
First Workshop on Robot Motion and Control, RoMoCo’99, 28–29 June, 1999, Kiekrz, Poland. pp.147–152.

The MRROC++ System

Cezary Zieliński

Institute of Control and Computation Engineering, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland, e-mail: C.Zielinski@ia.pw.edu.pl

Abstract

The paper proposes a structure for open, hierarchical,
multi-device controllers. The proposed structure takes
into account that the system may contain several robots
of different type, a certain number of cooperating de-
vices, diverse sensors and also the fact that the task,
the system has to execute, and the number and type of
its components may vary considerably over time. The
concept has been verified by designing a controller for a
prototype RNT robot and an ASEA IRb-6 type robot.
The flexibility of the system is due to the software, so
the programming aspect is treated comprehensively in
the paper.

1 Introduction

Robot controllers and the programming languages they
interpret are inseparably bound together. Robots have
to execute ever more complex and diverse tasks. The
components of the system, i.e. number and type of
robots, number and type of cooperating devices, num-
ber and kind of external sensors, that are necessary
to carry out the job are not known before the task is
specified and the solution to the problem is found. Con-
trollers and programming methods of such systems have
to take into account this fact. There are two solutions
to this problem. Either the controller has to be univer-
sal, and so its specialised programming language must
have wide capabilities, or the controller can be very spe-
cialised (i.e. suited to a very limited class of tasks and
a single hardware configuration), but then it must be
very easy to design, so that a specific controller for any
task at hand can be designed quickly. This proposal
follows the latter approach. It consists of: a general
structure of the controller, a moderately sized set of
construction modules that facilitate the construction of
specialised controllers, and a method for both designing
these controllers and for constructing and adding new
modules to the original set.
Initially the idea of universal robot controllers and
their specialised programming languages prevailed in
the robotics community (e.g. WAVE [10], AL [8], AML [11],
RAPT [1], SRL [4], TORBOL [12]). It soon turned out that

This work has been supported by Warsaw University of Tech-
nology statutory grant 504/036/8 and Program in Control, Infor-
mation Technology and Automation PATIA. The author grate-
fully acknowledges the participation of Dr. W. Szynkiewicz in
the implementation of MRROC++

such a controller has to be able to interpret a very com-
plex language, having the same abilities that general
purpose computer programming languages have and,
moreover, extra capabilities for dealing with robots and
sensors. Even when a general purpose programming
language was adopted as a basis, a robot programming
language had to have extensions (i.e. instructions and
data types) due to specific devices composing the sys-
tem. It was extremely difficult to decide what kind
of additional components should this general purpose
language contain so that any foreseen system could
be controlled and programmed. So this approach has
been given up for cases where it was expected that the
system hardware may vary considerably with changing
tasks. Paradoxically it turned out that the universal
controllers are much better suited to dealing only with
initially well defined classes of tasks. In such a case the
language can be tailored to the system configuration
and the class of tasks at hand. Obviously, the broader
the class the more general the language.
Soon another idea emerged. Instead of defining a lan-
guage that would have all the components of a general
purpose language and, moreover, a few additions pro-
prietary to the particular needs of robot system control,
it became evident that it is much more convenient to
use a general purpose language and to code the robot
specifics as a library of software modules. This idea was
followed in: PASRO [3, 4], RCCL [6], KALI [7], ARCL [5],
RORC [14, 13], MRROC [15]. Usually procedural program-
ming paradigm has been followed, but currently this
changes to object–oriented approach [17]. This pro-
posal uses the above mentioned approach and C++ as
an implementation platform.

2 Structure of a MRROC++
controller

Theoretical reason for selecting the presented struc-
ture of the Multi-Robot Research-Oriented Controller:
MRROC++ is presented in [14, 18, 19]. It is implied by
the following facts.
• Each robotic system consists of three subsys-
tems:
– effectors e, i.e. devices exerting influence over the
environment, e.g. robot arms, conveyors,
– receptors r, i.e. devices gathering the information
about the system and the environment state – real
(hardware) sensors,



Operator

?�
�

�
�User Interface

Process UI

?
6�

�
�
�Master Process MP

?
6'

&
$
%

Effector Control
Process ECPj ,
j = 1, . . . , ne

?
6'

&
$
%

Effector Driver
Process EDPj
j = 1, . . . , ne

?
6

Effectorj , j = 1, . . . , ne
Actuators Tool Outputs

-

�

'
&

$
%

Virtual Sensor
Process VSPl,
l = 1, . . . , nv

?
6

Real Sensor group l
l = 1, . . . , nv

�

?

