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Abstract

Programming frameworks [14] are application generators with the following
components: library of software modules (building blocks out of which the system
is constructed), a method for designing new modules that can be appended to
the above mentioned library, a pattern according to which ready modules can be
assembled into a complete system jointly exerting control over it and realizing
the task at hand. The presented transition function based formalism can be
applied to specifying programming frameworks for robot controllers executing very
diverse tasks. The paper deals with systems consisting of multiple embodied
agents, influencing the environment through effectors, gathering information from
the environment through sensors and communicating with other agents through
communication channels. The presented code patterns pertain to behavioral agents.
The formalism was instrumental in the design of MRROC++ robot programming
framework, which has been used for producing controllers of single and two
manipulator systems performing diverse tasks. The formalism introduces rigor into
the discussion of the structure of embodied agent controllers. It is used as the
means for the specification of the functions of the components of the control system
and the structure of the communication links between them. This structures the
implementation of a programming framework, and that in turn makes the coding
of specific controllers much easier, both from the point of view of dealing with the
hardware configuration of the system and the specific task that has to be executed.

Keywords: robot programming frameworks

1 Introduction

The motivation for this research stemmed from the necessity of quick production of

controllers for diverse robots executing significantly differing tasks. Controllers for the
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following systems were designed using the methodology and tools described in this

paper:

• Serial-parallel robot exhibiting high stiffness and having a large work-space [16, 21, 15,

42], thus well suited to milling and polishing tasks [17],

• Direct-drive robot without joint limits [20, 22], hence applicable to fast transfer of

objects,

• Two IRp-6 robot system acting as a two-handed manipulation system [43, 29].

How fast a new controller can be produced strongly depends on the quantity of readily

available software that can be reused from former projects and the extent to which

this software can be modified. Programming frameworks are the current answer to this

predicament.

Many behavioral [4] and deliberative [26] robot control methods have been developed.

Besides investigating task execution by a single robot, multi-agent systems are being

developed. Unfortunately only some of those control methods have a formal description.

Moreover, those control methods that do have formal specifications use different formal

means of description. A unified formal description of systems composed of many

embodied agents using behavioral or deliberative control methods has been obtained

[39]. This paper focuses on the description of behavioral controllers of individual agents,

treating multi-agent systems as a composition of individual agents communicating among

themselves either directly through communication channels or indirectly by stigmergy [6].

Formerly frameworks used to be called simply robot programming libraries or languages,

but both of those terms are not adequate. A library does not imply an associated software

pattern into which the modules should be inserted, and a language is usually associated

with a specific grammar (e.g., syntactic structure). As general purpose languages, such

as Pascal or C have been used as the development tools for those libraries, so no new

language was being defined. Although initially specialized programming languages had

been favored, they lost their appeal, when it turned out that in the robotics domain

the variability of equipment causes an ever greater demand for extensibility of those

languages. Any extensions force a modification of the compiler or the interpreter of the

language rendering the alteration more costly. Moreover, soon it became obvious that

the specialized robot programming languages have to provide nearly all the capabilities

of a general purpose programming language. Under those circumstances it was more

reasonable to use a general purpose programming language and a library of modules

specific to robot control and to define a general pattern according to which they should

be assembled. Thus, although specialized robot programming languages initially gained

considerable popularity (e.g., WAVE [23], AL [19], VAL II [1], AML [30], RAPT [3], SRL [5],

TORBOL [31]) robot programming frameworks have been especially favored by the research

community (e.g., RCCL [13], KALI [12, 11], PASRO [5], RORC [35, 32], MRROC [35, 34], MRROC++

[36, 37], GenoM [10, 2], DCA [24], TCA [28], TDL [27], Generis [18]), due to the variability

and diversity of research tasks. Depending on the base language (e.g., C or C++) procedural
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or object oriented approach to programming is fostered by those frameworks. Component

based approach is also being considered (e.g., DCOM or CORBA [25]), but in this case the

overhead of communication between distributed objects usually is an obstacle to the

implementation of the hard real-time portion of the software, thus those problems have

to be solved within a component and for that either the procedural or object oriented

frameworks have to be used or the component has to be hand-coded. However, component

based software is a viable alternative for implementing systems composed of cooperating

embodied agents needing coordination or for implementing soft real-time portion of the

software within an agent. Currently efforts are being made to produce public domain

generic robot control software (e.g., the OROCOS project [9]).

