de-
velopment of silicon compilers has greatly simplified the design process of new VLSI
chips, many investigators are tempted to produce custom-designed chips meeting their
specific computational requirements. These requirements may arise from both the com-
putational algorithms developed (e.g. solution of dynamics equations) and the task that
the robot has to execute (e.g. robot motions utilising image processing).

IBM-PCs connected by an Ethernet network or several signal processor hardware
configurations were utilised in experimental general purpose robot controllers [9]. QNX
[191, 52, 119] real-time operating system was used with the IBM-PC network, but for
the signal processor architecture a new operating system needed to be developed.

Experiments with task-specific controllers for executing a single but complex task
are also conducted. Good examples of such complex systems are: a ping-pong play-
ing robot [4] or a sheep-shearing robot [139]. In these cases especially the software
structure of the controllers conforms to the task that the robot is to accomplish. Some
researchers enhance limited computational capabilities of industrial robot controllers by
adding to the system external computers executing procedures related to vision and plan-
ning. Such architectures were proposed for a robotic system solving jigsaw puzzles [18]
and a system for decorating scale model cars [137].

A behavioural approach to robot control has also been utilised in several controllers.
In such systems the control program is a collection of independent behavioural mod-
ules. Each of the behaviours contains some expertise concerning the task that is to be
executed. The behaviours have priorities associated with them and are activated by spe-
cific situations detected by sensors probing the environment. One such system locates
and retrieves empty soda cans in an unstructured environment [22], another constructs
complex shapes out of soma blocks [92].

Some work has been done on sensor data fusion (data aggregation) [90, 31]. Differ-
ent algorithms have been developed for aggregating data from hardware sensors. Two
terms have been coined, independently by several authors, describing the process of data
fusion and the resultant data aggregate: logical sensor (e.g. [155, 172]) or virtual sensor
(e.g. [175]).

The problem of structuring a robot system in such a way so as to enable easy incor-
poration of multiple sensors is starting to attract the attention of the research community.



Research-Oriented Robot Controller: RORC 63

A method of integrating multiple logical sensors into a robotic system was proposed in
[155]. It assumes that a hierarchy of robot control levels should be matched by a hierar-
chy of logical sensors. The concept of object-oriented programming is adopted. Logical
sensors and robot control activities are treated as objects and inter-object communication
is used as a method of transferring data. Incorporating new logical sensors is equivalent
to adding new objects and ensuring interaction between the old and new ones. Other
software structures of controllers simplifying sensor incorporation, regardless of the na-
ture and complexity of the sensor, can be found in [90, 91, 175]. Such a controller is
also at the focus of this dissertation.

The flexibility of conventional robot controllers is achieved by rendering the method
of their programming (i.e. RPL) universal. In consequence, the specialized RPL must
have all the properties of any Computer Programming Language (CPL) plus all robot
specific commands – making it hard to master and difficult to implement. Moreover, we
cannot be certain that the robot specific part will not have to be enhanced when a new
sensor has to be incorporated into the system.

All the above drawbacks can be eliminated by changing the approach to robot pro-
gramming. During investigations, and even more so during production, the robot is
performing a single and a well-defined task. While executing this task, the program is
not altered, so the whole universality of the language is not used (usually only a small
subset of instructions of RPL is utilized). From this point of view it is rational to tailor
the controller to the needs of the task. This implies that for each task a new controller
has to be produced. This is economically feasible only when modifying the controller
software structure. The hardware structure must remain unaltered. To make the process
of creating a new controller easy, a library of ready-to-use program blocks (procedures
and concurrent processes treated as construction blocks) must exist. The flexibility of
the controller can be achieved in two ways: through the selection from the library and
proper arrangement of blocks or through the creation of new blocks (e.g. by modifying
the existing ones). As the controller software can be coded in a high-level CPL (C [69]
in our case), this is a relatively simple process and, moreover, there are no limitations to
what such a controller can do.

The robot program is coded in C as a sequence of calls to library procedures and,
if necessary, user defined procedures and any C instructions. This program is compiled
and appended to the fixed part of the controller. The fixed part contains the user inter-
face and the concurrent processes module. The result of the compilation (the executable
code) is loaded into the controller hardware and executed there, and so the robot task
is executed. If the task is altered, the robot program part of the controller has to be
exchanged and the compilation and loading steps have to be repeated.

The idea of using the C language extended by robot specific library routines to pro-
gram robot motions originated with the implementation of RCCL [53]. Initially in RCCL
a motion request was a request to the system to modify the world model, so that a posi-
tion (homogeneous transform) equation became valid. The trajectory generator was an
interrupt driven background process (in relation to the world modelling task) that used
position specifications obtained from the world model to compute joint positions at sam-
ple rate. The programming of the system was done by invoking procedures constructing
position equations. Once the equation was assembled, procedures initiating the motion
of the arm in such a way so as to satisfy this equation were called. There were functions
that had been specifically designed to introduce compliance, limit forces or interrupting
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motions, as well as waiting for events to occur. Although motion planning and execu-
tion were performed concurrently, the programmer did not write separate processes for
each of these tasks. A single program was written bearing in mind that after initiating
a motion (by calling a move function) the subsequent instructions will be executed in
parallel with this motion. Later synchronisation was obtained by placing a wait for mo-
tion termination or a wait for an event to occur procedure somewhere in the subsequent
code.

In the RCCL system sensor incorporation was done by assigning a global variable
to the sensor and updating it at sample rate. The value so obtained was used in a back-
ground function. The RCCL system mainly supported position encoders and force sen-
sors utilised in the servo loops. The intermediate positions of the arm were obtained by
interpolating in either the Cartesian space or joint space. The RCCL system relied on
global variables for communication between its processes.

A similar approach was utilised in ARCL (Advanced Robot Control Library) [23].
This library also employs position equations for motion specification. The position equa-
tions are regarded as appropriate motion requests and are queued by the user program
task for the trajectory generator for execution. The synchronisation between the two,
when required, can be obtained through binary semaphores or by using special attributes
while queuing the motion requests.

RCCL was extended to allow the control of multiple cooperating robots – as a result
RCI (Robot Control Interface) [84] was designed. In RCI each robot and the trans-
ferred object has its own trajectory generator implemented as a task. The planning level
task queues the motion requests to the trajectory tasks. Communication between tasks
is through shared memory.

A development of RCCL, called KALI [6, 54, 55, 105], also queues motion requests
and controls multiple cooperating robots. In the case of KALI, motions are treated as
processes (they are created, executed and finally killed). Synchronisation between the
motions is obtained through combined use of motion control flags and motion param-
eters (e.g. velocity, time of arrival). As in RCCL, in KALI little work has been done
on complex sensor incorporation and sensor data aggregation for the purposes of higher
level control. On the other hand, it should be noted that both in the case of RCCL
and KALI there exists the possibility of changing the servo control algorithms. This was
obtained by designing robot specific hardware.

The controller proposed in this dissertation employs full concurrency (as in KALI)
and data pipelines for inter-process communication. The motion of the arm can be spec-
ified in Cartesian, joint and motor increment space, and no influence on the servo control
loops exists. No motion queuing mechanism was employed. In this way an open struc-
ture of the system was obtained with regard to high level control. Moreover, the proposed
structure accommodates complex sensors and deals with sensor data aggregation for the
purposes of high level control.
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6.1 Structure of the controller

The hardware of the system consists of a 32-bit Intel 80486 microprocessor-based
computer and five 8-bit microprocessors. Each of the 8-bit microprocessor based servo-
-drives MA-70 controls an electric DC motor actuating one of the five degree-of-freedom
manipulator axes. The 32-bit processor is interfaced directly to the servo-drives. It trans-
mits position increments to each of them and receives feedback signals from them. The
32-bit processor bus is connected by a parallel 800 kbyte/s interface MIAT [76] to the
five servo-motor controllers and I/O boards MC-42. The hardware structure of the sys-
tem is shown in Fig. 6.1. The original microprocessor and its memory shown in Fig. 6.1
(MM-16 and ML-16), situated in the control cabinet of the IRp-6 robot, remain dormant
throughout the functioning of the 32-bit microprocessor.

The hardware of the system is rendered invisible to the programmer by the concur-
rent processes module. This module enables the creation and destruction of processes,
their synchronization through semaphores, data transfers through pipelines, and process
scheduling. Currently, all processes of the system are executed by the 32-bit processor.
The layered structure of the system is shown in Fig. 6.2.

The system (Fig. 6.3) is composed of the:
– Command Process (CP),
– Response Process (RP),
– Robot Control Process (RCP),
– zero or more Virtual Sensor Processes (VSPs).

The hierarchic dependence of the processes (creation/destruction tree) is shown in
Fig. 6.4. The programmer can modify the RCP and VSPs according to certain rules, but
apart from that he is free to tailor the system to his investigative needs. Once the modi-
fications are done, the source code of these processes is compiled and linked to the code
of the other processes.

