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Abstract

Markowitz formulated the portfolio optimization problem through two criteria: the mean,
representing the expected return, and the risk, a measure of the variability of the return.
The classical Markowitz model uses the variance as the risk measure and is a quadratic
programming problem. Many attempts have been made to linearize the portfolio optimiza-
tion problem. Several different risk measures have been proposed which are computationally
attractive as (for discrete random variables) they give rise to linear programming (LP) prob-
lems. The LP solvability is very important for real-life decisions where the portfolios have
to meet side constraints and take into account transaction costs. In this paper we review
the variety of LP solvable portfolio optimization models presented in the literature, the real
features that have been modeled and the solution approaches to the resulting models, in
most of the cases mixed integer linear programming (MILP) models. We also discuss the
impact of the inclusion of the real features.

Key words. Survey; LP computable mean–risk and mean–safety models; real features; trans-
action costs; exact and heuristic algorithms.

1 Introduction

The portfolio optimization problem considered in this paper follows the original Markowitz’
formulation and is based on a single period model of investment. At the beginning of a period,
an investor allocates the capital among various securities, assigning a share of the capital to each.
During the investment period, the portfolio generates a random rate of return. This results in a
new value of the capital (observed at the end of the period), increased or decreased with respect
to the invested capital by the average portfolio return. This model has played a crucial role in
stock investment and has served as basis for the development of the modern portfolio financial
theory.

In the original Markowitz model [56] the risk is measured by the standard deviation or
variance. Several other risk measures have been later considered, creating a family of mean–risk
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models. Whereas the original Markowitz model is a quadratic programming problem, following
Sharpe [81], many attempts have been made to linearize the portfolio optimization problem (c.f.,
[84] and references therein). The LP solvability is very important for applications to real-life
financial decisions where the portfolios have to meet numerous side constraints.

Obviously, in order to guarantee that the portfolio takes advantage of diversification, no risk
measure can be a linear function of the portfolio shares. Nevertheless, a risk measure can be LP
computable in the case of discrete random variables, when returns are defined by their realiza-
tions under the specified scenarios. This applies, in particular, to the mean absolute deviation
from the mean. The mean absolute deviation was very early considered in the portfolio anal-
ysis ([82] and references therein) while quite recently Konno and Yamazaki [38] presented and
analyzed the complete portfolio optimization model based on this risk measure — the so-called
MAD model. Yitzhaki [94] introduced the mean–risk model using Gini’s mean (absolute) differ-
ence as the risk measure. Recently, Young [95] analyzed the LP solvable portfolio optimization
model based on risk defined by the worst case scenario (minmax approach), while Ogryczak
[62] introduced the multiple criteria LP model covering all the above as special aggregation
techniques. While several LP computable measures are dispersion type risk measures, some
are safety measures which, when embedded in an optimization model, are maximized instead
of being minimized. A first survey on risk and safety basic LP solvable portfolio optimization
models can be found in [51].

In practical financial applications the portfolio optimization problem has to take into ac-
count real features such as transaction costs, minimum transaction lots, cardinality constraints,
thresholds on maximum or minimum investments. In most cases the inclusion of real features
in a basic model requires the introduction of integer and binary variables. We refer to these
models as models with real features. In some cases the modeling of real features is possible by
using as decision variables the security shares (percentages). We call the models based on shares
relative models and the investment variables relative. In several cases the introduction of real
features implies the need of variables that represent the absolute values of the capital invested in
each security. We call this second type of models absolute models and the investment variables
absolute.

In this paper we review the basic LP solvable portfolio models and the models with real
features that were presented in the literature, together with the solution approaches proposed
for the latter class of models.

The paper is organized as follows. Section 2 is devoted to an introduction to risk and safety
measures and reviews the basic LP solvable portfolio optimization models. In Section 3 we
recall short fall risk measures and the so-called Omega Ratio measures. We also analyze mixed
criteria obtained combining basic measures in weighted sum (enhanced measures). In Section
4 we introduce the relative and absolute models, then we review the literature on portfolio
optimization problems with real features and classify them according to the type of variables used
(relative or absolute models). Section 5 is devoted to solution approaches and computational
issues. We survey the main algorithms proposed in the literature for portfolio problems with real
features classifying them according to their nature in heuristic and exact solution approaches.
Even though the main focus is on mixed integer linear programming (MILP) models, we briefly
survey also main solution methods for the mean-variance model with real features. A part of this
section will also deal with the important computational issue concerning the solution of large
size LP problems including a high number of securities and scenarios. We will discuss recent
results from the literature showing how computational efficiency in solving huge LP portfolio
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problems can be addressed taking advantages from LP duality.

2 Introduction to LP solvable models

The portfolio optimization problem considered in this paper follows the original Markowitz
formulation and is based on a single period model of investment. At the beginning of a period,
an investor allocates the capital among various securities, thus assigning a nonnegative weight
(share of the capital) to each security. During the investment period, a security generates a
random rate of return. This results in a change of capital invested (observed at the end of the
period) which is measured by the weighted average of the individual rates of return.

Let J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variable Rj with a given mean
µj = E{Rj}. Further, let x = (xj)j=1,...,n denote a vector of decision variables xj expressing
the weights defining a portfolio. To represent a portfolio, the weights must satisfy a set of
constraints. The basic set of constraints is defined by a requirement that the weights must sum
to one, i.e.

∑n
j=1 xj = 1 and xj ≥ 0 for j = 1, . . . , n. An investor usually needs to consider

some other requirements expressed as a set of additional side constraints. Most of them can be
expressed as linear equations and inequalities. We will assume that the basic set of portfolios
Q is a general LP feasible set given in a canonical form as a system of linear equations with
nonnegative variables. Although, in farther sections we show that taking into account real
features such as transaction costs, minimum transaction lots, cardinality constraints, thresholds
on maximum or minimum investments in most cases requires the introduction of integer and
binary variables into the LP structure.