Expressing ideas in natural languages tends to be inexact and somewhat superficial.

Introduction of a formalism, that uses mathematical symbols, imposes rigor and precision

on the discussion. Expressing our thoughts formally renders a deeper understanding of

the topic and often discloses, otherwise hidden, properties of the proposed methods of

solving the problem at hand. In our case the problem is formulated as: how to describe

in a general and exact fashion the diverse behaviors that are necessary for the robots to

adequately operate in complex environments. Moreover, we want the proposed description

to be easily transformable into an implementation of the proposed ideas in the form of

the control software coded in one of the programming languages.
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Figure 1: Robot ontology – levels of robot programming languages or frameworks

The notation presented in this paper enables a rigorous discussion and comparison of

the diverse possibilities of defining robot (agent) behavior. Although this formalism is

implementation independent, it suggests: the overall structure of the control system,

its decomposition into modules, and enables the specification of the functions of those
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modules. Control of a robot boils down to: processing the information about the current

state of the robot and its environment to produce motions of the effectors, such that the

task put forth before the system will be fulfilled. In a general case to do this effectively

the robot’s sensors have to be configured and controlled, exchange of information with

other agents has to be organized, coordination of the agents in a multi-agent system has

to be established, etc. All this necessitates the establishment of adequate information

flow channels between the modules of the system and the definition of data processing

taking place in those modules.

When designing a programming framework neither the hardware components of the

system nor the task that it will have to execute are known. Nevertheless, the structure

and the components of the system control software have to be designed in such a way

that regardless of this lack of knowledge the implementation of such a system will be

possible and fairly simple. It should be underscored that, if the functionality of the

programming framework is not adequate, it might not be possible to implement some

control systems and to execute some tasks. Introduction of formal notation enables

the person implementing a programming framework to rigorously discuss and define

its capabilities. The formalism introduced in this paper proposes a unified notation

schema (symbolic denotations) and a transition-function-based approach to describing the

state and control regardless of the control paradigm employed (i.e., deliberative, fuzzy,

behavioral – this paper presents only the last one, but the others were presented in

[39, 40]). The arguments of transition functions define the inputs of the modules, and

the produced values indicate the outputs of the modules. In conjunction they define

the communication links between the modules. If any of the possible arguments of the

transition functions are not taken into consideration or an adequate link between modules

is not established, the realization of a certain control idea will be inhibited. By using the

presented formalism those flows are made evident, while, by simply following intuitive

design methods, they might not become apparent until the implementation stage of a

concrete control idea.

The proposed formalism has been used to define both the inter and intra agent

communication structure. The communication links between the agents and their

components are established in such a way that the arguments of the transfer functions

computed by them are made available where necessary. In the implementation the agents

are represented by several processes responsible for: the control of hardware of the

effectors, effector task execution and sensor data aggregation. Each of those processes

is responsible for the computation of certain transfer functions. The specific code of each

transfer function is defined by the user of the framework and complies with both the

available hardware and the task at hand. The main data structures within processes

represent the communication packages containing the values of the arguments of the

transfer functions, and the data structures representing the current and the computed

(future, demanded) state of the effectors, sensor readings and configuration commands
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and internal status of the controller. If object-oriented programming paradigm is used,

as is the case with MRROC++, all those data structures are represented as objects. The

transfer functions are embedded in the methods of those objects.

The paper is organized in the following way. Section 2 introduces the concepts of an

embodied agent, and decomposes its control system into modules responsible for control

of effectors, communication with other agents and aggregation of data obtained from

sensors. Biologically inspired subdivision of receptors is proposed, assigning them to

appropriate components of the control system. The state of effectors can be expressed in

diverse ways, thus creating different ontologies. Finally the general form of transition

functions is defined. Section 3 decomposes this general form of transition functions

into subfunctions and introduces selection predicates. Those are the building blocks for

defining behaviors recursively. The transition from the synchronous view of the system,

based on the servo sampling period, into an asynchronous view, based on events, is

presented as a natural consequence emerging from the introduction of predicates selecting

state transition sequences of differing lengths. Both selection based and composition based

behaviors are considered. Moreover, deterministic and probabilistic selection is covered

by the formalism. In section 4 conclusions are formulated.