6.1.1 Operator interface

The operator interface is serviced by the Command and Response Processes. The
operator has a command menu at his disposal and operates the system through it. He
can initialize the robot (command it to the home position); execute the Robot Control
Process; abort, suspend or resume the execution of the RCP; or quit the system. All the
processes communicate with the operator through the Response Process. They transfer
the messages through pipelines to the RP. The RP reads the messages, formats them and
displays them in appropriate windows on the screen of the monitor, or saves them in
a file. Each process has its own windows on the screen.

6.1.2 Virtual Sensor Processes

As there is a multitude of real sensors, and the data obtained from them ranges from
simple one-bit signals to complex bit patterns obtained from CCD cameras, a method
of interfacing these sensors to the system, independent of their complexity, was devised.
It was assumed that the generic structure of a virtual sensor process should enable real
sensor data aggregation according to functions f ′′v j j = 2, 4, 5, 7 mentioned in (4.7). It
suffices to take into consideration only the most general function, out of the ones men-
tioned in (4.7), i.e. f ′′v7 . Fig. 6.5 presents the generic form of the Virtual Sensor Process
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Figure 6.1. Hardware structure of the system

(VSP) flow diagram. Its main task is to obtain the readings of the real sensors (one or
more) and to aggregate this data, so that the virtual sensor reading is obtained. Obvi-
ously, the aggregate can include both variable values and effector state. If the effector
state is needed in the computation of the virtual sensor reading, it is transmitted through
a pipeline from the Robot Control Process.

Several VSPs can access one real sensor. To obtain a virtual sensor reading, for ex-
ample, readings of several strain gauges can be processed to obtain two vectors – force
and torque. The VSP sends its reading through a pipeline to the Robot Control Process
(RCP), either in an interactive way (data is computed when VSP is ordered to) or in
a non-interactive way (data is ready whenever needed). The programmer has no limi-
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tations as to which real sensor readings will form the virtual sensor reading and how it
will be formed. In this way the aggregating function f ′′v7 can assume any form, as it was
initially postulated.

6.1.3 Robot Control Process

The Robot Control Process (RCP) is the only process directly influencing the manip-
ulator. Its main task is to compute the set values for the five servo-controllers. It was
assumed that the generic structure of the Robot Control Process should enable trajectory
computations according to functions fe j j = 0, . . . , 7 defined in (4.4). It suffices to take
into consideration only the most general function, out of the ones mentioned in (4.4), i.e.
fe7 . Each motion instruction enables the computation of the next effector state ei+1 by
evaluating the function fe7 or any of its simpler cases. Currently, the only influence on
the dynamics of the system can be exerted by shaping the set values to the axis servo-
-controllers. The set values can be computed from a trajectory expressed in Cartesian
space, joint space or in motor-increment space. The next effector state ei+1 is then ex-
pressed in either Cartesian space, joint space or motor-increment space. In the case of
Cartesian-Euler space, axially-symmetric tools were assumed, as the robot has only five
d.o.f.1 The form of function fe7 implies that the trajectories can also be computed from
or modified according to virtual sensor readings. Figure 6.6 presents the generic form
of the MOVE procedure (motion instruction). The form of this instruction remains the
same regardless of the space in which we express the trajectory, i.e. regardless of the
space that ei is expressed. Computation of the next motion step ei+1 inside the MOVE
procedure is done utilizing fe7 coded in C – as initially postulated.

Synchronisation, between a motion instruction and the virtual sensor processes it
uses, can be described by a Petri net [111, 116], and is presented in Fig. 6.7. The fig-
ure shows a part of the RCP associated with a single motion instruction (left column of
places) and a single VSP (right column of places). The places in the middle belong to
the RCP process. If several VSPs are needed, then new VSP branches of the Petri net

1 Degree of freedom.
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have to be added (in parallel to the right column of places). The concurrent program im-
plementation of the Petri net requires semaphores and pipelines for synchronization and
data transfers [178, 179, 181]. If several levels of data aggregation have to be performed
in parallel, a multi-layered Petri net can be used [171, 172].

There is also a generic form of a WAIT instruction, waiting for an event to happen
(Fig. 6.8). The event is signalled by virtual sensors. The condition is evaluated by com-
puting the value of one of the functions from (4.2), i.e. the functions that take ri as an
argument: fd j , j = 3, 5, 7, 8.

The RCP is composed of the MOVE and WAIT instructions and any other C lan-
guage instructions, if necessary (Fig. 6.9). Each MOVE and WAIT instruction creates
and kills its VSPs according to need.

Figure 6.9 presents the structure of the RCP. This structure (shell) has to be maintained
whenever a new RCP has to be constructed to execute another robot task. Otherwise,
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Figure 6.5. Generic structure of the Virtual Sensor Process VSP

the RCP will not interact properly with the other components of the system. One of the
things that can vary at this level is the number of blocks denoted by ∗∗∗ in Fig. 6.9.
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However, full flexibility is obtained by varying the contents of these blocks. This is done
by:
– using any C language instructions and functions not invoking directly or indirectly

the hardware of the original robot control cabinet,
– calling MOVE and WAIT procedures executing motions in any of the three spaces:

Cartesian-Euler, joint or motor-increment,
– creating any procedures invoking robot hardware, and later calling them inside such

a block (in such a case these procedures have to conform to the calling conventions
defined by the system specification).

6.2 Creation of a new controller

A new controller has to be assembled whenever the executed task changes. If the
sensors remain the same, and the method of aggregating data remains unchanged, the
VSPs need not be altered and only a new RCP is constructed. Usually, the set of existing
library functions suffices, but new functions can be added if necessary – obviously, they
have to conform to the RORC standard [178, 179]. The generic structure of the RCP is
shown in Fig. 6.9. The kernel of the RCP is the user program – this varies with each
task. It is surrounded by the shell that remains unaltered and is responsible for proper
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synchronisation with other processes. For both parts of the RCP to function in harmony
the new procedures must conform to the RORC standard too [178, 179].

Each of the procedures interacting with the system hardware (arm, tool, cooperat-
ing devices or sensors) ends its execution in one of the five states: fatal error (system
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hardware failed), non-fatal error (computational error), wait (operator issued a PAUSE
command), stop (operator issued a STOP command) or uninterrupted termination. Be-
sides this, the list of parameters of each of these procedures contains a pointer to a vari-
able containing the specific error number or 0 (OK) if no error was detected during
execution. For the proper functioning of the system those procedures cannot be invoked
directly. They are called indirectly through a system interface procedure, which takes
care of the proper synchronisation with other parts of the system (other processes). In
this way the programmer creates only the kernel of the RCP and the synchronisation
with the other parts of the system (i.e. shell) is handled by the interface procedure of the
RCP. In consequence the format of motion instructions invocation is the following:

if ( non terminal instruction ( motion proc(..., &r), &p, &r )
== BEGIN PROGRAM)

continue;

where the three dots symbolise any number and type of motion instruction (proce-
dure) parameters, BEGIN PROGRAM is a constant defined in the RCP process (if the
non terminal instruction returns this value, the user program is repeated from its be-
ginning), r holds the error number or OK, and p defines the user program status. If
motion proc is the last motion instruction of the user program, then it should be in-
voked through terminal instruction rather than through non terminal instruction.
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Obviously, the procedures controlling the hardware have to monitor both the soft-
ware and hardware errors and the operator commands. As they are executed iteratively,
in each step the hardware is checked, computations are verified (e.g. Is the inverse kine-
matics solution valid?) and the pipeline through which the operator commands are issued
is tested. The operator has five commands at his disposal: start robot synchronisation –
START (this is necessary only if a robot has incremental joint position measurement),
execute or resume the task – PROGRAM, suspend the task execution – PAUSE, abort
task execution – STOP, and halt the system – QUIT. Not all the commands can be is-
sued at any instant. The system checks that and warns the operator, if the system state
context of the command is wrong.