Each portfolio x defines a corresponding random variable Rx =
∑n

j=1Rjxj that represents
a portfolio rate of return. The mean rate of return for portfolio x is given as: µ(x) = E{Rx} =
∑n

j=1 µjxj . Following Markowitz [56], the portfolio optimization problem is modeled as a mean-
risk bicriteria optimization problem

max{[µ(x),−̺(x)] : x ∈ Q} (1)

where the mean µ(x) is maximized and the risk measure ̺(x) is minimized. A feasible portfolio
x0 ∈ Q is called the efficient solution of problem (1) or the µ/̺-efficient portfolio if there is no
x ∈ Q such that µ(x) ≥ µ(x0) and ̺(x) ≤ ̺(x0) with at least one inequality strict.

In the original Markowitz model [56] the risk is measured by the standard deviation or
variance: σ2(x) = E{(µ(x) − Rx)

2}. Several other risk measures have been later considered
thus creating the entire family of mean-risk (Markowitz type) models (c.f. [52]). We focus our
analysis on the class of Markowitz-type mean-risk models where risk measures, similar to the
standard deviation, are shift independent dispersion parameters. Thus, they are equal to 0 in
the case of a risk free portfolio and take positive values for any risky portfolio. Moreover, in
order to model possible advantages of a portfolio diversification, risk measure ̺(x) must be a
convex function of x.

While the original Markowitz model forms a quadratic programming problem, following
Sharpe [81], many attempts have been made to linearize the portfolio optimization procedure
(c.f., [84] and references therein). Certainly, to model advantages of a diversification, risk mea-
sures cannot be linear function of x. Nevertheless, the risk measure can be LP computable in the
case of discrete random variables, i.e., in the case of returns defined by their realizations under
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the specified scenarios. We will consider T scenarios with probabilities pt (where t = 1, . . . , T ).
Assume that for each random variable Rj its realization rjt under the scenario t are known. Typ-
ically, the realizations are derived from historical data treating T historical periods as equally
probable scenarios (pt = 1/t). Similar to the mean µ(x), the realizations of the portfolio returns
Rx are given by yt =

∑n
j=1 rjtxj . Therefore, several risk measures referring to the realizations

can be LP computable. In particular, Konno and Yamazaki [38] presented and analyzed the
complete portfolio optimization model (MAD model) based on the risk measure defined as the
mean absolute deviation from the mean:

δ(x) = E{|µ(x)−Rx|.} (2)

For a discrete random variable represented by its realizations the mean absolute deviation (2)
is LP computable as:

δ(x) = min{
T
∑

t=1

(d+t + d−t )pt : d−t − d+t =
n
∑

j=1

(µj − rjt)xj , d+t , d
−
t ≥ 0 for t = 1, . . . , T}. (3)

The MAD model proposed increased interest in LP portfolio optimization approaches resulting
in many new developments at the beginning of the 21st century. However, historically earlier
Yitzhaki [94] introduced the mean-risk model using Gini’s mean (absolute) difference as the risk
measure (hereafter referred to as GMD model). For a discrete random variable represented by its
realizations yt, the Gini’s mean difference is defined as Γ(x) = 1

2

∑T
t′=1

∑T
t′′=1 : |yt′ − yt′′ |pt′pt′′ .

Thus, obviously, it is LP computable as

Γ(x) = min{
1

2

T
∑

t′=1

T
∑

t′′=1

pt′pt′′dt′t′′ : dt′t′′ ≥
n
∑

j=1

(rjt′ − rjt′′)xj , dt′t′′ ≥ 0 for t′, t′′ = 1, . . . , T}.

(4)
Actually, several risk measures can be expressed as the optimal value of an LP problem of

the following form:
̺(x) = min{cTv : Av = Bx, v ≥ 0}, x ∈ Q, (5)

where v is a vector of auxiliary variables while the portfolio vector is defined by variables x.
One may notice that, except from x ∈ Q, all the LP constraints are homogeneous. It is related
to the fact that the risk measures ̺(x) we consider are positively homogeneous functions of x.
This property allows us to demonstrate easily that all the LP computable risk measures (5)
are actually convex functions of x. Indeed, the optimal value of the minimization LP problem
min{cTv : Av = b, v ≥ 0} is subadditive with respect to the vectors b. Hence, for any
0 ≤ α ≤ 1, one gets:

̺(αx′ + (1− α)x′′) = min{cTv : Av = αBx′ + (1− α)Bx′′, v ≥ 0}
≤ min{cTv : Av = αBx′, v ≥ 0}+min{cTv : Av = (1− α)Bx′′, v ≥ 0}
= α̺(x′) + (1− α)̺(x′′)

which proves the convexity of ̺(x).
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2.1 Risk and safety measures

The Markowitz model is frequently criticized as not consistent with axiomatic models of pref-
erences for choice under risk [75]. The Markowitz model is not consistent with the Second
Stochastic Dominance (SSD) order since its efficient set may contain portfolios characterized
by a small risk but also very low return (c.f. [64] and references therein). Unfortunately, it
is a common flaw of all Markowitz-type mean-risk models where risk is measured with some
dispersion measures. This can be illustrated by two portfolios x′ and x′′ (with rate of return
given in percents):

P{Rx′ = ξ} =

{

1, ξ = 1.0
0, otherwise

P{Rx′′ = ξ} =







1/2, ξ = 3.0
1/2, ξ = 5.0
0, otherwise

where the risk free portfolio x′ with the guaranteed result 1.0 is obviously worse than the
risky portfolio x′′ giving 3.0 or 5.0. In all preference models based on the risk aversion axioms
[8, 45] portfolio x′ is dominated by x′′, in particular Rx′′ ≻

SSD
Rx′ . On the other hand,

when a dispersion type risk measure ̺(x) is used, then both the portfolios are efficient in the
corresponding mean-risk model since for each such a measure ̺(x′′) > 0 while ̺(x′) = 0.

