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Abstract. The paper presents a transition function based formalism for specifying robot
programming frameworks. It deals with systems consisting of multiple embodied agents
(e.g., robots), influencing the environment through their effectors and gathering information
from the environment through their sensors. The presented examples pertain to behavioral
and hybrid behavioral-deliberative agents, but are not limited only to that.
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1. INTRODUCTION

This research∗ stemmed from the necessity of quickly
producing controllers for diversity of robots execut-
ing significantly differing tasks. The controllers for
the following systems have been designed using the
methodology and tools described in this paper:

• High-stiffness serial-parallel robot having a large
work-space (fig. 1(a)) [16, 19, 14, 31], thus well
suited to milling and polishing tasks [15],
• Direct-drive robot without joint limits (fig. 1(b))

[18, 20], hence applicable to fast transfer of ob-
jects,
• Two IRp-6 robot system (fig. 1(c)) acting as a

two-handed manipulation system [32, 25].

How fast a new controller can be produced depends on
the quantity of readily available software that can be
reused from former projects and the extent to which
it can be modified. This paper deals with the problem
of designing universal control software for systems:

• composed of multiple embodied (having a mate-
rial body) agents with initially unknown:
– number and type of effectors,
– number and type of receptors,
– communication means between the agents,
– information processing capabilities,

∗ This work was supported by Polish Ministry of Science and In-
formation Technology grant: 4 T11A 003 25.

(a) RNT robot

(b) Polycrank robot

(c) The two IRp-6 robot system

Fig. 1. The considered robot systems



• with initially unspecified task to be executed by
both the system and separate agents.

As the variability of systems fulfilling such a general
specification is enormous the tool for the construction
of such systems must be very versatile. The answer
to this problem, that is provided by computer science,
is a tool named a programming framework [13]. Pro-
gramming frameworks are application generators with
the following components:

• library of software modules (building blocks out of
which the system is constructed),
• a method for designing new modules that can be

appended to the above mentioned library,
• a pattern according to which these modules can be

assembled into a complete system jointly exerting
control over it and realizing the task at hand.

Robot programming frameworks have been developed
for quite a while (e.g., RCCL [11], KALI [10, 3],
PASRO [4, 5], RORC [26], MRROC [26], MRROC++

[27, 28], GenoM [9, 1], DCA [21], TCA [24], TDL

[23], Generis [17], SmartSoft [22]). Currently
efforts are being made to produce public domain
generic robot control software (e.g., the OROCOS
project [8]). Taking into account all of activities asso-
ciated with producing generic robot software, focus-
ing on formal specification of programming frame-
works for systems composed of heterogeneous em-
bodied agents seems to be an important research area.
Rational design of a programming framework requires
some specification tool. Here we shall concentrate on
specific programming frameworks, namely the ones
dealing with multi-agent systems, where the agents
have material bodies capable of influencing the state
of physical environment. The proposed meta-tool has
been verified by presenting several specifications of
agents utilizing behavioral, fuzzy and deliberative ap-
proaches to their control [30]. This formalism is a
generalization of the approach used to define and im-
plement the MRROC++ [28, 29] robot programming
framework. MRROC++ based systems have either a
hierarchical structure or a structure composed of in-
dependent entities. In both cases no direct interaction
between the agents was possible, besides the indirect
interactions through sensing or upper layers of hier-
archy. This formalism includes direct interactions be-
tween agents. The paper concentrates on behavioral
aspects [2] of control of agents.

Expressing ideas in natural languages tends to be in-
exact and somewhat superficial. Introduction of a
formalism, that uses mathematical symbols, imposes
rigor and precision on the discussion. Expressing our
thoughts formally renders a deeper understanding of
the topic and often discloses, otherwise hidden, prop-
erties of the proposed methods of solving the prob-
lem at hand. In our case the problem is formulated
as: how to describe in a general and exact fashion the

diverse behaviors that are necessary for the robots to
adequately operate in complex environments. More-
over, we want the proposed description to be easily
transformable into an implementation of the proposed
ideas in the form of the control software coded in one
of the programming languages.

2. STRUCTURE AND STATE OF AN EMBOD-

IED AGENT

Let us consider a multi-agent system consisting of na

embodied agents. The state of an agent a j is:

s j = 〈c j, e j,V j, T j〉, j = 1, . . . , na (1)

c j – state of the control subsystem of the agent
(variables, program etc.),

e j – state of the effector of the agent,
V j – bundle of virtual sensor readings utilized

by the agent,
T j – information transmitted/received to/from

the other agents.