�
�

�
�System Response

Process SRP

666

-

Operator
interface
(constant)

Task
dependent
part

Hardware
dependent
part

Figure 1: Structure of a MRROC++ controller (ne – number of effectors, nv – number of virtual sensors)

– control subsystem c – executing the task by util-
ising sensor data and moving the effectors accord-
ingly.

• Rarely the information from hardware sensors can be
used in motion control directly. Either the data from
several simple sensors (e.g. several strain gauges)
needs to be used collectively or some specific infor-
mation has to be extracted from the data obtained
by a complex sensor (e.g. a camera). Because of that
the raw data obtained from real sensors must be ag-
gregated into a virtual sensor reading v.
• The system must have the capability of reconfiguring
real sensor groups into diverse virtual sensors.
• Each of the effectors must have a dedicated driver
due to the possibility of connecting or disconnecting
those devices to/from the system.
• The effectors should be capable of independent oper-
ation and any form of cooperation.
The structure of the system is divided into three parts
(fig. 1). The first part is hardware dependent, the sec-
ond is task dependent and the third composes the op-
erator interface and is constant. In this way the modifi-
cations due to hardware or task changes are minimised.
MRROC++ is a library of software modules (i.e. classes,
objects, processes and procedures) that can be used to
construct any multi-robot system controller. This set
of ready made modules can be extended by the user by
coding extra modules in C++. The freedom of coding
is, however, restricted by the general structure of the
system. New modules have to conform to this general
structure. Even if a single-robot controller is designed
it is assumed that it can work in a multi-robot envi-

ronment, so its controller really has the capability of
controlling several robots. The same applies to sensors.
Regardless of the fact, whether they are necessary for
the execution of the user’s task, the potential for their
utilisation always exists in the system.

The MRROC++ system has a hierarchical structure
(fig. ??). It runs on PC computers (Pentium or 486
processor based are preferred) connected by an Ether-
net network. This network is supervised by a real-time
operating system QNX-4 [20]. A single process coor-
dinating the operation of the whole system is called
Master Process MP. Each effector (either a robot or a
cooperating device) has two processes controlling it: Ef-
fector Control Process ECP and Effector Driver Process
EDP. The former is responsible for the execution of the
user’s task dedicated to this effector, and the latter for
direct control of this effector. EDP is supervised by
ECP. In this way the user’s task and the effector spe-
cific control have been separated and are independent of
each other. The process of extracting meaningful infor-
mation for the purpose of motion control is named data
aggregation and is performed by a virtual sensor. Data
aggregation is done by Virtual Sensor Processes VSPs.
Moreover the system contains two processes dedicated
to the interaction with the operator. User Interface Pro-
cess UI handles operator commands. System Response
Process SRP displays all the system status and error
messages on the screen of the monitor. Both processes
perform in a windows environment, so operator com-
mands such as: initiation of execution of the user’s pro-
gram, its termination or pausing and resuming are done
by clicking on certain icons.



The user’s program (task) is coded by writing some
distinct portions of MP and ECP. There are three
kinds of tasks that multi-robot systems deal with,
namely:
• robots performing independently,
• loosely cooperating robots (e.g. one robot handing an
object to the other one),
• tightly cooperating robots (e.g. common transfer of
a rigid object over a specified trajectory).
The first kind requires of theMP only the initiation and
termination of the task. The second requires addition-
ally the synchronisation of the ECPs, from time to time.
In the last case theMP must generate the trajectory for
all the robots. In this case the ECPs only transfer the
MP commands to adequate EDPs.

Move ( , , );

effector ene

?rrr
?

effector e2

?
effector e1

?

sensor vnv

?rrr
?

sensor v2

?
sensor v1

?

motion
generator

f∗e (c
i, ei, vi)
&

fT (ci, ei, vi)

?

Wait ( , , );

effector ene

?rrr
?

effector e2

?
effector e1

?

sensor vnv

?rrr
?

sensor v2

?
sensor v1

?

initial
condition

fI(ci, ei, vi)

?