2 Embodied agents

A system consisting of na embodied agents is considered. The state of an agent aj ,

j = 1, . . . , na is:

sj = 〈cj, ej , Vj, Tj〉 (1)

cj – state of the control subsystem of the agent (memory: variables, program),
ej – state of the effector of the agent,
Vj – bundle of virtual sensor readings,
Tj – information from/to the other agents.

To be brief, and because of contextual obviousness, the denotations assigned to the sub-

components of the considered system and their state are not distinguished.

A bundle of virtual sensor readings contains nvj
individual virtual sensor readings:

Vj = 〈vj1, . . . , vjnvj
〉 (2)

Each virtual sensor vjk, k = 1, . . . , nvj
, produces an aggregate reading from one or more

hardware sensors – receptors. The data obtained from the receptors usually cannot be

used directly in motion control, e.g., control of arm motion requires the grasping location

of the object and not the bit-map delivered by a camera. In other cases a simple sensor

would not suffice to control the motion (e.g., a single touch sensor), but several such

sensors deliver meaningful data. The process of extracting meaningful information for

the purpose of motion control is named data aggregation and is performed by virtual

sensors. Thus the kth virtual sensor reading obtained by the agent aj is formed as:

vjk = fvjk
(cj , Rjk) (3)
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where Rjk is a bundle of receptor readings used for the creation of the kth virtual sensor

reading.

Rjk = 〈rjk1
, . . . , rjknr

〉 (4)

where nr is the number of receptor readings rj
kl
, l = 1 . . . , nr, taken into account in the

process of forming the reading of the kth virtual sensor of the agent aj . It should be

noted that (3) implies that the reading of the virtual sensor depends also on cj. In this

way the agent has the capability of configuring the sensor as well as delivering to the

virtual sensor the relevant information about the current state of the agent (including its

effector). This might be necessary in the case of computing the reading of a virtual sensor

having its associated receptors mounted on the effector (e.g. artificial skin).

In higher living organisms receptors are divided into three categories, depending on the

source of stimuli that they respond to.

• Exteroceptors – receptors that detect stimulus external to the body (e.g., vision,

smell, touch). In technical systems they include the measuring devices gathering

information from the environment. They are the source of perception of the

environment.

• Proprioceptors – receptors that detect stimulus from inside of the limbs, i.e., muscles,

tendons and joints. They enable perception of position of the limbs and body. In the

case of embodied agents these are the devices for measuring the internal state of the

effectors (e.g., encoders, resolvers). They determine the state of the effectors and not

the environment, and thus are associated with the effector subsystem.

• Interoceptors – receptors that detect the stimulus from the internal organs of the

body. Into this category fall nociceptors, which are sensitive to mechanical trauma,

temperature and chemicals in extracellular fluids – i.e., pain receptors. In technical

systems interoceptors supply information about the internal condition of the control

subsystem and hence are associated with this subsystem. Error detection in the

controller software can be treated as a result of monitoring interoceptors (errors as

a source of pain).

All hardware sensors that take part in forming virtual sensor readings will be called,

for brevity, receptors, although in majority of cases this will be just the exteroceptors.

Interoceptors and proprioceptors that do not directly take part in the formation of virtual

sensor readings will be associated either with the control subsystem itself or the effectors,

so will not be treated as proper receptors in this discussion, i.e., will not be included in

(4).

There are diverse methods of expressing effector state ej , e.g., a manipulator can be

perceived as (fig.1):

• a set of actuators (with angular or translational shaft positions),

• a sequence of links (with angular or translational joint positions),

• an end-effector (with a coordinate frame affixed to the end-effector).
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It is worth noting that in a robot programming language or a framework the notion of a

robot can disappear altogether (e.g., at object or task level). At the object level just the

manipulated or avoided objects exist (other objects are irrelevant). The control system

must deduce how to grasp and transfer the objects that have to be displaced (e.g., AI

methods can be used or object attribute assignment and association can be utilized, as

in the case of TORBOL [31]). At task level the actions that are to be executed are at the

focus of attention.