For brevity, and because of contextual obviousness,
the denotations assigned to the subcomponents of
the considered system and their state will not be
distinguished.

A bundle of virtual sensor readings contains individ-
ual virtual sensor readings:

V j = 〈v j1 , . . . , v jnv j
〉 (2)

Each virtual sensor v jk , k = 1, . . . , nv j , produces an ag-
gregate reading from one or more exteroceptors (fur-
ther on called receptors). The data obtained from
the receptors usually cannot be used directly in agent
motion control, e.g., to control the arm motion, one
would need the grasping location of the object that
is to be picked and not the whole bit-map delivered
by a camera. In some other cases a simple sensor
in its own right would not suffice to control the mo-
tion (e.g., a single touch sensor), but several such
sensors deliver meaningful data. The process of ex-
tracting meaningful information for the purpose of
motion control is performed by virtual sensors. Thus
the kth virtual sensor reading obtained by the agent
a j is formed as:

v jk = fv jk
(c j,R jk ) (3)

where R jk is a bundle of receptor readings used for
the creation of the kth virtual sensor reading.

R jk = 〈r jk1
, . . . , r jknr

〉 (4)

where nr is the number of receptor readings r jkl
, l =

1 . . . , nr taken into account in the process of forming
the reading of the kth virtual sensor of the agent a j.

The responsibility of the agent’s control subsystem
c j is to: gather information about the state of the
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Fig. 2. A single embodied agent a j, j = 1, . . . , na

environment through the associated virtual sensor
bundle V j, obtain the information from the other
agents a j′ ( j′ , j), monitor the state of its own
effector e j, and to process all of this information to
produce: a new state of the effector e j, influence the
future functioning of the virtual sensors V j, and send
out information to the other agents a j′ . As a side
effect the internal state of the control subsystem c j

changes. To do this effectively several components
of the control subsystem can be distinguished:

ce j – image of the effector (this is a perception
of the effector by the control subsystem,
e.g., motor shaft positions, joint angles,
end-effector location),

cV j – images of the virtual sensors (i.e., current
virtual sensor reading and configuration),

cT j – inter-agent transmission (i.e., information
mutually transmitted between the agents),

cc j – all the other relevant variables.

From the point of view of the system designer the
state of the control subsystem changes at a servo sam-
pling rate or a low multiple of that (usually referred to
as a control step, e.g., 1 ms). If i denotes the current
instant, the next considered instant is denoted by i+1.
The control subsystem uses ci

j = 〈c
i
c j
, ci

e j
, ci

V j
, ci

T j
〉 to

produce ci+1
j = 〈c

i+1
c j
, ci+1

e j
, ci+1

V j
, ci+1

T j
〉, i.e.:
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)

(5)

or more compactly:

ci+1
j = fc j (c

i
j) (6)

This is the program of the agent’s actions for the
whole of its lifespan. Obviously specifying just one

such function describing the activities of the agent for
for its whole existence would be a formidable task.
Thus this function must be decomposed into more el-
ementary functions. A robot programming framework
must supply templates of such functions and patterns
according to which they are assembled.

The control subsystem obtains the input values ci
e j

,
ci

V j
, ci

T j
through transmission from the other compo-

nents of the agent itself (e.g. effector, virtual sensors)
or the other agents. It also must transmit the com-
puted values ci+1

e j
, ci+1

V j
, ci+1

T j
to the other elements of

the agent or the other partners (fig. 2). If we do
not want to make any assumptions about the order
of those transmissions and do not assume that the
input and output images are of the same type (this
occurs very rarely) duplicates of those entities must
be stored. Only the internal variables cc j should have
a single representation. Hence the control subsystem
total state can be represented as (fig. 2):

c j = ci/i+1
j = 〈cc j , c

i
e j
, ci+1

e j
, ci

V j
, ci+1

V j
, ci

T j
, ci+1

T j
〉 (7)

In general, the state of a system is represented by
the values of state variables. Those variables hold
the cumulated information about the past evolution of
the system in such a form that, having the additional
knowledge about future external influences on the sys-
tem, we are able to predict the future behavior of this
system. From what has been said it seems that just
the elements of ci

j would suffice to form the state vec-

tor of an agent, and that the elements of ci+1
j are just

the produced control. However, each component of
ci

j and ci+1
j has to be stored within the agent’s control

subsystem (fig. 2), so each of those entities has a state
of its own. There is a certain duration of time that
both sets of those values have to coexist in the sys-
tem simultaneously. Hence, it is reasonable to include
the states of all the components in the state vector of
the agent’s control subsystem. The denotations ci

j and

ci+1
j not only refer to different control subsystem com-

ponents, but also different time instants at which their
contents are utilized.