Figure 2: MRROC++ motion instructions

3 Motion instructions

Each of themotion instructions (i.e. instructions ex-
erting direct or indirect influence over the effectors) is
executed in steps i, starting with i0 and ending in im,
im may be unknown a priori.
Virtual sensors are used either to monitor the current
state of the system and its environment or to control
those two entities, i.e. to influence their future states
[14]. Monitoring is used to detect one of the follow-
ing conditions. Initial condition fI(ci, ei, vi) mon-
itoring results in the designation of an instant from
which the motion commences. Monitoring of termi-
nal condition fT (ci, ei, vi) is done to stop the mo-
tion when the virtual sensors detect adequate circum-
stances. Throughout the life of the system, error
condition fE(ci, ei, vi) must be monitored. MRROC++

�
�

�
�BEGIN

(i := i0)

Demand new sensor
readings vi

?

Get new sensor
readings vi

?

Evaluate the
initial condition
fI(ci, ei, vi)

?

�
��

@
@@

@
@@

�
��

?

YES Is the initial
condition satisfied?
fI(ci, ei, vi) = true?

NO

6

i := i+ 1

?

?�
�

�
�END

(i = im)

Figure 3: Wait instruction flow chart

utilises sensors for both: monitoring of all three con-
ditions and influencing the future states through the
effector transfer function f∗e (c

i, ei, vi) designating
the next effector state. Effector motion utilising sen-
sors is programmed by using motion instructions. One
complex motion instruction, which encompasses all pos-
sible situations, can be defined [18, 19]. Nevertheless, it
is much more convenient to the users to introduce two
separate, but simpler instructions (fig. 2). The Wait in-
struction, with its semantics reflected in the flow chart
presented in fig. 3, monitors the initial condition. The
Move instruction, with its semantics reflected in the flow
chart presented in fig. 4, controls the motion and mon-
itors the terminal condition. Error condition monitor-
ing is done by exception handling, so it is performed
in parallel to the execution of those instructions, as
well as any other instructions of the general purpose
language, i.e. C++ in this case. Each of those instruc-
tions needs two lists of objects: robots (or speaking
more generally effectors) and virtual sensors. Besides
that the Move instruction takes as its third argument an
object named motion generator (i.e. generator). The
methods (i.e. portions of C++ code) of this object ex-
ecute the operations circumscribed by the dashed line
in the flow chart shown in fig. 4. They are responsible
both for evaluating the terminal condition fT (ci, ei, vi)
and computation of the future (or demanded) state of
the effectors f∗e (c

i, ei, vi). The Wait instruction needs
an object responsible for the evaluation of the initial
condition fI(ci, ei, vi) (i.e. condition). The methods
of this object execute the operations circumscribed by
the dashed line in the flow chart shown in fig. 3. The
generator and condition descendant objects contain
methods delivered by the user and dependent on the
task the system has to execute.



�
�

�
�BEGIN

(i := i0)

Generate new
effector position

ei0+1

?

Demand new sensor
readings vi

?

Initiate motion
to position
ei+1

?

Get new sensor
readings vi

?

Evaluate the
terminal condition
fT (ci, ei, vi)

?

�
��

@
@@

@
@@

�
��

?

YES Is the terminal
condition satisfied?
fT (ci, ei, vi) = true?

NO

?�
�

�
�END

(i = im)

Generate next
effector position
ei+1 = f∗e (c

i, ei, vi)

?

6

i := i+ 1

?

Figure 4: Move instruction flow chart

4 Internal structure of MP and
ECP processes

Both the MP and the ECPs consist of two parts (fig. 5).
The shell is responsible for initialisation and inter-
process communication. The kernel is created by the
user out of the Move and Wait instructions and any
other C++ statements deemed necessary. On the MP
level these instructions (fig. 2) take as their arguments
lists of robots and virtual sensors. On the ECP level, for
each ECP only a single robot exists, so this robot and a
list of sensors are the arguments of these instructions.
Each level operates on its own image of a robot (ECP) or
several robots (MP) and images of virtual sensors. Pre-
cisely speaking, those images are the arguments of the
Move and Wait instructions. The shell contains all the
necessary software means for updating the state of the
images. The image of an effector on the ECP level main-
tains direct contact with its respective EDP, so its state
reflects the state of the effector itself, and issuing of the
commands to the image causes the effector to execute
them. On the MP level the images are updated by us-
ing the information transmitted through the ECP level.