In the case of walking machines the above mentioned items are similar, but refer to the

legs. An extra item can be introduced to refer to the body of the machine (e.g., position of

a frame affixed to the body). In the case of a wheeled vehicle the second item would refer

to the angles of the wheels and the steering device, the third item would be unnecessary,

but a coordinate frame affixed to the body would be useful. Each of those items forms a

different image of the device – by using those notions the programmer creates a different

model of the device that is being controlled. Sometimes we say that by creating a different

view of the device we create another ontology.

The responsibility of the agent’s control subsystem cj is to: gather information about the

environment through the associated virtual sensor bundle Vj, obtain the information from

the other agents aj′ (j
′ 6= j), monitor the state of its own effector ej , and to process all of

this information to produce: a new state of the effector ej , influence the future functioning

of the virtual sensors Vj , and communicate with the other agents aj′. As a side effect,

the internal state of the control subsystem cj changes. Thus three types of components

of the control subsystem must be distinguished:

• input components providing the information about: the state of the effector, virtual

sensor readings and the messages obtained from the other agents (they use a leading

subscript x),

• output components exerting influence over: the state of the effector, configuration of

virtual sensors and the messages to be transmitted to the other agents (they use a

leading subscript y),

• other resources needed for data processing within the control subsystem (without a

leading subscript).

The following components are distinguished (fig.2):
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xcej
– input image of the effector (a perception of the effector by the control
subsystem as produced by processing the input signals transmitted from the
effector to the control subsystem, e.g., motor shaft positions, joint angles,
end-effector location – they form diverse ontologies),

xcVj
– input images of the virtual sensors (current virtual sensor readings – control
subsystem’s perception of the sensors and through them of the environment),

xcTj
– input of the inter-agent transmission (information obtained from other agents),

ycej
– output image of the effector (this is a perception of the effector by the control
subsystem as needed to produce adequate control signals),

ycVj
– output images of the virtual sensors (current configuration and commands
controlling the virtual sensors),

ycTj
– output of the inter-agent transmission (information transmitted to other
agents),

ccj – all the other relevant variables taking part in data processing within the agent’s
control subsystem.

From the point of view of the system designer the state of the control subsystem changes

at a servo sampling rate or a low multiple of that. If i denotes the current instant, the

next considered instant is denoted by i+ 1. The control subsystem uses:

xc
i
j = 〈c

i
cj
, xc

i
ej
, xc

i
Vj
, xc

i
Tj
〉 (5)

to produce:

yc
i+1
j = 〈c

i+1
cj
, yc

i+1
ej
, yc

i+1
Vj
, yc

i+1
Tj
〉 (6)

and hence:






















ci+1cj
= fccj

(cicj , xc
i
ej
, xc

i
Vj
, xc

i
Tj
)

yc
i+1
ej
= fcej

(cicj , xc
i
ej
, xc

i
Vj
, xc

i
Tj
)

yc
i+1
Vj
= fcVj

(cicj , xc
i
ej
, xc

i
Vj
, xc

i
Tj
)

yc
i+1
Tj
= fcTj

(cicj , xc
i
ej
, xc

i
Vj
, xc

i
Tj
)

(7)

or more compactly:

yc
i+1
j = fcj(xc

i
j) (8)

Formula (8) is a prescription for evolving the state of the system, thus it has to be treated

as a program of the agent’s behavior. For any agent exhibiting useful behaviors this

function would be very complex, because it describes the actions of the system throughout

its existence. The complexity of this function renders impractical the representation

of the program of agent’s actions as a single function. The function (8) has to be

decomposed to make the specification of the agent’s program of actions comprehensible

and uncomplicated.

In the process of producing the output values yc
i+1
j the values of inputs xc

i
j and internal

variables cicj are used. The internal variables change their values, thus c
i+1
cj
is created –

those will be the values of internal variables at the onset of motion step i+ 1. All of the

mentioned quantities are stored in the agent’s memory, thus their values form the total

state of the agent’s control subsystem. Obviously the process of computing the output

values from the values of the input and internal agent’s variables takes time, so the valid
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Figure 2: A single embodied agent aj, j = 1, . . . , na

total state is obtained after the result of those computations is ready. This result is

transferred to the other components of the system. Hence, the control subsystem total

state holds the data obtained from other components of the system and values of its own

internal variables, both valid at the start of step i, and the output values computed during

the initial part of the motion step i (those will be transmitted to the other components of

the system at the end of motion step i, thus controlling the system in motion step i+1).