3. CONTROL OF MOTION OF AN EMBODIED

AGENT

The art of programming boils down to mastering com-
plexity. In the sixties it was noticed that only the cor-
rect structuring of programs can overcome complex-
ity. Programs must be decomposed into small and
well defined modules (procedures and functions were
introduced) and a clear relationship between those
modules must be established (e.g., goto had to be
purged, intermodule communication means had to be
specified). The formalism proposed here facilitates
the creation of a clear structure of programs control-
ling the activities of an embodied agent.



Internal functioning of an agent is defined by the tran-
sition functions (5). The flexibility of a programming
framework is attributed to the ability of expressing di-
verse approaches to programming the actions of each
agent, and so the proposed formal description should
enable easy formulation of diverse control strategies.
Here we shall concentrate on schemes for behavioral
control of agents. To decompose the control subsys-
tem instead of providing a single set of functions (5),
describing the motion of an agent throughout its life,
many sets of such functions are specified. They de-
fine small motion segments, and the final result is ob-
tained by their concatenation. The shortest duration
of such a segment is the servo sampling rate or its low
multiple. Such a short period is not practical, if one
wants to describe the actions of an agent performing
a certain task (e.g., foraging, assembling, reaching a
destination in a cluttered environment). Thus, mo-
tion steps have to be grouped into sequences. The
formation of such groupings is of interest to us here.

Thus instead of a single function fc j , n f partial func-
tions are defined:

ci+1
j =

mfc j (c
i
j), m = 1, . . . , n f (8)

Variability of agents is due to the diversity of those
functions. The more functions of this type are pro-
vided by a programming framework the more types
of agents we can construct.

In the case of a purely reactive system, sometimes
also called a reflex system, the choice of the function
mfc j is based on testing predicates q pc j , q = 1, . . . , np

which take as arguments only the components of ci
V j

.
In pseudo-code it can be expressed as:

if
q pc j(c

i
V j

) then ci+1
j := mfc j (c

i
j) endif (9)

However, here we shall consider systems that de-
cide, which function to choose, on the basis of all
of the available information, i.e. all components of
ci

j. Moreover, in actual systems an endless loop con-
taining the conditional instruction (9) must be con-
structed. Thus, for systems, where only one predicate
can be true at a time, the pseudo-code will assume
the following form:

loop

// Determine the current state of the agent
e j  ci

e j
; V j  ci

V j
; cT j′

 ci
T j

;
// Compute the next state of the agent
if 1 pc j(c

i
j) then ci+1

j :=1 fc j (c
i
j) endif

if 2 pc j(c
i
j) then ci+1

j :=2 fc j (c
i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if np pc j(c
i
j) then ci+1

j :=np fc j (c
i
j) endif

// Transmit the results to the other subsystems
ci+1

e j
 e j; ci+1

V j
 V j; ci+1

T j
 cT j′

; i := i + 1;
endloop

(10)

where the comments are preceded by a double slash
and the symbol “” denotes transmission of data.
Those transmissions result in: data input, execution
of motion, configuration of virtual sensors and trans-
mission of messages to other agents. In each step i
one iteration of the loop (10) will be executed. Thus
in each control step i, one and only one out of the np

predicates q pc j must be true, hence a single function
mfc j is selected as the one designating the next state
of the agent.