Table 6.1. Comparison of RORC and the two types of IRp–6 industrial controllers

FEATURE INDUSTRIAL CONTROLLER
WITHOUT SENSORS

INDUSTRIAL CONTROLLER WITH
SENSORS

RESEARCH ORIENTED
CONTROLLER

PROGRAMMING

Programming method on-line – teaching on-line – teaching off-line – C language

Program debugging partial (single step execution, single
instruction display)

partial (single step execution, single
instruction display)

full (C language debugger, printout)

Program documentation none (single instruction display) none (single instruction display) full (e.g. listing)

Programmer’s qualifications very low low high

controller extensibility closed structure (manufacturer
modifiable)

closed structure (manufacturer
modifiable)

open structure (user modifiable)

Hardware configuration non-modifiable (one processor) non-modifiable (one processor) modifiable (several processor)

MOTION SPECIFICATION

Motion goal specification teaching goal poses taught goal pose can be modified by
sensors

goal position modified or generated by
sensors or calculated

Method of trajectory
specification

instruction designates one of the few
interpolation types

sensor readings modify the interpolated
trajectory by a constant vector

any computed trajectory can be used

Influence over dynamics none none servo set-value modification

Velocity control percentage of maximum velocity and
duration of motion

percentage of maximum velocity and
duration of motion

any function

Servo sampling rate rigid (32ms) rigid (32ms) quantified (8, 16, 32, 64 [ms])

MATHEMATICAL OPERATIONS

Variables none none all types

Expressions none none all types

SENSOR INTERACTION

Event detection very limited (reads binary signals) limited (several teach-pendant
instructions)

unlimited

Data aggregation none none unlimited

Incorporation of new
sensors

not possible only the few supplied by the manufacturer unlimited

If new sensors are incorporated into the system or data aggregation methods for old
sensors change, a new VSP has to be created. Apart from the shell that executes data
communication with the RCP through data pipelines, the kernel of the VSP can assume
any form – suitable to the hardware and the aggregation method.

Once the new RCP and VSPs are created the whole of the software has to be com-
piled and linked. To make the task easy for the user, a system of make-files was created
[178, 179], so the job is straightforward. In this way an executable file is created and it
is invoked under DOS2.

2 Disk Operating System running on IBM-PC class computers.
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6.3 Experimental results

The controller software was tested on several tasks, requiring three to five processes:
– search for a path to a goal in a maze using only local information gathered by a 5–bit

touch probe,
– search for a path to a goal in a maze using only local information gathered by

a force/torque sensor,
– traversal of a shortest path to the goal in a maze using global information obtained

by a CCD camera,
– exerting a constant force perpendicular to the traversed trajectory.

It was run on a 33 MHz IBM-PC/486 compatible computer. The processes were
switched by the scheduler driven by a timer interrupt with a frequency of 18.4 Hz. Al-
though each of the processes had 54 ms time slice for itself; the CP, RP and VSP used
a negligible fraction of that for their needs, so whenever they finished their share of pro-
cessing they informed the scheduler of this and the scheduler transferred control to the
next process in the queue without further delay. The robot axis controllers demand new
set values every: 8, 16, 32 or 64 ms (selected). It should be noted that if the VSP has to
do more processing, which is the case if a more complex sensor is used (e.g. vision sen-
sor), then the VSP uses up all of its 54 ms time slice. In the most complex cases even
more time would be needed, so several time slices would be needed to compute a single
trajectory modification. In some cases it would not be a problem, e.g. when the motion
is slow or the reaction does not have to be very quick. In the case of fast and precise
motions more time would have to be assigned to the VSP. That would result in the star-
vation of time for other processes, especially the RCP, which is also time-demanding.
The only solution to this problem is to distribute the processes over several processors.

The Research-Oriented Robot Controller proved instrumental in the design of new
robot control algorithms. By using traditional industrial robot controllers most of this
work could not be done. The comparison between RORC and two IRp–6 industrial con-
trollers is shown in Table 6.2. RORC excels in all categories but one: the programmer’s
qualifications must be much higher.

The next section shows how RORC can be used for investigating new control algo-
rithms. The search for a path to a goal in a maze using only local information gathered
by a force/torque sensor is an exemplary task. Sensor-based reactive robot control, de-
veloped by the author, is used as a control strategy in this example.

7 Sensor-based reactive robot control

The artificial intelligence approach to robot control strongly relies on world models
to execute a task. Sensors, in this case, are mainly used to up-date the world model,
which in turn is used in the generation of the plan of actions. On the other hand, the
behavioural control concept does not need a world model to execute a task [143, 15, 16,
17, 94, 146, 22]. In this case the controller is built of several finite state automatons
functioning in parallel, each achieving a single objective by a certain behaviour. The
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controller is constructed incrementally by adding ever more complex layers of behaviours
on top of the more elementary ones. Upper layers examine data from lower levels and
can suppress or inhibit their behaviours. The lower layer continues to run unaware of
the layer above it, which sometimes interferes with its data flow. Each of the layers re-
lies on information obtained by sensors. Every behaviour is built to be active when the
world is in an appropriate state. In such a system, instead of representing the environ-
ment by a world model explicitly, only a mapping from an aspect of the environment
obtained by sensors is used.

It should be noted that the integration of a world model into behaviour-based mobile
robots has also been the subject of research [94]. However, in this case the world model
was distributed throughout a collection of concurrently active landmark behaviours,
which matched landmarks detected by sensors to the particular behaviours they were
encoding.

The approach, followed in this dissertation, to the utilization of sensor information in
robot control was inspired by behavioural control, although it differs in many aspects. In
the case of behavioural approach, as described above, the task is split into several task
achieving behaviours which form a layered system with higher level layers subsumming
the roles of lower level layers when they wish to take control.

A goal that is to be achieved is distinguished from a single layer of actions (that can
also be called behaviours) that are executed when sensors detect appropriate conditions.
Unlike in the pure behavioural approach, where the partitioning of the system is intuitive,
a formal path was followed. First, the sensor reading space was partitioned into sub-
-spaces. With each of these sub-spaces an action (or rather a reaction) was associated.
If during the realisation of the goal, the sensor readings “enter” a sub-space associated
with a certain action, then the realisation of the global goal is interrupted and the action
is executed. Usually, these are some kinds of defensive reactions to sudden changes in
the environment. As the sensor reading space, robot reactions and the global goal can
be described formally, a formal specification of the robot controller was produced. It
was later used as the basis for coding the software of this controller. As a platform for
the implementation of goal-achieving reaction-based controllers, the flexible controller
described in [175, 180] was used.

The idea of subdivision of sensor reading space into sub-spaces can be found in
[123] (although there it is called the information space). This space is divided into two
sub-spaces: success sub-space and error sub-space. While the assembly task proceeds,
the sensor readings are monitored. As long as those readings remain within the suc-
cess sub-space, the task is continued. Once they enter the error sub-space, either the
task is aborted or an error recovery routine is undertaken (e.g. unaltered action is re-
peated once more). In this case the task is treated as a single preprogrammed entity
and sensors are passive, i.e. they only monitor (not control) the task execution. The task
proceeds until completion or until an error is detected. First an error must occur and
then a modifying action (error handling) can be undertaken. It would be much better if
sensor readings were used to control motions in such a way so as to avoid errors rather
than to detect them. The paper [123] does not mention how to specify the task or the
error handling routines. Moreover, it does not deal with the problem of association of
information sub-spaces with recovery routines.

The majority of robot systems is computer-controlled, so the execution of a task can
be subdivided into steps. Let the initial state be labelled 0 and the consecutive interme-
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diate states i = 1, . . . , iT , where iT is the label of the terminal state. In the terminal state
either the task is accomplished or an execution error is detected.

While the robot is executing the task, the sensors monitor the state of the system
and the environment constantly. The task is executed according to some general plan
– associated with the main reaction, but it can be hindered by certain external events.
These events can be detected by sensors. Once this happens, the system has to react to
them by a reaction appropriate to the event. The system can exhibit a number of pre-
planned reactions Bj , j = 0, . . . , jR, where jR + 1 is the number of reactions. Each of the
reactions can be executed by realising an instance of this reaction. A reaction instance
bj of the reaction Bj is executed as a sequence of steps (characterised by effector and
control subsystem state):

bj = (e0j , c
0
j ) (e1j , c

1
j ) . . . (e

T
j , c

T
j ), bj ∈ Bj , (7.1)

where (e0j , c
0
j ) is the initial state and (eTj , c

T
j ) is the terminal state of the reaction instance

bj ∈ Bj .
A reaction Bj is triggered by a virtual sensor reading belonging to a virtual sensor

reading sub-space V j ⊂ V . There exists a virtual reading sub-space V0 ⊂ V , called the
neutral reading space, which does not trigger any specific reaction, i.e. while the vir-
tual sensors are supplying readings from this sub-space, the previously executed reaction
is continued. In other words, if virtual sensors find out that the initial condition for the
execution of the reaction Bj is satisfied, then this reaction is executed. Obviously, the
previously executed reaction is aborted at this moment. The currently executed reac-
tion terminates either because virtual sensors trigger another reaction or because the job
of this reaction is done (the final state of this reaction is reached). It is assumed that
there exists a reaction B0, called the main reaction, which does not have to be triggered
by any virtual sensor reading. The system initially executes the reaction B0 and when-
ever the execution of other reactions terminates, and no other reaction is triggered by
adequate virtual sensor readings, the execution of the reaction B0 is resumed.