All of those values are memorized within the agent during the later part of motion step

i, thus they compose the total internal state of the control subsystem:

cij = 〈c
i/i+1
cj

, xc
i
ej
, yc

i+1
ej
, xc

i
Vj
, yc

i+1
Vj
, xc

i
Tj
, yc

i+1
Tj
〉 (9)

The total state contains the input values, internal variables and the produced output

(control). All of those are valid after the computations of (7) are completed. The focus of

our attention is the creation of yc
i+1
j from xc

i
j, i.e., the form of transition functions (7). The

symbol c
i/i+1
cj underscores the change of state of internal variables due to computations of

(7) within the step i.

3 Behaviour of an agent

Internal functioning of an agent is defined by the transition functions (7) represented

in compact form by (8). The flexibility of a programming framework is attributed to

the ability of expressing diverse approaches to programming the actions of each agent,
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and so the proposed formal description should enable easy formulation of diverse control

strategies. In the case of a robot programming framework one should concentrate on

the definition of motion commands. One feasible approach is: instead of providing a

single function (8), describing the motion of an agent throughout its life, many simpler

functions are specified, defining small motion segments, and the final result is obtained by

their composition. Thus instead of a single function fcj , nf partial functions are defined:

yc
i+1
j =

mfcj(xc
i
j), m = 1, . . . , nf (10)

Variability of agents is due to the diversity of those functions. The more functions of

this type are provided by a programming framework the more types of agents can be

constructed. However, the means of selecting among those functions must be provided

by the framework. In the case of a purely reactive system, sometimes also called a reflex

system, the choice of the function mfcj is based on testing predicates
qpcj , q = 1, . . . , np,

which take as arguments only the components of xc
i
Vj
. In pseudo-code it can be expressed

as:

if qpcj (xc
i
Vj
) then yc

i+1
j :=

mfcj (xc
i
j) endif (11)

Here we shall consider systems that decide, which function to choose, on the basis of all

of the available information, i.e. all components of xc
i
j . Moreover, in actual systems an

endless loop containing the conditional instruction (11) must be constructed. Thus, for

systems, where only one predicate can be true, the pseudo-code will assume the following

form:
loop

// Determine the current state of the agent

ej ֌ xc
i
ej
; Vj ֌ xc

i
Vj
; cTj′

֌ xc
i
Tj
;

// Compute the next state of the agent

if 1pcj(xc
i
j) then yc

i+1
j := 1fcj(xc

i
j) endif

if 2pcj(xc
i
j) then yc

i+1
j := 2fcj(xc

i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if nppcj(xc
i
j) then yc

i+1
j := npfcj (xc

i
j) endif

// Transmit the results of computations

yc
i+1
ej

֌ ej ; yc
i+1
Vj

֌ Vj ; yc
i+1
Tj

֌ cTj′
;

i := i+ 1;

endloop

(12)

where double slash precedes the comments and the symbol “֌” denotes transmission

of data. Those transmissions result in: data input, execution of motion by the effectors,

configuration of virtual sensors and transmission of messages to other agents. In each

step i one iteration of the loop (12) will be executed. In this case in each iteration, and

thus in each control step i, one and only one out of the np predicates
qpcj must be true,

hence a single function mfcj is selected as the one designating the next state of the agent.

Usually in such a case np = nf and therefore the endless loop contains np instructions of

the type (11).
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From the point of view of clarity of the description of the task that is to be executed by

the system it is useful to group the steps of the commanded evolution of control subsystem

state into sequences, that will be called primitive behaviors. The system that is described

in [33, 35] performs the selection of the function mfcj for several consecutive steps, i.e., the

selection is less frequent than the evaluation of the function, so the reaction is composed

of several steps. In that case a behavior is defined as a sequence of total states:

qbij =
qbj = {c

i+1
j , ci+2j , . . . , ci+ns

j } (13)

where ns is the number of steps in a behavior (reaction) and q denotes a numeric identifier

of this reaction. Each sequence of states ci+1j , ci+2j , . . . , ci+ns
j is generated by one of the

functions mfcj , thus this function is defining the primitive behavior. At the level of

behaviors (i.e., concatenations of motion steps) the system changes its image from time

driven into event driven, thus the index i is discarded. However, it should be remembered

that each kbj starts at a certain instant i and is influenced by the current control subsystem

total state cij , in which i appears explicitly.