From the point of view of clarity of the description
of the task it is useful to group the steps of the com-
manded evolution of control subsystem state into se-
quences. Those sequences will be called primitive
behaviors.

qb j = {c
i+1
j , c

i+2
j , . . . , c

i+ns
j } (11)

where ns is the number of steps in a behavior and
q denotes a numeric identifier of this reaction. Each
sequence of states ci+1

j , c
i+2
j , . . . , c

i+ns
j is generated by

one of the functions mfc j , thus this function is defining
the primitive behavior. The pseudo-code (9) repre-
sents a single-step behavior, i.e., ns = 1. In the case
of a multi-step behavior the pseudo-code assumes the
following form:

if
q pc j(c

i
j) then

qb j(c
i
j) endif (12)

In the case (12) the decision as to which behavior
should be executed is taken once every ns steps.

loop

// Determine the current state of the agent
e j  ci

e j
; V j  ci

V j
; cT j′

 ci
T j

;
// Select and execute the next behavior
if 1 pc j(c

i
j) then 1b j(ci

j) endif

if 2 pc j(c
i
j) then 2b j(ci

j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if np pc j(c
i
j) then np b j(ci

j) endif

endloop

(13)
Here the required computations (i.e., computation of
ci+ǫ

j , ǫ = 1, . . . , ns) and the execution of behaviors

(i.e., transmission: ci+1
e j

 ei+1
j ) are bundled together

within qb j(ci
j), q = 1, . . . , np. The loop can be con-

structed in such a way that if none of the predicates
q pc j (c

i
V j

) is true a default behavior, called the main
reaction or a goal pursuing reaction, is executed. The
other reactions deal with some abnormal situations –
hindering attaining of the goal [26].

If we use (11) and (13) as a combined definition of
a behavior a recursive definition results, where (11)
defines a primitive behavior, and (13) defines a com-
plex behavior consisting of subbehaviors. In that case
within the behavior a local set of predicates can be
used, thus producing a hierarchy of reactions with
variable granularity. One way to deal with assign-
ing predicates to levels of behavior is to look at the



time needed to process the information from the sen-
sors, i.e. ci

V j
. The more time required to perform the

processing the higher the level of behavior that the
associated predicate triggers.

If in the definition (13) one assumes that the last tran-
sition within a behavior forces the return to the ini-
tiation of the loop (this is equivalent to the use of
the break instruction of the C language) only the
behavior associated with the first true predicate will
be executed. If in such a case the if instructions
are placed in the loop in the order of importance of
the associated behaviors a system with prioritized be-
haviors results. This is equivalent to the suppression
mechanism of subsumption [6, 7].

In the case (10), where the computation of the next
effector state and its execution are separate, several
predicates q pc j can be true simultaneously. In that
case the values of several partial functions mfc j have
to be composed together, so the pseudo-code is:

loop

// Determine the current state of the agent
e j  ci

e j
; V j  ci

V j
; cT j′

 ci
T j

;
clear(qci+1

j ) for: q = 1, . . . , np;
// Compute the next control subsystem state
if 1 pc j (c

i
j) then 1ci+1

j := 1fc j (c
i
j) endif

if 2 pc j (c
i
j) then 2ci+1

j := 2fc j (c
i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if np pc j (c
i
j) then np ci+1

j := npfc j (c
i
j) endif

// Compute the aggregate control
ci+1

j := composition(qci+1
j ) for: q = 1, . . . , np;

// Transmit the results to the other subsystems
ci+1

e j
 e j; ci+1

V j
 V j; ci+1

T j
 cT j′

;
endloop

(14)
Many composition operators can be conceived. Com-
petitive methods are based on some form of selecting
one value out of the computed values, e.g.:

ci+1
j = max

m
{mfc j (c

i
j)} (15)

The mechanisms of inhibition (elimination of some
components by others) and suppression (substitution
of some components by others), introduced in [6, 7],
can be produced by supplying an adequate selection
function.

Cooperative methods are based on some form of su-
perposition of the computed values, e.g.:

ci+1
j =

n f
∑

m=1

wm

w
mfc j (c

i
j), w =

n f
∑

m=1

wm (16)

where wm are the weights of particular components.