If the virtual sensor reading space is subdivided into sub-spaces Vj , j = 0, . . . , jR ,
where jR + 1 is the number of these sub-spaces, in such a way that:

V = V0 ∪
jR⋃
j=1

V j and ∀ j �=qV j

⋂
Vq = ∅, q = 0, . . . , jR , (7.2)

then each virtual sensor reading vj ∈ V j , j = 1, . . . , jR , triggers a reaction instance bj ∈
Bj . If the reaction Bj is triggered based only on information contained in the virtual
sensor reading vj (v j ⇒ Bj), then Bj is called the state independent reaction, but if
the reaction Bj is triggered based on both the information contained in virtual sensor
reading v j and the current effector state ei or control state ci ((vj , ei , ci)⇒ Bj), then Bj

is called the state dependent reaction.

7.1 Simple maze running task

The task that the robot had to accomplish initially had been extremely simplified to
make the example easy to follow. The task consisted in finding a path in a maze from
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its entrance situated in the South-West (S-W) corner to the exit in the North-East (N-E)
corner. The robot transferred a probe mechanically coupled with a force sensor. Each
contact with a maze wall changed the force acting on the probe. The simplification con-
sisted in the assumption of a maze with no cul-de-sacs. This assumption simplifies the
path-finding algorithm (no backtracking in the N-S direction is necessary).

It was assumed that the N direction coincides with the Y+ axis of the maze co-ordi-
nate frame, and the E direction with X+. The robot that was used had only 5 d.o.f., but
as the probe is axially-symmetric, its location is specified by 5 co-ordinates (3 Cartesian
and 2 Euler angles):

e = [ex, ey, ez, eφ, eψ], e ∈ E (7.3)

The goal G∗ was formulated as:

G∗ : eiT ∈ EiT
∗ E

iT
∗ = E

iT
∗x × E

iT
∗y × E

iT
∗z × E

iT
∗φ × E

iT
∗ψ (7.4)

where E
iT
∗ describes the exit from the maze and iT is the number of executed steps (this

number is a priori unknown).
The virtual sensor reading is expressed as:

v = [ vx, vy, vz ] (7.5)

where vx, vy, vz are the components of the force acting on the probe, expressed in
the maze frame. The aggregating function f ′′v2 (r

i) computes these from the real sensor
readings.

The division of virtual sensor reading space V and the assignment of reactions B is:

V0 : |vx | ≤ thresholdx, |vy| ≤ thresholdy, |vz | ≤ thresholdz

⇒ Bj , j = 0, . . . , 4

V1 : |vx | ≤ thresholdx, vy < −thresholdy, |vz | ≤ thresholdz

⇒ B1 = BN

V2 : vx > thresholdx, |vy| ≤ thresholdy, |vz | ≤ thresholdz

⇒ B2 = BW

V3 : vx < −thresholdx, |vy| ≤ thresholdy, |vz | ≤ thresholdz

⇒ B3 = BE

V4 : all other cases ⇒ B4 = BERR

(7.6)

If sensor readings enter neutral sub-space V0 while the reaction Bj , j = 1, . . . , 4, is
being executed, then the reaction Bj is continued, if it has not been terminated at that
instant due to all of its steps being completed. If termination of the reaction Bj occurs
upon sensor readings entering neutral sub-space V0 or if B0 is being executed, then the
reaction B0 is continued.

The definition of a reaction is formulated by describing ‘snapshots’ of the state of
the effectors and the control subsystem. This notation does not show how to obtain the
next state, it only shows how the next state should look. The method of attaining that
state is decided by the implementer of the system.
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The main reaction B0 is defined as follows:

b0 ∈ B0, b0 = (e00, c
0
vv0 ) (e10, c

1
vv0 ), . . .



e00 : e0x = entryx, e0y = entryy, e0z = entryz, e0φ = entryφ,

e0ψ = entryψ

c0vv0 : δ0 = 1, i = 0

ei0 : eiy = ei−1y + ∆ey, for i = 1, . . . , iT
civv0 : δi = δi−1, for i = 1, . . . , iT
e
iT
0 : e

iT
x = exitx, e

iT
y = exity, e

iT
z = exitz, e

iT
φ = exitφ,

e
iT
ψ = exitψ; where exitx ∈ E

iT
∗x, exity ∈ E

iT
∗y

c
iT
vv0 : δi = δiT , i = iT

(7.7)

where:
i – the global task step number (associated with a counter),
iT – the number of steps needed to accomplish the task – it is initially unknown, and
entry, exit – the entry and exit positions to and from the maze respectively (exitz =

entryz, exitφ = entryφ, exitψ = entryψ).
The reaction B0 starts its execution with the probe positioned at the entrance (entry)

to the maze and the search-direction marker δ0 (in step 0) set to 1 (when an obstacle
is encountered, reaction BN should start its search for a free passage to the right). If,
while avoiding an obstacle, no thoroughfare is found in one direction, the marker will
change sign, and the search will be continued in the opposite direction. The global step
counter is 0. In each following step i the value of the marker (δi) does not change, the
step counter is incremented and the probe is transferred by ∆ey in the north direction
(equivalent to the maze Y direction). The reaction B0 is executed until the probe reaches
the exit area.

The reaction BN is defined as follows:

bN ∈ BN , bN = (e0
N
, c0vvN ) (e1

N
, c1vvN ), (e2

N
, c2vvN )



e0
N

: current effector state

c0vvN : iN = 0, δN = δ
i

e1
N

: e1y = e0y − ∆e′y
c1vvN : iN = 1

e2
N

: e2x = e1x + δN ∗ ∆ex

c2vvN : iN = 2, δi = δN

(7.8)

where iN is the reaction BN execution step number.
The 0–th state of the effectors in reaction BN is equivalent to the last state of the ef-

fectors in the previously executed reaction. In the 0–th step the reaction BN execution
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step number iN is 0, the global step number does not change and the search-direction
marker δN for the reaction BN assumes the same value as the value of the current search-
-direction marker δi . As the reaction BN is activated by detecting vy < −thresholdy, in
the first step of the reaction BN the probe slightly (by ∆ey) backs off to the south. In the
next step the probe either moves east or west depending on the value of search-direction
marker δN . With this motion the probe tries to avoid an obstacle (a wall).

The reaction BE is defined as follows:

bE ∈ BE , bE = (e0
E
, c0vvE ) (e1

E
, c1vvE ))



e0
E
: current effector state

c0vvE : iE = 0, δE = δ
i

e1
E
: e1x = e0x − ∆ex

c1vvE : iE = 1, δi = −1 ∗ δE

(7.9)

where:
iE – the reaction BE execution step number,
δE – the reaction’s local search-direction marker, and
∆ex – the position increment in the west (i.e. negative X) direction.

The reaction BE is activated if an obstacle is detected during the motion to the east.
In this case, the probe moves slightly to the west and changes the sign of the search-
-direction marker.

The reaction BW is defined as follows:

bW ∈ BW , bW = (e0
W
, c0vvW ) (e1

W
, c1vvW ))



e0
W

: current state of the effectors

c0vvW : iW = 0, δW = δ
i

e1
W

: e1x = e0x + ∆ex

c1vvW : iW = 1, δi = −1 ∗ δW

(7.10)

where:
iW – the reaction BW execution step number,
δW – the reaction’s local search-direction marker, and
∆ex – the position increment in the east (i.e. positive X) direction.

The reaction BW is activated if an obstacle is detected during the motion to the west.
In this case the probe returns east and changes the sign of the search-direction marker.

The reaction BERR is defined as follows:

bERR ∈ BERR , bERR = (e0
ERR
, c0vvERR ) (e1

ERR
, c1vvERR )
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e0
ERR

: current state of the effectors

c0vvERR : iERR = 0

e1
ERR

: e1z = e0z + ∆ez

c1vvERR : iERR = 1, i = iT

(7.11)

where:
iERR – the reaction BERR execution step number,
∆ez – the position increment in the Z direction (i.e. rod lift increment).

The reaction BERR is executed when an unexpected event is detected. In this case the
probe is lifted over the surface of the maze and the task is terminated (i.e. i = iT ). Under
more complex conditions than those imposed by this task, freezing all the motions in
the case of an error might be more appropriate.