Whenever an ECP of the MP need sensor data they
use the images of sensors reflecting the state of virtual
sensors. The respective sensor images maintain direct
contact with the VSPs. The above mentioned contact
is carried out by using adequate communication buffers
and rendezvous operations of the QNX operating system.
The internal structure of the MP and the ECPs is pre-
sented in figures 6 and 7 respectively. The structures
of the buffers and the images are device dependent and
so sometimes have to be defined when new hardware
is added to the system. The MRROC++ system contains
predefined buffers and images that usually suffice. The
motion generator is responsible, on the MP level, for
the generation of trajectories of the end-effectors of all
the robots in the list forming the argument of the Move
instruction. On the ECP level the generator creates a
trajectory for a single robot. Each higher level issues
commands for the image of the lower level. On the
EDP level hardware command are generated. A gen-
erator uses the information obtained from sensors (i.e.
sensor image list), the current state of the robots (i.e.
robot image list) and the commands of the upper layer,
if it exists, to produce the next pose of the robots being
in the list of robots forming the argument of the Move
instruction. Moreover, the motion generator can use
its internal data to produce the next pose, e.g. a list of
previously taught-in poses or can compute those poses
from certain parameters (functional description).'

&

$

%

'

&

$

%
Process kernel
(modifiable)

Contains:
• user’s program

Process shell
(constant)

Contains:
• inter-process communication
• error handling

Figure 5: Structure of ECP and MP proceses.

The condition, being the argument of the Wait in-
struction, if true, terminates the waiting, and if not
causes the system to pause. For each Move and Wait
instruction the user writes in C++ his or her own gen-
erator and condition objects. In this way, usually only
very small portions of MP and ECPs have to be rewrit-
ten when the task changes. The modifications are cu-
mulated in the separate code of specific generators and
conditions. Errors are dealt with within the whole sys-
tem by exception handling, so the user needs not deliver
the program code responsible for that.

5 Effector Driver Process EDP

The code of EDP is not modified by the normal user.
It varies only when the effector hardware changes. The



'

&

$

%

Internal
data structures:
• effector images
• virtual sensor images
• auxiliary variables
(used by the generator)

?'
&

$
%

MP to
ECPj
command
buffers

Next
effector
states
f∗ejMP?

6

'
&

$
%

ECPj
reply
buffers

Current
effector
ststes
ejECP

6

-

'
&

$
%

Virtual
sensor
command
buffers Virtual

sensor
commands

-

�

Current
virtual
sensor
readings
vl

'
&

$
%

Virtual
sensor
reading
buffers

�

'

&

$

%MP

Figure 6: Internal structure of MP process.

?

Next
effector
state
f∗ejMP'

&

$

%
MP
to ECPj
command
buffer

?'

&

$

%

Internal data
structures:

• effector image
• virtual sensor images
• auxiliary variables
(used by the generator)

?'

&

$

%
ECPj
toEDPj
command
buffer

Next
effector
state
f∗ejECP

?

6

'

&

$

%
EDPj
reply
buffer

Current
effector
state
ejEDP

6

6

'

&

$

%
ECPj
to MP
reply
buffer

Current
effector
state
ejECP

6

-

'
&

$
%

Virtual
sensor
command
buffers Virtual

sensor
reading
requests

-

�

Current
virtual
sensor
readings
vl

'
&

$
%

Virtual
sensor
reading
buffers

�

'

&

$

%

ECPj

Figure 7: Internal structure of ECP process.

EDP interprets and executes the commands issued by
its respective ECP. The list of all commands is presented
in fig. 8. There are two main commands: SET and GET.
The former influences the state of the EDP and so the
robot, and the latter causes the EDP to read its current
status. Sometimes, the user needs to exert simulta-
neous influence on the robot and to read its current