The proposed program structures either rely on the
evaluation of the predicates in each step (e.g., (10)
and (14)) or on a fixed length of the sequence within
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Fig. 3. Move instruction of an agent a j

a primitive behavior (as in (13)). A very general con-
cept of motion instructions for multi-robot systems
was introduced in MRROC++ [27, 28, 29]. It can
be extended even further to include direct inter-agent
communication. The Move instruction has similar
properties as (13), thus it can be treated as a gener-
alization of the above proposals. The semantics of a
general Move instruction is presented in fig. 3. Here
the function fc j (6), due to its inherent complexity, has
been decomposed into a sequence of separate pairs
of functions. Each pair influences the agent during
i f steps, where a third function mfτ j determines the
number of steps. The function mf ′c j

defines the ac-
tion of the agent in the first step – usually, from the
computational point of view, it differs from all the
other motion steps within the instruction execution.
The function mf ′′c j

specifies the behavior of the agent
in all motion steps, but the first one. In this way, one
function ( fc j ), defining the system evolution for whole
of its lifetime, has been divided into a sequence of
triplets of functions mf ′c j

, mf ′′c j
and mfτ j , which specify

the actions of an agent for a period of time when a sin-
gle Move instruction is executed. Each function mfτ j

determines when the control system should switch
from one Move instruction to another. Each such in-
struction is governed by a different set of functions:
mf ′c j

, mf ′′c j
and mfτ j . Thus those functions should con-

stitute the parameters of the Move instruction. This
solution was adopted in MRROC++.

Let us limit the arguments of the Move instruction
to just the three relevant to this discussion, i.e., mf ′c j

,
mf ′′c j

and mfτ j . Now a behavior can be composed of
a sequence of Move(mf ′c j

, mf ′′c j
, mfτ j ) instructions. As



previously, such a sequence will be selected by a pred-
icate within an if instruction.

if
q pc j(c

i
j) then Move(

mf ′c j
, mf ′′c j

, mfτ j ); ... endif

(17)
Here the duration of the execution of each compo-
nent (i.e., Move) in a sequence is determined by its
termination function mfτ j . As the moment at which
the terminal condition is satisfied is usually caused
by an external event, the synchronous character of
the pseudo-code (9) or (12) is lost here – thus, from
the point of view of the programmer, the pseudo-code
(17) becomes asynchronous and event driven.

Each of the Move instructions has two separate func-
tions generating the steps: one for the first step (mf ′c j

)
and one for every other step (mf ′′c j

). The sequence is
chosen according to the value of the predicate q pc j , so
the decision process is not invoked too often. Hence
the resulting pseudo-code is:

loop

// Determine the current state of the agent
e j  ci

e j
; V j  ci

V j
; cT j′

 ci
T j

;
// Select and execute the next behavior
if 1 pc j (c

i
j) then Move( 1f ′c j

, 1f ′′c j
, 1fτ j ); . . .

endif

if 2 pc j (c
i
j) then Move( 2f ′c j

, 2f ′′c j
, 2fτ j ); . . .

endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if nppc j(c
i
j) then Move( mf ′c j

, mf ′′c j
, mfτ j ); . . .

endif

endloop

(18)
In the case of the pseudo-code (18) only one predicate
q pc j can be true at the moment the decision is being
made. To enable the situation where several predi-
cates can be true simultaneously some modifications
are necessary. The Move instruction not only com-
putes the value of ci+1

j , but also causes its transmission
to the other subsystems of the agent, thus no compo-
sition of partial results is possible within the program
(18). To make this possible a slight modification of
the Move definition is necessary and an introduction
of a separate entity responsible for the composition
of partial results obtained from each Move instruc-
tion being executed in parallel. The modification of
the flowchart defining the Move instruction (fig. 3)
consists in exchanging the contents of the operational
block initiating the motion to position ci+1

e j
(i.e., ex-

ecuting: ci+1
e j

 e j) for the transmission of partial
result qci+1

j to this new entity (e.g., a thread). Once
this entity has collected the partial results from all
currently active Move instructions, it can compute
the final value according to one of the formulas (15)
or (16) and then transmit the result to the other sub-
systems of the agent for execution.

Besides the implementation of the Move instruction
a Wait [29] instruction is usually implemented. It

provides means for waiting for an initial condition to
be fulfilled. This condition defines the instant that a
following motion can commence. A Boolean function
mfι j defines this condition. Its value is checked in each
step of the execution of the Wait instruction.

The actions of both the Move and Wait instructions
are described by referring to discrete time i. The in-
troduction of Boolean functions mfτ j and mfι j , which
determine the instants when the execution of each in-
struction should be terminated changes the perception
of the behavior of the agent. As those instants are not
known a priori, they have to be associated with events
that cause the conditions represented by those func-
tions to be fulfilled. The Move and Wait instructions
change the low level synchronous (time driven) view
of the system into a high level asynchronous (event
driven) view.