In order to overcome this weakness of the Markowitz model already Yitzhaki [94] while
introducing the Gini’s mean difference (GMD) model considered maximization of the safety
measure µ(x) − Γ(x) and demonstrated its SSD consistency. In the literature some of the LP
computable measures are dispersion type risk measures and some are safety measures, which,
when embedded in an optimization model, are maximized instead of being minimized (or defined
on losses instead of returns and then minimized [73]). We have shown [51] that each risk measure
̺(x) has a well defined corresponding safety measure µ(x)− ̺(x) and vice versa. Although the
risk measures are more ”natural”, due to the consolidated familiarity with Markowitz model,
the safety measures, contrary to the dispersion type risk measures, are SSD consistent, in the
sense that

Rx′ �
SSD

Rx′′ ⇒ µ(x′)− ̺(x′) ≥ µ(x′′)− ̺(x′′). (6)

Moreover, the LP computable safety measures we consider satisfy axioms of the so-called co-
herent risk measurement [8] (with the sign change [51]). If the risk measure ̺(x) is SSD safety
consistent (6), then except for portfolios with identical values of µ(x) and ̺(x), every efficient
solution of the bicriteria problem

max{[µ(x), µ(x) − ̺(x)] : x ∈ Q.} (7)

is an SSD efficient portfolio.
Note that a portfolio dominated in the mean-risk model (1) is also dominated in the corre-

sponding mean-safety model (7). Hence, the efficient portfolios of problem (7) form a subset of
the entire µ/̺-efficient set. We illustrate this in the µ/̺ image space in Fig. 1. Due to the con-
vexity of ̺(x) and linearity of µ(x), the portfolios x ∈ Q form in the µ/̺ image space a set with
the convex boundary from the side of µ–axis (i.e., the set {(µ, ̺) : µ = µ(x), ̺ ≥ ̺(x), x ∈ Q}
is convex). This boundary represents a curve of the relative minimum risk portfolios spanning
from the best expectation portfolio (BEP) to the worst expectation portfolio (WEP). The mini-
mum risk portfolio (MRP), defined as the solution of min

x∈Q
̺(x), limits the curve to the mean-risk
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efficient frontier from BEP to MRP. Similar, the maximum safety portfolio (MSP), defined as
the solution of max

x∈Q
[µ(x) − ̺(x)], distinguishes a part of the mean-risk efficient frontier, from

BEP to MSP, which is also mean-safety efficient. In the case of a SSD safety consistent risk
measure, this part of the efficient frontier represents portfolios which are SSD efficient.

✻

✲�
�
�
�
�
�
�
�
�

r
msp

rmrp

r

wep

r

bep

µ

̺

slope 1

Figure 1: The mean–risk analysis.

2.2 Handling bicriteria mean-risk problems

There are two ways of modeling risk averse preferences and corresponding approaches to handle
bicriteria mean-risk problem (1): the bounding analysis and the trade-off analysis. The former
is a common approach based on the use of a specified lower bound µ0 on expected returns which
results in the following problem:

min{̺(x) : µ(x) ≥ µ0, x ∈ Q.} (8)

This bounding approach provides a clear understanding of investor preferences. One may use
models with bounded risk instead of bounded return:

max{µ(x) : ̺(x) ≤ ̺0, x ∈ Q.} (9)

However, from a practical point of view, it is much more difficult to set a realistic bound on a
risk measure than on a required level of mean return.

Due to convexity of risk measures ̺(x) with respect to x, by solving the parametric problem
(8) with changing µ0 ∈ [ min

j=1,...,n
µj , max

j=1,...,n
µj ] one gets various efficient portfolios. Actually,

for µ0 smaller than the expected return of the MRP, problem (8) generates always the MRP as
the solution. Larger values of µ0 provide the parameterization of the µ/̺–efficient frontier by
generating efficient portfolios with µ(x) = µ0. Portfolios corresponding to larger values of bound
µ0 exceeding the expected return of the MSP are also efficient solutions to the corresponding
mean-safety problem (7). However, having a specified value of parameter µ0 one cannot know
if the optimal solution of (8) is also an efficient portfolio with respect to the corresponding
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mean–safety model (7) or not. Therefore, when using the bounding approach one should rather
consider explicitly a separate problem

max{µ(x)− ̺(x) : µ(x) ≥ µ0, x ∈ Q} (10)

for the corresponding mean-safety model (7).
Another approach to implementation of the Markowitz-type mean-risk model takes advan-

tage of the efficient frontier convexity to perform the trade-off analysis. Having assumed a
trade-off coefficient λ between the risk and the mean, the so-called risk aversion coefficient,
one may directly compare real values µ(x) − λ̺(x) and find the best portfolio by solving the
optimization problem:

max {µ(x) − λ̺(x) : x ∈ Q.} (11)

Various positive values of parameter λ allow the generation of various efficient portfolios. By
solving a parametric problem (11) with changing λ > 0 one gets so-called critical line approach
[57]. Due to convexity of risk measures ̺(x) with respect to x, λ > 0 provide the parameteriza-
tion of the entire set of the µ/̺–efficient portfolios (except of its two ends BEP and MRP which
are the limiting cases). Note that (1−λ)µ(x)+λ(µ(x)−̺(x)) = µ(x)−λ̺(x). Hence, bounded
trade-off 0 < λ < 1 in the Markowitz-type mean-risk model (1) corresponds to the complete
weighting parameterization of the model (7). Opposite to the bounding approach, having a
specified value of parameter λ one can immediately know if the optimal solution of (11) is also
an efficient portfolio with respect to the mean-safety model (7) or not. Thus, the trade-off
model (11) offers a universal tool covering both the standard mean-risk and the corresponding
mean-safety approaches. It provides easy modeling of the risk aversion and control of the SSD
efficiency. Therefore, in our analysis we will focus on this specification of the Markowitz-type
mean-risk models.

An alternative specific approach looks for a risky portfolio offering the maximum increase
of the mean return while comparing to the risk-free investment opportunities. Namely, having
given the risk-free rate of return r0 one seeks a risky portfolio x that maximizes the ratio
(µ(x)− r0)/̺(x). This leads us to the following ratio optimization problem:

max

{

µ(x)− r0
̺(x)

: x ∈ Q.

}

(12)

The optimal solution of problem (12) is usually called the tangency portfolio or the market
portfolio. Note that clear identification of dispersion type risk measures ̺(x) for all the LP
computable performance measures allows us to define tangency portfolio optimization for all the
models. For LP computable risk measures (5) the ratio model (12) can be converted into an LP
form (see Mansini, Ogryczak and Speranza [51]).