Figure 7.2 presents the trajectory of the probe in an exemplary maze (Fig. 7.1).
The main advantage of the above specification of robot actions triggered by sensors

is the ease of transformation of this specification into a robot control program. Figures
7.3 and 7.4 show the listings of procedures implementing reactions coded in pseudo-C.
The names of variables have been retained as in the definitions of reactions, so that the

Figure 7.1. A camera view of the exemplary maze
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Figure 7.2. The probe trajectory in the exemplary maze (arrow heads indicate the end of each step)

transformation will be rendered obvious, hence pseudo-C and not C. The similarity be-
tween the definitions of reactions and the code of the procedures implementing these
reactions is obvious. The other advantage of this method is the ability of incremental
system design. First, a simple version of the system can be obtained by selecting only
a few sub-spaces of the virtual sensor reading space and assigning only a few reactions
to them. The remaining portion of the space can be assigned a single reaction (e.g. BERR ).
While the system is being developed, new sub-spaces can be extracted from this portion
and new reactions can be assigned to them. The previously implemented reactions re-
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· · · · · · · · ·

int δi ; /∗ search direction marker ∗/

double ei ; /∗ F/T sensor probe location ∗/

unsigned char vi ; /∗ virtual sensor reading ∗/
· · · · · · · · ·
δi = 1 ;
get virtual sensor reading ( &vi ) ;
/∗ ei = entry − the F/T sensor probe is at the entrance to the maze ∗/
while ( ei �∈ EiT

∗ /∗ goal not attained ∗/ )
{

switch ( vi )

case V0 : eiy+= ∆ey ; /∗ continue B0 — ∗/

execute motion to ( ei , &vi );break; /∗ pursue task goal ∗/

case V1 : reaction BN ( e
i , &δi , &vi ); break; /∗ avoid northern wall ∗/

case V2 : reaction BW ( e
i , &δi , &vi ); break; /∗ avoid western wall ∗/

case V3 : reaction BE ( e
i , &δi , &vi ); break; /∗ avoid eastern wall ∗/

default : reaction BERR ( e
i , &vi ) ; exit ; /∗ error detected ∗/

} ; /∗ end: switch ∗/
} ; /∗ end: while ∗/

exit ;
· · · · · · · · ·

void execute motion to ( double el , unsigned char ∗v )
{ /∗ begin: execute motion to ∗/

do
move by an increment ( ∆e ) ;
get virtual sensor reading ( v ) ;

until ( ∗v �∈ V0 or e = el ) ;
return ;
} ; /∗ end: execute motion to ∗/

Figure 7.3. Pseudo-C code of the relevant sections of the sensorimotor controller executing the maze running
task (part 1)

main unaltered. Indeed, if a reaction is inadequate, it can be modified or its sub-space
further divided and so a single reaction will be divided into several more specific ones.
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void reaction BN ( double e, int ∗δN , unsigned char ∗v )
{ /∗ begin: reaction BN ∗/
ey −= ∆e′y ;
execute motion to ( e, v ) ;
if ( ∗v �∈ V0 )

return ;
ex += ∗δN ∗ ∆ex ;
execute motion to ( e, v ) ;
return ;
} ; /∗ end: reaction BN ∗/

void reaction BE ( double e, int ∗δE , unsigned char ∗v )
{ /∗ begin: reaction BE ∗/
ex −= ∆ex ; ∗δE = − ∗δE ;
execute motion to ( e, v ) ;
return ;
} ; /∗ end: reaction BE ∗/

void reaction BW ( double e, int ∗δW , unsigned char ∗v )
{ /∗ begin: reaction BW ∗/
ex += ∆ex ; ∗δW = − ∗δW ;
execute motion to ( e, v ) ;
return ;
} ; /∗ end: reaction BW ∗/

void reaction BERR ( double e, unsigned char ∗v )
{ /∗ begin: reaction BERR ∗/
ez += ∆ez ;
execute motion to ( e, v ) ;
return ;
} ; /∗ end: reaction BERR ∗/

Figure 7.4. Pseudo-C code of the relevant sections of the sensorimotor controller executing the maze running
task (part 2)

7.2 Complex tasks

The simple maze running task was used as a proof-of-the-concept benchmark for
the reactive control concept. This task was implemented on the Research-Oriented
Robot Controller RORC [175, 180], which can be tailored exactly to the needs of
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the task at hand. The system consisted of a 5 d.o.f. robot, 6 d.o.f. F/T sensor, and an
IBM/486/33MHz computer running a multi-process software of the controller. The soft-
ware was coded in a concurrent version of C. The idea of reactive robot control was
further tested on two other tasks [128]:

– complex maze running task, and

– contour-following task.

The complex maze running task is the basic model for any obstacle avoidance tasks
in an unknown environment. This task is basically an extension of the simple maze run-
ning task onto mazes of any shape. In the simple case the decision where to go next had
been made on the basis of the search direction parameter δ. In mazes with cul-de-sacs,
during the exploration of the maze its partial map has to be created. That map is the
basis for making decisions where to go next. The search direction marker δ is replaced
in cvv part of the control subsystem by a data structure (a graph) which is equivalent to
the partial map of the maze. In this way the probe does not enter a second time areas
which do not lead to the goal. Loops and cul-de-sacs are excluded. Basically, this is
a trial-and-error method memorizing the already traversed path.

The contour following task differs from the maze running task in the frequency of
invoking reactions. The maze running tasks are discrete event driven. The probe moves
in large steps. Collision with an obstacle occurs after many elementary motions (in-
crements) into which steps are divided. In the case of contour following, each step is
equivalent to an elementary motion, so this task is, in a way, continuous in nature. The
task goal is to reach a certain point on an object with approximately known shape. Once
this object is detected, its contour is followed and a small force is exerted on its surface.
Whenever the force exceeds a certain limit, it is relaxed by an adequate reaction. When
the force falls below a certain limit, to avoid a loss of contact, a reaction increasing this
force is invoked. It was found experimentally that the two above-mentioned limits should
not be too near each other, as this results in excessive vibrations. Moreover, the step
size has to be adequately chosen so as not to excite vibrations and on the other hand not
make the overall motion too slow. As the step size has to be kept small, and the smallest
duration of elementary motion in RORC is 8 ms, the speed of contour following was
rather low. It should be noted that the the contour following task was subdivided into
two distinct goals. The first one was to detect the object and the second – to follow its
contour. Each of the subtasks had its own reactions associated with its execution.

RORC is not only a good tool for implementing and testing various control ideas,
but also its structure is easily extensible into much larger systems than those consisting
of a single robot equipped with diverse sensors. The next section will show how this
set-up was extended into a multi-robot flexible manufacturing system.
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8 Multi-robot systems

8.1 Problem formulation

Several research problems specific to multi-robot systems have been identified as
important (e.g. [71]):
– trajectory planning ([105, 56]) and obstacle avoidance:

- collision avoidance (especially with other moving objects, e.g. other robots),
- detection and representation of obstacles by using aggregated data obtained from

different sensors,
- trajectory generation – including redundant and over-constrained1 multiple ma-

nipulators [105, 56, 129, 130, 131],
– utilization of sensor data,
– dynamics modelling and control strategies:

- modelling and simultaneous force/position control,
- adaptive control,
- coordination of motion of multiple arms [105],
- parallel algorithms for control,

– software and artificial intelligence,
– control system structures and programming.

This section deals with systems containing: several manipulators, sensors and coop-
erating devices. The issues of programming such systems, their structure, and synchro-
nisation between their subsystems will be at the focus of attention.

Multi-robot system is a special case of a complex mechatronic2 system. Complex
mechatronic systems (e.g. [137, 138, 70, 66, 114, 30, 85]) require great software im-
plementation effort. It is very important that the software design methodology selected
for implementation is easy to use and limits the possibility of introducing bugs into the
control program. This implicates proper structuring of software.

Multi-robot systems, and mechatronic systems in general, have several effectors and
various sensors, usually controlled by one or more processors. This section presents
a generic structure of a mechatronic system taking into account all components of such
systems. This structure implicates the structure of the software controlling the function-
ing of the system.

The idea of distributed software modules controlling complex mechatronic systems
is several years old. In [102] the concept of Manipulation Module consisting of an actu-
ator, electronics and control was introduced. Manipulation Modules can be linked with
each other and sensors (e.g. position encoders) and so a distributed system comes into
existence. Each Manipulation Module becomes a processing node exchanging informa-
tion with some other nodes in the system. The proposed architecture is implemented
on an Inmos transputer system using Occam. Parallel Occam processes communicate

1 Systems in which the transferred object has less than 6 d.o.f. – usually due to one or more manipulators
having less than 6 d.o.f.

2 Mechatronic approach to designing consists in such distribution of functions throughout the mechanical,
electronic and software components of the system that the overall design is the simplest in implementation and
best suited to the needs of the user.
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through data paths known as channels (in hardware: fast serial duplex links). There ex-
ists a Processor Node which is treated as a coordinator of Manipulation Modules. The
problems of inter process synchronization are solved by Occam and sensors are not
treated comprehensively.

Hierarchic master/slave system architectures (e.g. [7]) are usually considered to be
best suited for control of complex mechatronic systems. Hierarchic (vertical) structure is
sometimes combined with pipelined (horizontal) architecture to form a ziggurat structure
[37]. The proposal of eliminating a Master Process in a master/slave distributed system
was discussed in [7]. A system with nodes of equal status results, thus rendering the
system uniformly modular, but task coordination becomes more complex, as it has to be
distributed throughout the system. Moreover, usually higher communication demand on
the system component interconnections results.