state, so a SET GET command has been defined, which
causes simultaneous execution of a SET and GET com-
mand. To retain client-server mode of EDP operation
the ECP issues a QUERY command to obtain any feed-
back from the EDP, so QUERY has to follow any other
command. As most robots have incremental position
measuring devices, it is required that prior to task exe-
cution the robot defines its current position in the work-
space. This is usually done only once and by moving
the arm to a known base location. This is caused by
the SYNCHRO command.
The SET command can: set the arm position, i.e.
cause the robot to move to the desired position, redefine
the tool affixed to the arm, change the set of parameters
or the local corrector of the kinematic model, switch the
servo-control algorithm of any or all of the arm motors,
alter the parameters of the servo algorithm, or set the
binary outputs of the robot controller. The GET com-
mand can read: the current position of the arm, the
currently used tool, and the kinematic model and cor-
rector and servo algorithm parameters, or the binary
inputs to the robot controller. Switching of kinematic
model parameters and correctors should improve local
precision of arm motions. Modification of servo algo-
rithms or their parameters can improve tracking abil-
ity. This switch can be performed when significant load
modification is anticipated. Both the tool and the arm
positions can be defined in terms of homogeneous trans-
forms, Cartesian coordinates with orientation specified
either as Euler angles or in angle and axis convention.
In the case of the arm position, moreover, it can be
specified in terms of joint angles or motor shaft an-
gular increments. The arm position argument in the
command can be regarded as an absolute or relative
value. Each motion command SET ARM is treated as
a macro-step. An extra argument specifies into how
many interpolation steps it should be divided. Because
the incremental position measurement is delivered si-
multaneously with commanding the new PWM value
for the motors, to obtain a continuous motion without
stopping, the reading has to be delivered to the upper
control layers a few steps before the interpolated motion
terminates. The user has control over that by specify-
ing in which step number the reading is required. If
this value is one more than the number of interpolation
steps, the reading is delivered after the motion stops.
For uninterrupted trajectory segment transition it suf-
fices if it is one less than the number of interpolation
steps.

6 Conclusions

A considerable effort has been concentrated on de-
veloping new RPLs, both specially defined for robots
and computer programming languages enhanced by li-
braries of robot specific procedures. Specialised lan-
guages result in a closed structure of the controller. If
new hardware is to be added to the system, usually
some changes to the language itself have to be done.
Those changes have to be reflected in the language
compiler or interpreter. Because of this, rather robot



EDP commands

?
GET

- ARM
- ROBOT MODEL
- INPUTS

?
SYNCHRO

?
QUERY

?
SET GET

� -

?
SET

- ARM
- ROBOT MODEL
- OUTPUTS

ROBOT MODEL

- KINEMATIC MODEL
- TRANS
- XYZ EULER ZYZ
- XYZ ANGLE AXIS
- SERVO ALGORITHM
- r r r r r

ARM

- number of steps
- value in step no
- ABSOLUTE/RELATIVE

- MOTORS
- JOINTS
- FRAME
- XYZ EULER ZYZ
- XYZ ANGLE AXIS
- r r r r r

- parameter set no
- corrector no

- algorithm no
- algorithm parameter set no

Figure 8: Effector Driver Process commands

programming languages/libraries submerged in general
purpose programming languages are used by the re-
search community than specialised RPLs. Multi-Robot
Research-Oriented Controller is submerged in C++ run-
ning under real-time operating system QNX [20] capa-
ble of supervising a computer network. Initially MRROC
[15] was implemented using procedural approach, but
currently this has been changed to object-oriented ap-
proach, and hence MRROC++ resulted. The switch of
programming approach not only simplified robot task
coding, but also proved to be much more effective in the
implementation. Polymorphism enables late binding,
so Move and Wait procedures could be coded without
the specific knowledge of what types of robots and sen-
sors will be used. Exception handling enabled the sep-
aration of the code processing normal system function-
ing from the code dealing with error situations. Finally,
the formal approach [18, 19] pointed out what should
be the structure of the software and limited the user in-
terference with the system to a few object classes that
the programmer has to derive from: robot, sensor,
generator and condition classes. Whenever a new
task is to be undertaken by the system, a new controller
is assembled out of the above objects and adequate calls
to Move and Wait procedures and other C++ instruc-

tions. The programming of such a system consists in
assembling out of library objects and procedures a con-
troller dedicated to the execution of the task at hand.
MRROC++ can currently control a modified ASEA type
IRb-6 robots and the prototype serial-parallel structure
robot [2, 9]. Force/torque, ultrasonic, and infrared sen-
sors, CCD cameras and a conveyor belt have been in-
cluded in the system. The described approach to pro-
gramming has been validated on different tasks. Coop-
erative transfer of a rigid body by two robots [16] and
engraving inscriptions in wood by the prototype robot
equipped with a milling tool were among them.