3 LP computable risk measures

3.1 Shortfall risk measures

The notion of risk is related to a possible failure of achieving some targets. It was formalized as
the so-called safety-first strategies [76] and later led to the concept of below-target risk measures
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[27] or shortfall criteria. The simplest shortfall criterion for a specific target value τ is the mean
below-target deviation (first Lower Partial Moment, LPM)

δ̄τ (x) = E{max{τ −Rx, 0}}. (13)

The mean below-target deviation is LP computable for returns represented by their realizations
as:

δ̄τ (x) = min{

T
∑

t=1

d−t pt : d−t ≥ τ −

n
∑

j=1

rjtxj, d−t ≥ 0 for t = 1, . . . , T}. (14)

Actually, the SSD relation is defined by pointwise comparison of functions [64]: F
(2)
x (τ) =

∫ τ

−∞
Fx(ξ) dξ = P{Rx ≤ τ}E{τ − Rx|Rx ≤ τ} = δ̄τ (x). Hence, the SSD relation is the Pareto

dominance for mean below-target deviations from infinite number (continuum) of targets.
The below-target deviations are very useful in investment situations with clearly defined

minimum acceptable returns (e.g. bankruptcy level) [27]. Otherwise, appropriate selection of
the target value might be a difficult task while the model is very sensitive to the target value
changes [28]. A combination of mean below-target deviations from a few targets was used in
the Russel-Yasuda-Kasai financial planning model [16] to define the corresponding risk measure.
However, for portfolio optimization they are rather rarely applied. Recently, the so-called Omega
Ratio measure defined for a given target as the ratio of the mean over-target deviation by the
mean below-target deviation has been introduced [78]:

Ωτ (x) =
E{max{Rx − τ, 0}}

E{max{τ −Rx, 0}}
=

∫∞

τ
(1− Fx(ξ)) dξ

∫ τ

−∞
Fx(ξ) dξ

Following [64], one gets

Ωτ (x) =
F

(2)
x (τ)− (τ − µ(x))

F
(2)
x (τ)

= 1 +
µ(x)− τ

δ̄τ (x)

Thus, Omega ratio maximization is equivalent to the standard ratio (tangent portfolio) model
(12) for the δ̄τ (x) measure with τ representing the risk-free rate of return.

The below-target deviations do not represent any shift independent dispersion type risk
measure to be considered in the Markowitz-type mean-risk model. In particular, the below-
target deviation may be equal to 0 for various risky portfolios, thus violating the risk relevance
requirement. When the mean expected return is used as a performance measure, then one should
consider the concept of shortfall applied to the mean as a target. This results in the risk measure
known as the downside mean semideviation from the mean

δ̄(x) = E{max{µ(x) −Rx, 0}} = F
(2)
x (µ(x)). (15)

The downside mean semideviation is always equal to the upside one [84, 64] and, therefore, we
refer it hereafter as to the mean semideviation. The mean semideviation is a half of the mean
absolute deviation from the mean, i.e. δ(x) = 2δ̄(x). Hence, the corresponding mean-risk model
is equivalent to the MAD model. For a discrete random variable represented by its realizations,
the mean semideviation (15) is LP computable as:

δ̄(x) = min{
T
∑

t=1

d−t pt : d−t ≥
n
∑

j=1

(µj − rjt)xj , d−t ≥ 0 for t = 1, . . . , T} (16)

8
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As shown in [64], the mean semideviation is SSD safety consistent and the corresponding
safety measure can be expressed as

µ(x)− δ̄(x) = E{µ(x)−max{µ(x)−Rx, 0}} = E{min{Rx, µ(x)}}, (17)

thus representing the mean downside underachievement.
The MAD model introduced by Konno and Yamazaki [38] with a directly defined mean

absolute deviation was not the first LP portfolio optimization model. Nevertheless, it has drawn
a lot of attention resulting in much research and speeding up development of other LP models.

For a discrete random variable represented by its realizations yt, the worst realization
mint=1,...,T yt is a well appealing safety measure, LP computable as

M(x) = max{v : v ≤

n
∑

j=1

rjtxj for t = 1, . . . , T}. (18)

The corresponding (dispersion) risk measure ∆(x) = µ(x) − M(x), the maximum (downside)
semideviation, is LP computable [62] as

∆(x) = min{v : v ≥

n
∑

j=1

(µj − rjt)xj for t = 1, . . . , T}. (19)

The measure M(x) was applied to portfolio optimization by Young [95] while the maximum
semideviation was introduced in [62] and analyzed in [32].

A natural generalization of the measure M(x) is a measure defined as the mean of the
specified size (quantile) of worst realizations. This leads to the quantile shortfall risk measures
related to the so-called Absolute Lorenz Curves (ALC) [83, 80, 61, 65] which represent the second
quantile functions defined as

F
(−2)
x (p) =

∫ p

0
F

(−1)
x (α)dα for 0 < p ≤ 1 and F

(−2)
x (0) = 0, (20)

where F
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-continuous inverse of the cumulative distribution

function Fx. Actually, the pointwise comparison of ALCs provides an alternative characteriza-

tion of the SSD relation [65] in the sense that Rx′ �
SSD

Rx′′ if and only if F
(−2)
x′ (β) ≥ F

(−2)
x′′ (β)

for all 0 < β ≤ 1. The duality (conjugency) relation between F (−2) and F (2) [61, 65] leads to
the following formula:

F
(−2)
x (β) = max

η∈R

[

βη − F
(2)
x (η)

]

= max
η∈R

[

βη − δ̄η(x)
]

(21)

where η is a real variable taking the value of β-quantile Qβ(x) at the optimum.
For any real tolerance level 0 < β ≤ 1, the normalized value of the ALC defined as Mβ(x) =

F
(−2)
x (β)/β is now commonly called the Conditional Value-at-Risk (CVaR). This name was

introduced by Rockafellar and Uryasev [73] who considered (similar to the Expected Shortfall

by Embrechts et al. [23]) the measure CVaR defined as E {Rx|Rx ≤ F
(−1)
x (β)} for continuous

distributions showing that it could then be expressed by a formula analogous to (21) and thus be
potentially LP computable. The approach has been further expanded to general distributions

9
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[74]. For additional discussion of relations between various definitions of the measures we refer
to [66].