As it was mentioned in section 6, the KALI system [54, 55, 6, 105] can control
several manipulators transferring a single rigid body. Motions are treated as processes.
Synchronisation between the motions of different manipulators is obtained through the
combined use of motion control flags and motion parameters such as velocity and time of
arrival. Two kinds of processes exist: synchronous and asynchronous ones. Synchronous
processes have higher priority than asynchronous. The task of the main synchronous pro-
cess is to compute the nominal locations for the manipulators, taking into account the
frame transformation graphs. Those graphs have a ring structure, with each node rep-
resenting a transformation between the consecutive elements of the kinematic loop (e.g.
manipulator, tool, goal, drive3 transforms). Other synchronous processes execute the
servo-control algorithm. One of the synchronous processes is responsible for gathering
sensor information (from position encoders and force sensors). The main asynchronous
process contains the robot task. Among others, it sets up the kinematic loops (trans-
formation graphs) and issues the motion requests. The other asynchronous processes
compute the dynamics parameters (e.g. gravity terms, inertia matrix, maximum force
that the robot can produce, forces created by the velocity terms).

The presented proposal retains the hierarchic structure of master/slave systems. Two
types of these structures are discussed. The problems of sensor incorporation and sensor
data aggregation are dealt with comprehensively. Moreover, synchronization between
processes controlling actuators and processes gathering sensor data is at the focus of
this section. Unlike in KALI, processes are associated with effectors rather than with
motions.

8.2 Multi-robot system structure

An open mechatronic system, e.g. a multi-robot one, with a priori unknown num-
ber of effectors is considered [189, 186]. Moreover, in any such system the number
and kind of hardware sensors used cannot be determined, as the tasks to be executed
are usually variable. The proposed methodology of constructing controllers takes care
of two problems. One is: aggregation of data obtained from real sensors; the other –
synchronization between sensor data processing and the effector motions.

3 Relative transformation between the current tool and goal locations – when the tool reaches the goal, this
transform becomes an identity.
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The raw data has to be processed to obtain the reading of a virtual sensor as defined
by (2.2) or in a more comprehensive version by (4.3):

v = fv7 (r, e, c) (8.1)

The system state s, as defined by (2.1), is decomposed by taking into account that
now the system has several distinct effectors and that rather aggregated sensor readings
v than real sensor readings r are used by the programmer:

s = < e1, . . . , ek , v1, . . . , vn, c > (8.2)

where:
k – the number of distinct effectors in the system (e = [e1, . . . , ek]),
n – the number of virtual sensors (v = [v1, . . . , vn]).

Treating the system as a discrete time system, as in the case of a single manipulator
system, the next state of each of the effectors can be computed using a transfer function
fe7 j :

ei+1j = fe7 j (e
i
j , v

i
1, . . . , v

i
n, c

i), j = 1, . . . , k (8.3)

Hence, with each of the effectors ej , j = 1, . . . , k, an Effector Control Process is associ-
ated. Each process is responsible for computing its transfer function fe7 j and executing
the related motion. The set of functions fe7 j , j = 1, . . . , k, must be such that the manip-
ulators will move in a coordinated way. Three cases are distinguished.
1. Work spaces of manipulators and their tools do not intersect, and so no collision
between them can result – this is the simplest case (control of several separate manip-
ulators) in which functions fe7 j are hardly related to each other.

2. Work spaces of manipulators and their tools intersect, so collisions must be avoided
and object transfers between the robots can occur – this is an intermediate case in
which functions fe7 j are loosely related to each other.

3. Work spaces of manipulators and their tools intersect and the robots transfer together
a rigid body – this is the most difficult case in which functions fe7 j influence each
other strongly.
Each virtual sensor vl, l = 1, . . . , n is implemented as a process running concurrently

to other Virtual Sensor Processes and the Effector Control Processes. In consequence of
(8.1)

vil = fv7 (r
i , eim, c

i) (8.4)

is obtained, where em is the state of the m–th effector. Each Effector Control Process cre-
ates or kills Virtual Sensor Processes according to the needs of control of motion. The
Effector Control Processes in each step i obtain data from the Virtual Sensor Processes.
Both kinds of processes can be treated as device dependent drivers. In this way, if only
one component of the system is changed, the remaining components remain unaltered.

As all processes require coordination, either an additional Master Process can be
created (Fig. 8.1) or one of the Effector Control Processes assumes the role of a coordina-
tor and becomes the Main Motion Process (Fig. 8.2). In the former case a hierarchical
structure results and in the latter – a flat structure is created. Whenever a mechatronic
system has a single effector, the latter case is more suitable, and so this structure has been
assumed in the Research-Oriented Robot Controller RORC (section 6). The influence
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Figure 8.1. Software structure of the system with a Master Process – hierarchical structure

of the Master Process on the next effector state in formula (8.3) is exerted through ci .
The Master Process contains a trajectory generator, common to all robots. The trajectory
generator supplies the nominal trajectory through ci to all Effector Control Processes, so
that they can evaluate appropriate functions fe7 j .

Both the Master Process and the Main Motion Process change the state c of the con-
trol subsystem. Virtual Sensor Processes use the memory, and hence c, during sensor
data aggregation and for data storage. Effector Control Processes use the memory during
motion computations and to keep environment information databases.

The processes communicate through data pipelines or guarded global variables. The
communication of each Effector Control Process with the Virtual Sensor Processes it
uses can be of two kinds: interactive and non-interactive (Figs. 8.3 and 8.4). In the case
of interactive communication the Effector Control Process sends a data request through
a data pipeline to an adequate Virtual Sensor Process. The Virtual Sensor Process reads
the real sensors, aggregates the obtained data and sends the result through another data
pipeline to the Effector Control Process (Fig. 8.3). In the meantime, the Effector Con-
trol Process is free to control the effector. If the virtual sensor reading does not arrive
before a receive operation is executed by the Effector Control Process, the Effector Con-
trol Process is suspended until the data arrives. Synchronization, between an Effector
Control Process and a Virtual Sensor Process it uses, can be described by a Petri net
[111, 52], and is presented in Fig. 6.7.

If several Effector Control Processes use the same Virtual Sensor Process, either sev-
eral instances of the same Virtual Sensor Process can be created or a single Virtual
Sensor Process starts processing sensor data when the first request is made, but it sends
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the result to all the Effector Control Processes that have made the requests within a spec-
ified time from the initial request (the specified time should be longer than the sensor
data acquisition and processing time). In the latter case, prior to sending the resulting
reading, the Virtual Sensor Process checks all the data input pipelines for virtual sensor
reading requests and sends the obtained result to all data output pipelines that correspond
to those data input pipelines that had contained adequate requests.

In the case of non-interactive communication the Virtual Sensor Process is interrupt
driven (Fig. 8.4). Whenever the timer issues an interrupt, the Virtual Sensor Process
reads the real sensors, aggregates data and leaves the resulting reading in a buffer. In
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Figure 8.4. Non-interactive method of reading sensor data

this way any Effector Control Process can instantly get the latest reading from the buffer.
However, proper synchronization of access to the buffer is necessary. This is done by
semaphores on a single producer – several consumers basis. The Petri net picturing
proper synchronization of access to the buffer is presented in Fig. 8.5.

A speed-up and a more elegant structure of the software component of the system can
be obtained if the Effector Control Process is partitioned into ECP proper and the Effector
Driver (Fig. 8.6), and run on two processors. This approach was followed in Multi-Robot
Research-Oriented Robot Controller MRROC. The Effector Driver is responsible for:
– transformation of Cartesian-Euler co-ordinates into joint co-ordinates,
– transformation of joint co-ordinates into motor control increments,
– transmission of the set-values to the servo-drives,
– transmission of servo-drive status to upper levels of control structure.

The ECP proper, in this case, is responsible for trajectory generation when functions
fe7 j are loosely or hardly related to each other. In the case of strong influence of func-
tions fe7 j on each other, the ECP proper simply transmits the commands of the Master
Process, which acts as a coordinator.

For further speed-up, each Effector Control Process can be partitioned into pipelined
stages (not to be mistaken for data pipelines mentioned earlier), i.e. several concurrent
processes performing, e.g.: future trajectory position (including orientation) generation
taking into account virtual sensor readings, solving inverse kinematics problem (i.e. ob-
taining joint co-ordinates) and executing the joint control algorithms (i.e. reaching the
generated position). In this case three stages suffice. If a three-stage pipelined architec-
ture is used (Fig. 8.7), a delay of two steps is introduced between position generation
and its execution, but the step duration can be considerably reduced owing to the parallel
action of the three processes. Due to that (8.3) assumes the form:

ei+3j = fe7 j (e
i
j , v

i
1, . . . , v

i
n, c

i), j = 1, . . . , n (8.5)
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initial marking)

In the case of high computational load associated with obtaining a virtual sensor
reading (e.g. image processing and pattern recognition), the corresponding Virtual Sen-
sor Process may also be partitioned into a pipelined structure. If the l–th Virtual Sensor
Process is partitioned into h stages, the adequate reading vl will be delayed by h − 1
steps, and so in (8.5) vil will have the following form:

vil = fv7 (r
i−h+1, ei−h+1m , ci−h+1) (8.6)

Obviously, only if each stage is processed in parallel to the others the speed-up results.
If the processes (stages) time-share a single processor nothing would be gained.