4. ADDING DELIBERATION TO BEHAVIOR

Deliberation assumes the use of artificial intelligence
techniques [12] to find a plan (i.e., sequence) of ac-
tions leading the execution of a task (goal) set forth
before the agent. This is implemented by search tech-
niques. Search requires the following entities:

• search space (i.e., problem domain) composed of
search space states – not to be mistaken with the
state of the environment or the agent itself,
• initial state, belonging to the search space – from

this state the search commences,
• operators, which transform the current search space

state into the next states (those operators may result
either from production rules or be the side-effect of
application of predicate logic [12]),
• data structure accumulating the generated states

(i.e., the search tree or graph),
• goal test deciding whether the generated state is the

goal state
• path cost function, which evaluates the quality of

the obtained search space state – usually it takes
into consideration the cost of both the path tra-
versed so far and the remaining path to the goal
state (e.g., A∗ algorithm or its derivatives).

In the case of deliberative systems cc j must contain
the data structures accumulating the generated states
(i.e., problem solution). Deliberation is a search pro-
cess starting in the initial state of the problem solu-
tion. This state includes a partial description of the
current state of the agent, but also other search re-
lated information. As the operators are applied new
problem solution states are generated. The operators
are equivalent to transition functions transforming one
problem solution state into another. Heuristics are in-
cluded in the path cost function and help in discard-
ing the produced states that either do not lead to a
solution or are along a far from optimal search path,



thus avoiding a combinatorial explosion in the search
process. The path leading from the initial state and
ending in a goal state describes a plan of actions that
the agent should try to execute. Assuming that the
plan generation starts with ci

c j
the plan (result of the

search process) would be included in ci+1
c j

and would
influence the generation of the state of the agent in the
next steps, i.e., ci+1

j , c
i+2
j , . . .. If the planning process

takes a lot of time, the plan might not be ready in the
instant i+ 1. In that case the function (6) would have
to generate ci+1

j without the plan, so that ci+1
j would

have to result in halting the effector – to be on the
safe side.

5. CONCLUSION

The agents of the described system can act:

• purely independently,
• they can interact directly through an exchange of

transmitted data (cT j),
• they can also interact indirectly by sensing the other

agents or the results of their actions (by using their
receptors),
• they can be coordinated by a hierarchically higher

entity, i.e., a coordinator.

The coordinator can be treated as an abstract agent,
i.e., an agent that does not posses an effector (a body).
Nevertheless, there is no reason to assume that the
abstract agent should not gather directly the informa-
tion from the environment, thus it can have a virtual
sensor bundle of its own. In this case it would de-
liver global information about the environment, e.g.,
a camera gathering the information about the global
state of the football pitch in a RoboCup match. The
structure of the coordinator can be subdivided into a
hierarchy of abstract subagents. In a simple case each
sub-agent can control a group of embodied agents,
treating them as a set of effectors and a set of sen-
sors. In turn those groups can be controlled by a
higher level virtual agent.

Transition function based formalism facilitates the de-
sign and implementation of multi agent systems by
decomposing a large system into components that can
be designed and implemented by providing the code
for the specified functions. Each of the control sub-
system components (7) can be treated as an object
in an object-oriented programming sense. Thus the
communication with the other agents, effectors or vir-
tual sensors can be handled internally by the methods
of these objects (MRROC++ uses this method). The
objects provide, through their public interfaces, only
the data that is necessary for the computation of the
control of the agent. Those objects provide data that
is utilized by transition functions (5) resident in the
control subsystem to compute the next state of this
subsystem.

The formalism by enumerating the arguments of the
transition functions (5) ensures that all the necessary
interconnections between the components of the sys-
tem are present. The examples showed the numerous
possibilities of designing such systems, e.g., behav-
ioral agents with diverse methods of composition of
the final control signals, deliberative systems and hy-
brid deliberative-behavioral systems.

The presented formalism has been used to specify the
MRROC++ robot programming framework, and cur-
rently it is being used to extend that framework onto
multi-agent systems described in this paper. Those
systems will be composed of several mobile robots.
Moreover, a two-handed system able to manipulate
objects using vision and force information and hav-
ing the sense of hearing and an ability of speaking is
under construction. This will be a laboratory model
for testing control algorithms used in service robots.
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