The CVaR measure is a safety measure according to our classification [52]. The corresponding
risk measure ∆β(x) = µ(x) − Mβ(x) [66] is called the (worst) conditional semideviation (or
drawdown measure [19]). Note that, for any 0 < β < 1, the CVaR measures defined by F (−2)(β),
opposite to below-target mean deviations F (2)(η), are risk relevant. They are also coherent [69]
and SSD consistent [65]. For a discrete random variable represented by its realizations, due to
(14), problem (21) becomes an LP. Thus

Mβ(x) = max{η −
1

β

T
∑

t=1

d−t pt : d−t ≥ η −

n
∑

j=1

rjtxj , d−t ≥ 0 for t = 1, . . . , T}, (22)

whereas the conditional semideviations may be computed as the corresponding differences from
the mean

∆β(x) = min {

n
∑

j=1

µjxj − η +
1

β

T
∑

t=1

d−t pt :

d−t ≥ η −
∑n

j=1 rjtxj, d−t ≥ 0 for t = 1, . . . , T}.

(23)

Following [73, 3], the CVaR models had a great impact on new developments of risk measures
in finance during the first decade of 21st century. It is important to notice that, although the
quantile risk measures (VaR and CVaR) were introduced in banking as extreme risk measures
for small tolerance levels (like β = 0.05), for the portfolio optimization good results are usually
shown by rather larger tolerance levels [53].

Actually, all the classical LP computable risk measures are well defined characteristics of the
Lorenz function [62]. However, both the mean semideviation and the maximum semideviation
are rather rough measure when comparing to the Gini’s mean difference. Note that the corre-
sponding safety measure µ(x)− Γ(x) = E{Rx ∧Rx} expresses the expectation of the minimum
of two i.i.d.r.v. Rx [94], thus representing the mean worse return. This leads to the following
LP formula for the Gini’s mean difference

Γ(x) = min{

n
∑

j=1

µjxj −

T
∑

t=1

n
∑

j=1

rjtxjp
2
t − 2

T−1
∑

t′=1

T
∑

t′′=t′+1

ut′t′′pt′pt′′ :

ut′t′′ ≤
n
∑

j=1

rjt′xj, ut′t′′ ≤
n
∑

j=1

rjt′′xj ∀t′ = 1, . . . , T − 1; t′′ = t′ + 1, . . . , T}.

(24)

3.2 Enhanced risk measures

The most popular LP computable risk measures may be derived from the shortfall criteria of
SSD. They may be further extended to enhance the risk aversion modeling capabilities. First of
all, the measures may be combined by the weighted sum which allows the generation of various
mixed measures.

In particular, one may build a multiple CVaR measure by considering, say m, tolerance levels
0 < β1 < β2 < . . . < βm ≤ 1 and using weighted sum of the conditional semideviations ∆βk

(x)

10
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as a new risk measure

∆
(m)
w (x) =

m
∑

k=1

wk∆βk
(x),

m
∑

k=1

wk = 1, wk > 0 for k = 1, . . . ,m, (25)

with the corresponding safety measure

M
(m)
w (x) = µ(x)−∆

(m)
w (x) =

m
∑

k=1

wkMβk
(x). (26)

The resulting Weighted CVaR (WCVaR) models [53] use multiple CVaR measures thus allowing
for more detailed risk aversion modeling. The WCVaR risk measure is obviously LP computable
as

∆
(m)
w (x) = min{

n
∑

j=1

µjxj −
m
∑

k=1

wk(ηk −
1

βk

T
∑

t=1

dkt
−pt) : d−kt ≥ 0,

d−kt ≥ ηk −

n
∑

j=1

rjtxj for t = 1, . . . , T ; k = 1, . . . ,m}.

(27)

For appropriately defined weights the WCVaR measures may be considered some approxima-
tions to the Gini’s mean difference with the advantage of being computationally much simpler
than the GMD model itself. We analyzed the WCVaR measures defined as simple combinations
of a very few CVaR measures [53]. There were introduced two specific types of weight-settings
which related the WCVaR measure to the Gini’s mean difference (the Wide WCVaR) and its
tail version (the Tail WCVaR). This allowed us to use a few tolerance levels as only parame-
ters specifying the entire WCVaR measures while the corresponding weights are automatically
predefined by the requirements of the corresponding Gini’s measures. Our experimental anal-
ysis of the models performance on the real-life data from the Milan Stock Exchange confirmed
their attractiveness [53], as the WCVaR models usually performed better than the GMD, the
Minimax or the extremal CVaR models.

The risk measures introduced in the previous section, although all derived from the SSD
shortfall criteria, are quite different in modeling the downside risk aversion. Definitely, the
strongest in this respect is the maximum semideviation ∆(x) while the conditional semideviation
∆β(x) (CVaR model) allows us to extend the approach to a specified β quantile of the worst
returns which results in a continuum of models evolving from the strongest downside risk aversion
(β close to 0) to the complete risk neutrality (β = 1). The mean (downside) semideviation from
the mean, used in the MAD model, is formally a downside risk measure. However, due to the
symmetry of mean semideviations from the mean [84, 64], it is equally appropriate to interpret
it as a measure of the upside risk. Similar, the Gini’s mean difference, although related to all
the conditional maximum semideviations, is a symmetric risk measure (in the sense that for Rx

and −Rx it has exactly the same value). For better modeling of the risk averse preferences one
may enhance the below-mean downside risk aversion in various measures. The below-mean risk
downside aversion is a concept of risk aversion assuming that the variability of returns above
the mean should not be penalized since the investors are concerned about an underperformance
rather than the overperformance of a portfolio [57]. This can be implemented by focusing on the
distribution of downside underachievements min{Rx, µ(x)} instead of the original distribution
of returns Rx.

11
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Applying the mean semideviation (15) to the distribution of downside underachievements
min{Rx, µ(x)} one gets

δ̄2(x) = E{max{E{min{Rx, µ(x)}} −Rx, 0}} = E{max{µ(x) − δ̄(x) −Rx, 0}}.

This allows us to define the enhanced risk measure for the original distribution of returns Rx

as δ̄(2)(x) = δ̄(x) + δ̄2(x) with the corresponding safety measure µ(x)− δ̄(2)(x) = µ(x)− δ̄(x)−
δ̄2(x). As shown in [59] the above approach can be repeated recursively resulting in m (defined
recursively) distribution dependent targets µ1(x) = µ(x), µk(x) = E{min{Rx, µk(x)}} for k =
1, . . . ,m and the corresponding mean semideviations δ̄1(x) = δ̄(x), δ̄k(x) = E{max{µk(x) −
Rx, 0}} for k = 1, . . . ,m.