8.3 Current status of the multi-robot system

A software design strategy for multi-robot systems evolved from a single robot sys-
tem strategy. It consists in associating a concurrent process with each of the distinct
effectors of the system (e.g. manipulator arm): the Effector Control Process proper and
the Effector Driver (Fig. 8.6). The real sensors are grouped according to their function
and the data obtained from them is aggregated by a single process (Virtual Sensor Pro-
cess). Data obtained from several Virtual Sensor Processes can be transmitted through



Problem formulation 93

Operator

❄
✻�

✧
✥
✦

User
interface

❄
✻�

✧
✥
✦

Master
Process
MP

❄
✻✬

✫

✩

✪

Effector
Control
Process
ECP j ,

j = 1, . . . , k

❄
✻✬

✫

✩

✪
Effector
Driver
ED j ,

j = 1, . . . , k

❄
✻

Effector j , j = 1, . . . , k

Axes Tool Outputs

✲
✛

✬

✫

✩

✪

Virtual
Sensor
Process
VSPl ,

l = 1, . . . , n

❄
✻

Real
Sensors

✛

❄

Figure 8.6. Hierarchical structure with an effector driver

data pipelines to adequate Effector Control Processes and the Master Process in an in-
teractive way or stored in guarded buffers. In the latter case the Virtual Sensor Process
is timer interrupt driven. This data is used for generating or modifying the trajectories
of effector motions. A change in the task that the system has to execute brings about
only a realignment of the ready software modules. In extreme cases a new module can
be added to the system.

To design the Multi-Robot Research-Oriented Robot Controller MRROC, the single-
robot system was enhanced by adding a second 5 d.o.f. robot and a conveyor. In this case
the structure as in Fig. 8.6 is used. Each robot and the conveyor are controlled by their
own Effector Control Processes and Effector Drivers. The Master Process is responsible
both for the communication with the operator (through the user interface process) and
coordination of Effector Control Processes. The QNX–4 [191, 52, 119] multi-computer
real-time operating system is used for coordinating all processes.

The system was tested on two and tree computer configurations. In the latter case
each robot was controlled by a single IBM-PC compatible computer running the associ-
ated ECP and ED and the Master Process used the third computer. The computers were
connected by Ethernet links. Both synchronous and asynchronous motions of devices
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were obtained. In the case of synchronous motions, both time and time-space synchro-
nism was achieved. Addition of simple touch and proximity sensors did not require extra
computational power. Such complex sensors as camera also do not need extra com-
putational power if the image acquisition and motion decision making are separate. It
is envisaged that an extra computer will be necessary if this condition is not true. As
the QNX–4 operating system runs processes either in time sharing mode on a single
computer or on several computers connected into a network, no change to the existing
software will have to be made because of this enhancement.

9 Conclusions

This monograph gives a broad view of robot programming. On-line, off-line and
hybrid programming methods are considered. Although on-line programming methods
are more popular in industry, their drawbacks, especially the ones associated with sen-
sor integration and long down-times during programming, caused intensive research into
off-line methods. Unfortunately, the off-line methods, while on the one hand being a rem-
edy to the on-line method drawbacks, on the other hand cause new problems that did not
exist when on-line methods were utilised – especially the calibration problem. A par-
tial solution to this problem was the creation of hybrid programming methods such as
employed by VAL II. In the author’s opinion both on-line and hybrid programming meth-
ods have reached the limits of their capabilities. Systems employing these programming
techniques have problems with incorporating new sensors and new control algorithms,
due to their closed structure. Only a certain – although broad – class of tasks can be
executed by using them. The inability to execute tasks which the definition of the pro-
gramming method (textual or any other, e.g. teach-pendant language) did not take into
account a priori is caused mainly by hardware constraints (i.e. the system possesses in-
structions only for hardware that was available at the time the system was created). New
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hardware usually needs new instructions and those cannot be appended by the user of the
system. Similar problems, although not as acute, are encountered when using off-line
programming methods employing specialised robot programming languages – especially
if the RPL is not to be a superset of a CPL.

These problems led to the emergence of a new class of systems with an open struc-
ture and off-line methods of programming. Because in this case tasks are expressed in
a CPL, for which robot specific instructions are coded as a library of procedures, the
implementation effort is much smaller than in all the previous methods. It is much eas-
ier to write a library of robot specific procedures than to define a new language and
implement its interpreter or a compiler and a run-time system. In this case, moreover,
the incorporation of new sensors or new control algorithms causes only an addition of
a few procedures. In the former case, the language itself usually had to be modified, and
hence reimplemented.

It is a known fact that either all the objects that take part in the task execution have to
be positioned very precisely, so the robot can do the job without sensing, or the locations
of objects can be known approximately, but then considerable amount of sensing and in-
telligence is necessary for the accomplishment of the task. Employing diverse external
sensors (receptors) can eliminate both prepositioning devices and problems associated
with calibration. In the author’s view the future is with systems integrating a multitude
of diverse sensors and open in structure, so that ever more generic or specific control
algorithms can be incorporated.

If robot programming systems are to be relatively simple, they have to possess an
open structure, but the structure itself should be rigid. In such systems new procedures
can be added, but they have to comply with the overall structure of the system, which
has to be defined precisely (e.g. parameter passing, return codes, data transfers). The
structures of such systems are an open research problem. This monograph presents the
structure of a Research-Oriented Robot Controller RORC, which was implemented at
WUT. Upper control layers should also be structured appropriately. One way of doing
that is by utilising the reactive control concept.

This work, moreover, deals with the classification of robot motion instructions, their
semantics and their implementation. The utilised formalism gives insight into the prob-
lem of creating an RPL instruction set and points out the problems of implementing such
instructions. The problems associated with implementing joint level, manipulator level
and object level RPLs were considered. Different implementation paradigms (structured,
object-oriented) were investigated too. This formalism was used by the author to define
the semantics of instructions and implement the run-time systems of TORBOL, ROPAS
and ROOPL.

This work will be useful to all those who would like to implement an RPL. It points
out the problems associated with different approaches to the definition and implemen-
tation of the language, especially the motion instructions (e.g. their semantics, level,
method of implementation). The syntax of the RPLs has not been the subject of this dis-
sertation, but it is no different to that of CPLs. Instructions utilising sensor information
are at the focus of this monograph. The introduced formalism:
– states the instruction semantics without predetermining any particular implementation

technique,
– takes into account all system components (i.e. effectors, receptors, and the control

subsystem),
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– points out what the constraints imposed on the system will be if a set of instructions
with certain semantics is included into the currently defined RPL (e.g. what argu-
ments of functions fe(•), fv(•), fd(•) are taken into account, and hence what kind
of control will be exerted on the system; will initial, terminal and error condition
monitoring be possible),

– can be incorporated into flow-diagrams to render the implementation of the system
software straightforward,

– enables the specification of upper-layers of control system structure (e.g. reactive
robot control).
This formalism was used to define the software structure of the Research-Oriented

Robot Controller which later evolved into a multi-robot control system. It points out
what should be the formal parameter lists of procedures implementing different func-
tions (e.g. sensor data aggregation, motion instructions). RORC, in turn, was used as
a test bed for designing new control algorithms (e.g. sensor-based reactive robot control).

The future work will concentrate on transforming the multi-robot system into a full-
-blown flexible manufacturing cell. The introduced formalism is sufficient to describe
the functioning of most mechatronic systems, so it will be the foundation of the cell de-
scription. The experience gained during the implementation of TORBOL, ROPAS and
ROOPL was utilised in construction of RORC. RORC, in turn, was the predecessor of
the multi-robot system. This evolutionary approach leads to the development of efficient
ways of designing large distributed computer-controlled systems incorporating: robots,
machining tools and diverse sensors.