The pseudo-code (11) represents a single-step behavior, i.e., ns = 1. In the case of a

multi-step behavior the pseudo-code assumes the following form:

if qpcj (xc
i
j) then

qbj(xc
i
j) endif (14)

In the case (14) the decision as to which behavior should be executed is taken once

every ns steps. Nevertheless, the transition between the state c
i+ǫ
j and ci+ǫ+1j , where

ǫ = 0, . . . , ns−1 is still computed on the basis of the functions
mfcj . The control program

is composed of an endless loop containing a sequence of instructions of the form (14). In

that case each iteration of the loop contains several control steps i.

loop

// Determine the current state of the agent

ej ֌ xc
i
ej
; Vj ֌ xc

i
Vj
; cTj′

֌ xc
i
Tj
;

// Select and execute the next behavior

if 1pcj(xc
i
j) then

1bj(xc
i
j) endif

if 2pcj(xc
i
j) then

2bj(xc
i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if nppcj(xc
i
j) then

npbj(xc
i
j) endif

//i := i+ ns;

endloop

(15)

Here the required computations (i.e., computation of yc
i+ǫ
j , ǫ = 1, . . . , ns) and the

execution of behaviors (i.e., transmissions: yc
i+1
ej

֌ ej, yc
i+1
Vj

֌ Vj , yc
i+1
Tj

֌ cTj′
) are

bundled together within qbj(xc
i
j), q = 1, . . . , np. The loop can be constructed in such a

way that if none of the predicates qpcj(xc
i
j) is true a default behavior, called the main

reaction or a goal pursuing reaction, is executed. The other reactions deal with some

abnormal situations – hindering attaining of the goal.
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If we use (13) and (15) as a combined definition of a behavior a recursive definition results,

where (13) defines a primitive behavior, and (15) defines a complex behavior consisting

of subbehaviors. In that case within the behavior a local set of predicates can be used,

producing a hierarchy of reactions with a variable granularity. One way of assigning

predicates to levels of behavior is to look at the time needed to process the information

from the sensors, i.e., xc
i
Vj
. The more time required to perform the processing the higher

the level of behavior that the associated predicate triggers.

In the case (12), where the computation of the next effector state and its execution are

separate, several predicates qpcj can be true simultaneously. In that case the values of

several partial functions mfcj have to be composed together. Many composition operators

can be conceived. Competitive methods are based on selecting one value out of the

computed values, e.g.:

yc
i+1
j = max

m
{mfcj(xc

i
j)} (16)

where the values of mfcj(xc
i
j) must be real numbers.

The mechanisms of inhibition (elimination of some components by others) and suppression

(substitution of some components by others) introduced by Rodney Brooks [7, 8, 4] can

be produced by supplying an adequate selection function.

Cooperative methods are based on some form of superposition (e.g., linear combination)

of the computed values:

yc
i+1
j =

nf
∑

m=1

mfcj(xc
i
j) (17)

The pseudo-code in this case is a modification of (12):

loop

// Determine the current state of the agent

ej ֌ xc
i
ej
; Vj ֌ xc

i
Vj
; cTj′

֌ xc
i
Tj
;

for q = 1, . . . , np : clear (
q
yc
i+1
j );

// Compute the next control subsystem state

if 1pcj(xc
i
j) then

1
yc
i+1
j := 1fcj (xc

i
j) endif

if 2pcj(xc
i
j) then

2
yc
i+1
j := 2fcj (xc

i
j) endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

if nppcj(xc
i
j) then

np
y c

i+1
j := npfcj (xc

i
j) endif

// Compute the aggregate control

for q = 1, . . . , np : yc
i+1
j := composition(

q
yc
i+1
j );

// Transmit the results

yc
i+1
ej

֌ ej ; yc
i+1
Vj

֌ Vj; yc
i+1
Tj

֌ cTj′
;

i := i+ 1;

endloop

(18)

The proposed program structures either rely on the evaluation of the predicates in each

step (e.g., (12) and (18)) or on a fixed length of the sequence within a primitive behavior

(as in (15)). A very general concept of motion instructions for multi-robot systems was