δ̄
(m)
w (x) =

m
∑

k=1

wk δ̄k(x) 1 = w1 ≥ w2 ≥ . . . ≥ wm ≥ 0 (28)

is SSD consistent measure of the m-MAD model [59]. Actually, the measure can be interpreted

as a single mean semideviation (from the mean) applied with a penalty function: δ̄
(m)
w (x) =

E{u(max{µ(x) − Rx, 0})} where u is increasing and convex piece-wise linear penalty function
with breakpoints bk = µ(x)−µk(x) and slopes sk = w1 + . . .+wk, k = 1, . . . ,m. Therefore, the

measure δ̄
(m)
w (x) is referred to as the mean penalized semideviation

δ̄
(m)
w (x) = min{

m
∑

k=1

wkzk : zk −

T
∑

t=1

ptd
−
kt = 0, d−kt ≥ 0,

d−kt ≥

n
∑

j=1

(µj − rjt)xj −

k−1
∑

i=1

zi for t = 1, . . . , T ; k = 1, . . . ,m}.

(29)

The Gini’s mean difference is a symmetric measure, thus equally treating both under and
overachievements. The enhancement technique allows us to define the downside Gini’s mean dif-
ference by applying the Gini’s mean difference to the distribution of downside underachievements
min{Rx, µ(x)} [40]. The downside Gini’s safety measure takes the form:

µ(x)− Γd(x) = E{min{Rx ∧Rx, µ(x)}} (30)

which is SSD safety consistent [40] and obviously LP computable.
The LP computable risk measures are based on exactly known distribution of returns in

terms of realizations and probabilities for several scenarios. Robust variants of the measures
have been recently considered where the underlying distribution is only known to belong to
a certain set P . Zhu and Fukushima [96] defined such a robust version of CVaR: the Worst-
Case CVaR (WCCVaR). They showed that its maximization remains LP tractable under box
uncertainty. Generally, such robust versions can be built for various risk criteria [88] leading to
LP models while applied to LP computable measures. Actually, for box uncertainty the robust
model of the mean is essentially a CVaR, and also the robust model of the CVaR itself is a CVaR
with appropriately redefined probabilities while robust MAD model is a nested CVaR measure
[63]. Till now there are no reported portfolio optimization applications of LP computable robust
risk measures.

12
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3.3 The LP models

As shown in the previous sections several LP computable risk measures have been considered
for portfolio optimization. Some of them were originally introduced rather as the safety mea-
sure in our classification (e.g., CVaR measures). Nevertheless, all of them can be represented
with positively homogeneous and shift independent risk measures ̺ of classical Markowitz type
models. Simple as well as more complicated LP computable risk measures ̺(x) can be defined
by (5), i.e. as

̺(x) = min{cTv : Av = Bx, v ≥ 0}, x ∈ Q, (31)

where v is a vector of auxiliary variables while the portfolio vector x apart from original portfolio
constraints x ∈ Q only defines a parametric vector b = Bx. Obviously, the corresponding safety
measures are given by a similar LP formula

µ(x)− ̺(x) = max{
n
∑

j=1

µjxj − cTv : Av = Bx, v ≥ 0}, x ∈ Q. (32)

Table 1 summarizes the major measures with the sizes of the corresponding LP problems (31)
in terms of number of auxiliary variables and constraints (matrix A dimensionality).

Table 1: LP computable risk measures.

Risk measure Auxiliary
̺(x) variables constraints

MAD model [38] δ̄(x) (15) T T

Minimax model [95] ∆(x) (19) 1 T

CVaR model [73] ∆β(x) (23) T + 1 T

GMD model [94] Γ(x) (24) T (T − 1)/2 T (T − 1)

m-MAD model [59] δ̄(m)(x) (29) m(T + 1) m(T + 1)

WCVaR model [53] ∆
(m)
w (x) (27) m(T + 1) mT

One may notice the number of auxiliary variables and constraints used in the MAD model
is equal to the number of scenario. Similar size (with one more variable) has the LP model for
the CVAR measures while the Minimax model requires only one auxiliary variable. The GMD
model is much more complex with number of auxiliary variables and constraints proportional to
T 2. The multiple level MAD and CVaR models (m-MAD and WCVaR, respectively) multiply
the number of auxiliary variables and constraints by the number of levels. Thus, replacing the
GMD with its WCVaR approximation based on a few levels may dramatically reduce the LP
problem complexity.

For each type of model, the mean-risk bounding approach (8) leads to the LP problem

min
x,v

{cTv : Av = Bx, v ≥ 0,
n
∑

j=1

µjxj ≥ µ0, x ∈ Q, } (33)

while the mean-safety bounding approach (10) results in

max
x,v

{
n
∑

j=1

µjxj − cTv : Av = Bx, v ≥ 0,
n
∑

j=1

µjxj ≥ µ0, x ∈ Q}. (34)
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Thus, both the LP models extend the basic LP risk model (31) only with one inequality and the
explicit portfolio variables and constraints of x ∈ Q. Similarly, the trade-off analysis approach
(11) results in LP model

max
x,v

{

n
∑

j=1

µjxj − λcTv : Av = Bx, v ≥ 0, x ∈ Q}, (35)

extending the basic one with only the explicit portfolio variables and constraints of x ∈ Q.
As mentioned, an alternative approach to bicriteria mean-risk problem of portfolio selection

depends on search for the tangency portfolio which maximizes the ratio µ(x)− r0/̺(x). The
corresponding ratio optimization problem (12) can be converted into an LP form by the follow-
ing transformation [51]: introduce an auxiliary variable z = 1/̺(x), then replace the original
variables x and v with x̃ = zx and ṽ = zv, respectively, getting the linear criterion and an LP
feasible set. For risk measure ̺ defined by (31) one gets the following LP formulation of the
corresponding ratio model

max
x̃,ṽ,z

{

n
∑

j=1

µj x̃j − r0z : cT ṽ = z, Aṽ = Bx̃, ṽ ≥ 0,

n
∑

j=1

x̃j = z, x̃j ≥ 0 for j = 1, . . . , n},

(36)

where the second line constraints correspond to the simplest definition of set Q = {x :
∑n

j=1 xj =
1, xj ≥ 0 ∀j = 1, . . . , n} and can be accordingly formulated for any other LP set. Once the
transformed problem is solved, the values of the portfolio variables xj can be found by dividing
x̃j by the optimal value of z.