As it was mentioned in subsection 1.2, the goal of this monograph has been to de-
scribe the programming of robots from the point of view of users and implementers of
robot systems. This has been achieved, principally, through the description of the au-
thor’s own research of the problem, but also by a detailed analysis of the work of other
scientists, whose ideas were distributed throughout books, dissertations, conference pro-
ceedings and journal papers. This dissertation, besides presenting the author’s views
on the subject, brings together the knowledge which has been otherwise spread in the
vast literature concerning robotics, mechatronics, automatic control and computer sci-
ence. Both theoretical considerations and practical implications have been discussed.
Moreover, the author’s evolution of ideas has been presented. Starting with the analy-
sis of the literature on the subject, theoretical development of useful formalism, through
the definition and implementation of different robot programming languages (TORBOL,
ROPAS, ROOPL), to open research-oriented robot control systems (RORC), which fi-
nally evolved into a full-blown multi-device, multi-robot and multi-sensor programming
system.
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Metody programowania robotów

Streszczenie

Celem pracy jest pokazanie problemu programowania robotów z punktu widzenia użytkow-
nika oraz osoby projektującej i wdrażającej system sterujący robotami, a ponadto przedstawienie
opracowanych przez autora metod programowania robotów. We wstępie do rozprawy tak ogól-
nie określony temat umiejscowiono w relacji do całości oprogramowania tworzonego dla robotów.
Robotyka jest interdyscyplinarną dziedziną wiedzy, więc zakres tworzonego oprogramowania jest
bardzo duży. W związku z tym skoncentrowano się na oprogramowaniu związanym bezpośrednio
z funkcjonowaniem systemu robotycznego, a więc na oprogramowaniu:
– sterującym efektorami (jednym lub wieloma ramionami, nogami, narzędziami etc.),
– obsługującym czujniki,
– wnioskującym i specyficznym dla konkretnie realizowanego zadania oraz
– współdziałającym z operatorem systemu.
Następnie przeprowadzono szczegółową analizę literatury dotyczącej języków programowania ro-
botów oraz sterowników robotów przeznaczonych do celów badawczych. Ponadto, we wstępie
przedstawiono wkład własny autora do omawianej dziedziny wiedzy.

W rozdziale 2. zdekomponowano system robotyczny na trzy części: efektory, receptory oraz
podsystem sterujący. Wprowadzono pojęcie czujnika wirtualnego stanowiącego agregat danych
uzyskanych z czujników rzeczywistych (sprzętowych). Zdefiniowano stan wszystkich wyżej wy-
mienionych części systemu. Celem tej formalizacji było określenie semantyki instrukcji języków
programowania robotów.

Rozdział 3. przedstawia trzy metody programowania robotów: on-line, off-line oraz hybrydową.
Podano zarówno zalety, jak i wady tych metod. Następnie skoncentrowano się na metodzie off-
-line. Jako przykłady przedstawiono języki programowania robotów: WAVE, VAL II, AL, RAPT
oraz język zdefiniowany i zaimplementowany przez autora – TORBOL. Języki programowania
robotów zostały sklasyfikowane w zależności od abstrakcyjnych pojęć, do których odwołują się
instrukcje ruchowe języka; są to: fragmenty łańcucha kinematycznego, końcówka manipulatora,
obiekty znajdujące się w środowisku lub zadanie, które ma być wykonane.

Kolejny rozdział przedstawia wpływ wykonania instrukcji na stan części systemu robotycz-
nego zdefiniowanych w rozdziale 2. Celem tej formalizacji jest ułatwienie doboru instrukcji nowo
tworzonych języków (przede wszystkim semantyki, gdyż problemy składni nie różnią się od tych
spotykanych w informatyce) oraz uproszczenie implementacji języków (poprzez precyzyjne okre-
ślenie semantyki). Ponadto, rozważono sposoby wykorzystania czujników w systemach robotycz-
nych. Wskazano, że czujniki mogą być używane biernie: do śledzenia (monitorowania) warunku
początkowego i końcowego, wykrywania sytuacji awaryjnych oraz aktywnie: do sterowania, tzn.
generowania lub modyfikowania zaplanowanej trajektorii ruchu efektora. W zakończeniu rozdziału
pokazano sposób użycia wprowadzonego formalizmu do definiowania semantyki instrukcji rucho-
wych przykładowych języków.

Rozdział 5. zajmuje się sprawami implementacji języków programowania robotów. Wyróż-
niono trzy metody implementacji:
– jako język specjalizowany,
– jako rozszerzenie istniejącego języka uniwersalnego oraz
– jako biblioteki procedur napisanej w języku uniwersalnym.
Podkreślono wady i zalety każdej z metod oraz wskazano szczególną przydatność ostatniej z wy-
mienionych metod do celów badawczych. Metodę tę autor zastosował do implementacji języków
(bibliotek) ROPAS oraz ROOPL. Oba języki zaimplementowane są w Pascalu, z tym że pierwszy
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z nich wykorzystuje podejście strukturalne, natomiast drugi – podejście obiektowe do programo-
wania. Ponadto, w rozdziale tym opisano dwa sposoby implementacji języka specjalizowanego,
jakim jest TORBOL.

W rozdziale 6. zajęto się rozwinięciem koncepcji bibliotek procedur napisanych w językach
uniwersalnych do tworzenia sterowników “przykrojonych” do potrzeb zadania, które ma być zreali-
zowane przez robota. We wstępie przeanalizowano literaturę dotyczącą specjalizowanych, badaw-
czych sterowników robotów, a następnie opisano strukturę sterownika badawczego RORC. Struk-
tura ta wynika z rozważań teoretycznych zamieszczonych w poprzednich rozdziałach. Przyjęto,
że sterownik będzie podzielony na procesy wykonywane współbieżnie. Z rozważań teoretycznych
wynikało, że wygodnie jest wyróżnić jeden proces sterujący efektorem oraz tyle procesów, ile jest
czujników wirtualnych. Nadto dodano proces komunikacji z operatorem oraz proces zarządzający
ekranem monitora. Przedstawiono również sposób konstrukcji sterowników do realizacji określo-
nych zadań. Sterownik badawczy składa się z procedur i procesów bibliotecznych, ewentualnie
uzupełnionych o dodatkowe specjalizowane procedury zapisywane w języku C. Zapewnia to ła-
twość tworzenia takich sterowników oraz dużą otwartość powstałej struktury. Zmiana zadania albo
dołączenie dodatkowych czujników lub narzędzi wiąże się jedynie z dodaniem lub modyfikacją
niektórych procedur. Całość zaimplementowano na jednym komputerze obsługującym procesy w
podziale czasu.

Rozdział 7. przedstawia wykorzystanie RORC do badań nad sterowaniem reaktywnym (reak-
cyjnym). Metoda sterowania rektywnego (opracowana przez autora) wywodzi się z dość szerokiej
i różnorodnej grupy metod zwanych zbiorczo metodami behawioralnymi. Większość z tych me-
tod bazuje na heurystyce i nie posiada podstaw formalnych. W metodzie reaktywnej dzieli się
wielowymiarową przestrzeń odczytów czujników wirtualnych na podprzestrzenie. Z każdą z tych
podprzestrzeni kojarzy się reakcję, którą robot wykona, gdy odczyty czujników wejdą do tej pod-
przestrzeni. Wyróżnia się również podprzestrzeń neutralną. Tak długo jak odczyty pozostają w tej
podprzestrzeni, wykonywane jest zaplanowane zadanie, czyli reakcja główna. Jeżeli cokolwiek
przeszkodzi w wykonaniu planu, odzwierciedlone to będzie we wskazaniach czujników wirtual-
nych, a to spowoduje wywołanie reakcji korygujących. Rozważono zarówno reakcje zależne, jak
i niezależne od stanu efektorów i podsystemu sterującego. Okazało się, że formalny zapis reakcji
bardzo łatwo jest przełożyć na program (w języku C), który będzie stanowił sterownik RORC wy-
konujący postawione zadanie. Metodę zilustrowano na przykładzie znajdowania drogi w prostym
labiryncie (zadanie dyskretne). Następnie, metoda została sprawdzona dla labiryntów dowolnych
oraz zastosowana dla zadań ciągłych – śledzenie konturów obiektów.

W rozdziale 8. uogólniono koncepcję sterownika badawczego RORC na systemy wielorobo-
towe. Rozważono zarówno strukturę hierarchiczną, jak i płaską tego typu systemów. Do realizacji
wybrano jednak strukturę hierarchiczną. Zaimplementowano zarówno metodę interakcyjną, jak
i nieinterakcyjną komunikacji między procesami agregującymi dane z czujników oraz procesami
bezpośrednio sterującymi efektorami. Ponadto, przeanalizowano problemy synchronizacji między
procesami, stosując sieci Petriego. W odróżnieniu od RORC wykorzystano do realizacji układu
sterującego systemem wielorobotowym system operacyjny czasu rzeczywistego rozproszony na
wielu komputerach połączonych siecią.

W zakończeniu pracy omówiono dorobek autora. Podkreślono przydatność wprowadzonego
formalizmu do definiowania i implementacji nowych języków programowania robotów oraz do re-
alizacji sterowników sytemów, zarówno jednorobotowych, jak i wielorobotowych. Podkreślono, że
systemy te mogą być wyposażone w wiele czujników o różnorodnej złożoności i są łatwe do mody-
fikacji, dzięki swej otwartej strukturze. Całość monografi przedstawia pogląd autora na problemy
programowania robotów.
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