12



introduced in MRROC++ [36, 37, 38] (fig. 3). It can be extended even further to include direct

inter-agent communication. The Move instruction has similar properties as (15). Here the

function fcj (8), due to its inherent complexity, has been decomposed into a sequence of

separate pairs of functions mf ′cj and
mf ′′cj . Each pair influences the agent during if steps,

where a third function mfτj determines the number of steps if . The function
mf ′cj defines

the action of the agent in the first step – usually, from the computational point of view,

it differs from all the other motion steps within the instruction execution. The function
mf ′′cj specifies the behavior of the agent in all motion steps, but the first one. In this way,

one function (fcj), defining the system evolution for whole of its lifetime, has been divided

into a sequence of triplets of functions mf ′cj ,
mf ′′cj and

mfτj , which specify the actions of an

agent for a period of time when a single Move instruction is executed. Each function mfτj

determines when the control system should switch from one Move instruction to another.

Each such instruction is governed by a different set of functions: mf ′cj ,
mf ′′cj and

mfτj . Thus

those functions should constitute the parameters of the Move instruction. This solution

was adopted in MRROC++.

MRROC++ contains an abstract class called a motion generator. The two function pairs:

(mf ′cj ,
mfτj ) and (

mf ′′cj ,
mfτj ) are embedded within the two methods of this class. The

programmer derives descendant classes from this class and simultaneously defines the

code of those function pairs. The code of the Move procedure (similar to the one from

fig. 3) invokes those methods causing the agent to execute a part of its task. Sequences of

Move instructions in conjunction with the standard C++ loops and conditional statements

enable the definition of the whole task. Thus the programmer concentrates only on two

aspects of control: the motion generator of each Move instruction, and the composition

of the Move instructions into a program executing the demanded task. Other aspects of

program implementation are provided by the framework.

Let us limit the arguments of the Move instruction to just the three relevant to this

discussion, i.e., mf ′cj ,
mf ′′cj and

mfτj . Now a behavior can be composed of a sequence of

Move(mf ′cj ,
mf ′′cj ,

mfτj ) instructions.

if qpcj(c
i
j) then Move(

mf ′cj ,
mf ′′cj ,

mfτj ); ... endif (19)

Here the duration of the execution of each component (i.e., Move) in a sequence is

determined by its termination function mfτj . Each of those components has two separate

functions generating the steps: one for the first step (mf ′cj) and one for every other step

(mf ′′cj ). The sequence is chosen according to the value of the predicate
qpcj , so the decision

13
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i+1
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= mf ′′cTj
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i
Vj
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i
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= mf ′′ccj

(cicj , xc
i
ej
, xc

i
Vj
, xc

i
Tj
)

6

?

Figure 3: Move instruction of an agent aj

process is not invoked too often. Hence the resulting pseudo-code is:

loop

// Determine the current state of the agent
ej ֌ xc

i
ej
; Vj ֌ xc

i
Vj
; cTj′

֌ xc
i
Tj
;

// Select and execute the next behavior
if 1pcj(xc

i
j) then Move(

1f ′cj ,
1f ′′cj ,

1fτj ); . . . endif

if 2pcj(xc
i
j) then Move(

2f ′cj ,
2f ′′cj ,

2fτj ); . . . endif

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
if nppcj(xc

i
j) then Move(

mf ′cj ,
mf ′′cj ,

mfτj ); . . . endif

endloop

(20)
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In the case of the pseudo-code (20) only one predicate qpcj can be true at the moment

the decision is being made. To enable the situation where several predicates can be true

simultaneously some modifications are necessary. The Move instruction not only computes

the value of yc
i+1
j , but also causes its transmission to the other subsystems of the agent,

thus no composition of partial results is possible within the program (20). To make this

possible a slight modification of the Move definition is necessary and an introduction of

a separate entity responsible for the composition of partial results obtained from each

Move instruction being executed in parallel. The modification of the flowchart defining

the Move instruction (fig. 3) consists in exchanging the contents of the operational block

initiating the motion to position yc
i+1
ej
(i.e., executing: yc

i+1
ej

֌ ej) for the transmission of

partial result qci+1j to this new entity (e.g., a thread). Once this entity has collected the

partial results from all currently active Move instructions, it can compute the final value

according to one of the formulas (16) or (17) and then transmit the result to the other

subsystems of the agent for execution.