4 Portfolio optimization with real features

We call real features all the additional characteristics an investor may wish to consider when se-
lecting a portfolio of securities or is obliged to include as practical restrictions reflecting common
financial market conditions. Real features may include, for example, transaction lots, transaction
costs, buy-in threshold on investments or number of securities.

The objective of this section is twofold. We first introduce the concepts of relative and
absolute models. In fact, the modeling of some real features is possible by using as decision
variables the security shares (percentages). We call the models based on shares relative models
and the investment variables relative. In several cases, however, the introduction of real features
implies the need of variables that represent the absolute values of the capital invested in each
security. We call this second type of models absolute models and the investment variables
absolute. Then, we show how the introduction of real features modifies the portfolio optimization
model and review main contributions in the literature dealing with portfolio real features.

4.1 Relative and absolute models

We define available capital the total amount of money that is available to the investor, both for
the investment in securities and possible additional costs. In general, part of this money may
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also be left uninvested. The invested capital is the capital strictly used for the investment and
that yields a return.

More frequently in portfolio models, the invested capital coincides with the available capital.
In this case the capital is treated as a constant parameter C̄, and possibly normalized to 1 in
the case of relative models. This leads to relative models (RM), as presented in earlier section,
with general structure as follows:

RM: max z − λ̺(x) (37)

z =
n
∑

j=1

µjxj (38)

n
∑

j=1

xj = 1 (39)

0 ≤ xj ≤ 1 j = 1, . . . , n, (40)

with decision variables xj expressing the shares of invested capital. While taking into account
real feature it may be in some cases necessary to define absolute investments in securities (the
invested amounts). In order to clearly distinguish the absolute variables from the relative vari-
ables we denote the former with capital letters X. In the case of constant invested capital C̄,
absolute values can be easily defined by linear functions Xj = C̄xj .

Actually, when real features are considered, while the available capital is always a constant,
the invested capital must be rather treated as a problem variable and we denote it as C. Then,
we need to constrain the capital availability through a lower and an upper bound on the variable
C:

C̄L ≤ C ≤ C̄U . (41)

The introduction of the invested capital as a variable, and the consequent introduction of the
constraint (41), causes the use of the quadratic expression Cxj to represent the absolute invest-
ment in security j, j ∈ N .

There are two ways to avoid the quadratic expressions Cxj in an optimization model. The
simplest approach depends on directly dealing with absolute values instead of shares thus leading
to the so-called absolute model (AM). For the sake of simplicity, we do not constrain the X
variables to a set of linear constraints corresponding to the set Q that we have introduced for
the relative models. Instead, we explicitly write the main linear constraints needed for the
definition of a feasible portfolio. The trade-off model (11) formulated as an absolute model
takes the following form:
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AM: maxZ − λ̺(X) (42)

Z =

n
∑

j=1

µjXj (43)

n
∑

j=1

Xj = C (44)

Xj ≥ 0 for j = 1, . . . , n (45)

C̄L ≤ C ≤ C̄U , (46)

where Z is the expected amount of the portfolio return and ̺(X) is the risk of the portfolio X

computed on returns as absolute values.
Alternatively, to avoid the quadratic expressions Cxj, one may consider shares as the

amounts invested relatively to the capital available C̄U rather than to the capital invested C,
leading to the following relative to constant model (RCM):

RCM: max z − λ̺(x) (47)

z =

n
∑

j=1

µjxj (48)

n
∑

j=1

xj ≤ 1 (49)

C = C̄U

n
∑

j=1

xj (50)

C̄L ≤ C ≤ C̄U (51)

0 ≤ xj ≤ 1 j = 1, . . . , n. (52)

The invested amounts corresponding to the shares xj are now available as quantities C̄Uxj and
the model has linear constraints. Moreover, the model can be reformulated to take into account
an explicit share x0 of uninvested capital, thus standardizing the balance constraint (49) to the
following:

x0 +

n
∑

j=1

xj = 1. (53)

In practical implementations x0 may cover both the transaction costs and the possible money
left uninvested.

Both AM and RCM models are consistent with the corresponding bicriteria mean/risk
(Markowitz-type) dominance. They are equivalent in the sense that they apply the same returns
to both risk (safety) measure and mean criterion. Generally, there is no guarantee on whether
the invested capital in an optimal portfolio will be close to the lower or to the upper bound.
However, the selected trade-off coefficient λ may ’push’ the value of the invested capital towards
the lower or the upper bound. Actually, the trade-off optimization supports increase of the
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invested capital (if profitable). The other classical mean-risk bounding approach may lead to
unjustified limitation of the invested capital. We illustrate this with the following example.

Example 1 Let us consider C̄L = a while the capital to invest is equal to 2a (C̄U = 2a). The
set of alternatives consists of two securities. Security 1 has a minimum lot value of c1 = a
and return equal to r11 = b, r12 = b + 2 with µ1 = b + 1. Security 2 is risk free with c2 = a,
r21 = b + 3, r22 = b + 3 and µ2 = b + 3. A current portfolio consists of one lot for security 1
and zero lot for security 2. Hence, it is defined by X ′′

1 = a and X ′′
2 = 0 in absolute model AM,

by x′′1 = 1 and x′′1 = 0 in RM and by x′′1 = 0.5 and x′′1 = 0 in RCM. Suppose that this initial
portfolio can be expanded (still keeping security 1) by including one lot of security 2. Expanded
portfolio will be equal to X ′′

1 = a and X ′′
2 = a in AM, x′′1 = 0.5 and x′′1 = 0.5 in RM and RCM.

The following table provides the outcomes mean returns and risk values measured by the mean
semideviation. In terms of preferences under risk the expanded portfolio is obviously much better

Table 2: Sample Mean/Risk outcomes.