References

[1] Ambler A. P., Corner D. F.: RAPT1 User’s Man-
ual . Dept of Artificial Intelligence, University of
Edinburgh, 1984.

[2] Bidziński J., Mianowski K., Nazarczuk K.,
Słomkowski T.: A manipulator with an arm of se-
rial parallel structure. Archives of Mechanical En-
gineering, Vol.39, No.1-2, 1992, pp.65-78.

[3] Blume C., Jakob W.: PASRO: Pascal for Robots.
Springer-Verlag, Berlin 1985.



[4] Blume C., Jakob W.: Programming Languages for
Industrial Robots. Springer-Verlag, 1986.

[5] Corke P., Kirkham R.: The ARCL Robot Program-
ming System. Proc. Int. Conf. Robots for Com-
petitive Industries, Brisbane, Australia, 14-16 July
1993. pp.484-493.

[6] Hayward V., Paul R. P.: Robot Manipulator Con-
trol Under Unix RCCL: A Robot Control C Li-
brary . Int. J. Robotics Research, Vol.5, No.4, Win-
ter 1986. pp.94-111.

[7] Hayward V., Daneshmend L., Hayati S.: An
Overview of KALI: A System to Program and
Control Cooperative Manipulators. In: Advanced
Robotics. Ed. Waldron K., Springer-Verlag, 1989.

[8] Mujtaba S., Goldman R.: AL Users’ Manual .
Stanford Artificial Intelligence Lab., 1979.

[9] Nazarczuk K., Mianowski K., Olędzki A.,
Rzymkowski C: Experimental investigation of the
robot’s arm with serial-parallel structure, Proc. IX
World Cong. Theory of Machines and Mechanisms,
Milan 1995, pp. 2112-2116,

[10] Paul R.: WAVE: A Model Based Language for Ma-
nipulator Control . The Industrial Robot, March
1977, pp.10–17.

[11] Taylor R. H., Summers P. D., Meyer J. M.:
AML: A Manufacturing Language. Int. Journal of
Robotics Research, Vol.1, No.3, 1982. pp.842–856.

[12] Zieliński C.: TORBOL: An Object Level Robot
Programming Language. Mechatronics, Vol.1,
No.4, 1991. pp.469-485.

[13] Zieliński C.: Flexible Controller for Robots
Equipped with Sensors. 9th Symp. Theory
and Practice of Robots & Manipulators,
Ro.Man.Sy’92, 1-4 Sept. 1992, Udine, Italy,
Lect. Notes: Control & Information Sciences 187,
Springer-Verlag, 1993. pp.205-214.

[14] Zieliński C.: Robot Programming Methods. Pub-
lishing House of Warsaw University of Technology,
1995.

[15] Zieliński C.: Control of a Multi-Robot System,
2nd Int. Symp. Methods & Models in Automa-
tion & Robotics MMAR’95, 30 Aug.–2 Sept. 1995,
Międzyzdroje, Poland. pp.603-608.

[16] Zieliński C., Szynkiewicz W.: Control of Two
5 d.o.f. Robots Manipulating a Rigid Object , IEEE
Int. Symp. on Industrial Electronics ISIE’96, 17–20
June 1996, Warsaw, Poland. Vol.2, pp.979–984.

[17] Zieliński C.: Object-Oriented Robot Programming ,
Robotica, Vol.15, 1997. pp.41–48.

[18] Zieliński C.: Object–Oriented Programming of
Multi–Robot Systems Utilising Sensory Informa-
tion. 3rd ECPD Int. Conf. Advanced Robotics, In-
telligent Automation and Active Systems, 15–17
September 1997, Bremen, Germany, pp.176–181.

[19] Zieliński C.: Object–Oriented Programming of
Multi–Robot Systems. 4th Int. Symp. Meth-
ods and Models in Automation and Robotics

MMAR’97, 26–29 August 1997, Międzyzdroje,
Poland, pp.1121–1126.

[20] QNX System Architecture. Quantum Software,
1992.


	Introduction
	Structure of a MRROC++ controller
	Motion instructions
	Internal structure of Metapost and ECP processes
	Effector Driver Process EDP
	Conclusions