Agents can behave probabilistically too. In this case each behavior qbj(xc
i
j), q = 1, . . . , np,

is executed only when an associated predicate is true and a randomly chosen number from

the range [0, 1] is above a threshold value θp. The comparison of the random number and

the threshold can be incorporated directly into the predicate itself and thus the algorithm

(15) or (20) can be used. An indeterministic system results.

A more realistic system can be produced, if the probability of performing a certain action

is associated with the level of stimulus. Swarm intelligence systems [6] mimicking the

behavior of ants or bees frequently rely on such an approach. The stimulus can come

from the environment (in this case xc
i
Vj
is used) or from the other agents (then xc

i
Tj
is

utilized). Let us assume that one of the the components of xc
i
Vj
or xc

i
Tj
is used. It is

singled out by the symbol ζ , so ζxc
i
V/Tj
is being considered. The probability of executing

a certain behavior can be expressed as [6]:

Pθ =
(ζxc

i
V/Tj
)nθ

(ζxciV/Tj
)nθ + (θp)nθ

(21)

where nθ is an appropriately chosen positive integer – the simulation experiments in [6]

were carried out with nθ = 2. In such a system, when the stimulus is low (i.e.,
ζ
xc
i
V/Tj
≪ θp)

the probability of executing an associated action is next to nil, but if the stimulus is high

(i.e., ζxc
i
V/Tj
≫ θp) the action is executed almost certainly. In the case of ants, if an

individual detects a high pheromone level along some path the probability of following

it (executing the behavior of running along this path) is high. On the contrary, if the

pheromone level is low the ant is much less likely to follow that trail. An adequately

located threshold enables the adjustment between following standard routs and foraging

in an unknown or little known territory. The threshold θp does not have to be kept

constant. It can be adapted according to certain other factors, so the inclination of

an agent to behave in some way can vary according to those factors. Nevertheless, the

15



primary source of variability in the agent’s behavior is the stimulus intensity. Performance

of certain actions might reduce this intensity and so those actions are less likely to be

repeated (negative feedback). On the other hand some other actions can produce the

opposite effect. Performing those actions increases the level of stimulus, thus the agent

is motivated to repeat them (positive feedback). In a way the agent becomes addicted to

those actions.

Sometimes actions are performed only when stimulus is within a certain range. The

probability of executing an action when the stimulus is below a threshold or above a limit

is very low. For example, on a cold day, when we are far away from the fire or very near it

we are not likely to extend our hands to warm them up. In the former case, because they

would get even colder, and in the latter, because we would get burned. Only at a distance

within a certain range the hands would be pleasantly warmed, thus the probability of

executing an action consisting in extending the hands would be high only within that

range. To express this fact Gauss function can be used:

Pθ = e
−[ψ(ζxc

i
V/Tj
−θp)]2

(22)

where θp is the mid value in the range and ψ governs the steepness of the rise and fall of

probability Pθ and the size of the range. The stimulus is the temperature.

4 Conclusions

Transition function based formalism introduces rigor into the design and implementation

of multi agent systems. It decomposes a large system into components that can be

designed and implemented by providing the code for the specified functions. Each of

the control subsystem components (9) can be treated as an object in an object-oriented

programming sense. Thus the communication with the other agents, effectors or virtual

sensors can be handled internally by the methods of these objects (MRROC++ uses this

method). The objects provide, through their public interfaces, only the data that is

necessary for the computation of the control of the agent. Those objects provide data

that is utilized by transition functions (7) resident in the control subsystem to compute

the next state of this subsystem.

The pieces of code (12), (15), (18) and (20) are the general patterns that can be used in

creating behavioral controllers. Those are the patterns of the programming framework,

but they can be optimized for efficiency of execution. Moreover, certain hints have been

given how to create predicates both for deterministic and probabilistic systems. On the

one hand the patterns are very general, but on the other hand the programmer has

only to focus on coding elementary behaviors in the form of functions (10), sequences

(13) or sequences of Move instructions. Both single function and simultaneous multiple

function computation has been considered. Moreover, both competitive (selection based)

and cooperative (superposition based) methods of computing the final value have been

investigated. This paper concentrated just on behavioral control, but the presented

formalism was also used used to describe fuzzy [41] and deliberative [39] systems.
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