Model Portfolio (1,0) Portfolio (1,1)
Return Risk Return Risk

RM b+ 1 1
2 = (b+ 1− b)12 b+ 1

2
1
4 = (12 (2b+ 4)− 1

2(2b+ 3))12
AM (b+ 1)a a

2 = (b+ 1− b)a2 (2b+ 4)a a
2 = ((2b + 4)− (2b+ 3))a2

RCM 1
2(b+ 1) 1

4 = ((b+ 1− b)14
1
2(2b+ 4) 1

4 = (12 (2b+ 4)− 1
2(2b+ 3))12

than the original one. One may easily notice that all the models recognize improvement (higher
expected return) while expanding the initial portfolio. However, only RM model shows also an
improvement of the risk value (lower relative risk) while in AM and RCM models risk values do
not change.

4.2 Modeling real features

In this section we discuss the main portfolio real features and their introduction in the portfolio
optimization models specifying when the use of absolute or relative variables is required. Main
contributions on portfolio problems with real features are also provided and classified.

Some real features can be incorporated in both absolute and relative portfolio optimization
models, whereas some others require the use of absolute variables. To discuss how some of
these features can be incorporated in a portfolio optimization model we need additional binary
variables zj , one for each security j, j = 1, ..., n,. Variable zj will be equal to 1 when security
j is selected in the portfolio, and to 0 otherwise. In some optimization models, zj behavior is
enforced by means of the linear constraint zj ≥ xj if the model is relative and by C̄zj ≥ Xj

if absolute. Note, however, that these conditions let variable zj free to take value 1 when xj
(Xj) is zero. While it is possible to prove that if xj = 0 (Xj = 0), then an optimal solution
with zj = 0 always exists, in practice the introduction of these binary variables is usually
associated with investment threshold constraints as ljzj ≤ xj ≤ ujzj if the model is relative,
and Ljzj ≤ Xj ≤ Ujzj if absolute, where uj = 1 and Uj = C̄.

Main real features for portfolio selection problems can be classified as follows:

1. Transaction costs In real financial markets transaction costs are entailed by purchases and
sales of securities and are paid both in case of portfolio revision and in case of buy and
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hold investments. Transaction costs have a direct impact on portfolio performance so that
ignoring them may result in inefficient portfolios (see Arnott and Wagner [7]). Classical
regulations for finance businesses distinguish transaction costs in variable and fixed costs.
While variable transaction costs render individual securities less attractive but do not
inhibit portfolio diversification, fixed transaction costs provide an explanation for reduced
portfolio size. Before the pioneering work by Patel and Subrahmanyam [68] where fixed
costs have been explicitly modeled in a mean variance portfolio problem with absolute
variables, the fixed transaction costs were analyzed only indirectly by placing restrictions
on the number of securities in the optimal portfolio (see, for instance, Levy [44]).

1.1 Variable costs These transaction costs depend on the amount or on the share invested
in each security.

If cost is proportional, the models (AM) and (RM) can be easily adapted to incor-
porate such a cost by subtracting it from µj in the return constraint (43) and (38),
respectively.

In some cases, variable costs might be incurred only if capital invested overcomes a
given amount. More precisely, non overlapping intervals are specified and a different
cost percentage is applied depending on the interval in which the capital invested
lies. This is the case of the entering commissions for mutual funds where the applied
rates typically decrease when the capital invested increases (see Chiodi, Mansini and
Speranza [20]). A structure with step increasing transaction costs can be found in
Le Thi, Moeini and Pham Dinh [43]. To model this feature we need to introduce
a binary variables zij for each security j and each interval of investment (and rate)
i and to add a number of constraints depending on the number of securities and of
intervals, i.e. Mi−1,jzij ≤ Xij ≤ Mijzij and

∑

i∈I zij ≤ 1, where Xij is the amount
invested for security j in interval i, Mi−1,j,Mij are capital lower and upper bound
for interval i, and I is the set of intervals. This feature can be similarly incorporated
in a relative model (RM) provided that transaction costs are inserted only in return
constraint.

In fact, if costs are charged independently for each security and thus the total cost
is the sum, over all securities, of a cost that depends on the amount of investment
in each security, then the total capital invested (actually invested in securities and
used to pay costs) cannot be assumed as known a priori and depend on the portfolio.
Recalling the discussion of Section 4.1 about the cases where the capital invested is
variable, we need to adapt to this case constraint (41), where C is a variable of the
model. Let Kj(·) be the transaction cost function for security j. Then, the constraint

– in absolute models

C̄L ≤ C +
n
∑

j=1

Kj(Xj) ≤ C̄U , (54)

– in relative models

C̄L ≤ C +
n
∑

j=1

Kj(Cxj) ≤ C̄U (55)
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needs to be added. Notice that (55) introduces a quadratic expression into the
relative model. Moreover, in general, Kj(·) might be a non linear function of the
investment (see, for instance, Konno and Wijayanayake [36] where the authors
analyze a concave transaction cost for each security).

1.2 Fixed costs Fixed costs are odd-lot commissions and/or lump taxes. A fixed
cost fj is applied to each security j if selected in the portfolio (variable zj = 1)
or may be incurred if the security investment exceeds a given threshold (see,
for instance, Kellerer, Mansini, Speranza [33]). In the latter case variable zj is
forced to 1 if amount invested in security j is larger than a given amount Mj,
i.e. zj ≥ (Xj −Mj)/C̄, and 0 otherwise.

In the literature, fixed and variables costs have been mainly dealt with in absolute
models (see Table 3). In all these contributions but few exceptions, transaction
costs are assumed to be incurred at the end of the period and therefore globally
deducted from the portfolio return. In the past only Young in [95] when dealing with
transactions costs as possible real extension of his linear minimax model, inserts them
also in the capital constraint. More recently, Woodside-Oriakhi, Lucas and Beasley
[92] bounded transaction costs in a separated constraint.

2. Transaction lots (rounds) A transaction lot, also called round, is a minimum transaction
unit required to invest in a security. These constraints are common trading requirements
implying that the investment in a security has to be expressed as a multiple of a transaction
lot.

Let cj represent the monetary value of the transaction lot for security j and let wj be the
variable representing the number of lots of security j in the portfolio

wj ≥ 0 integer.

Then, the transaction lots can be modeled as follows:

• in absolute models

Xj = cjwj, (56)

• in relative models

Cxj = cjwj. (57)

Applying transaction lot constraints, it may not be possible to exactly satisfy the budget
requirement, thus budget is a variable C ranging in the interval [C̄L, C̄U ]. Note that
constraint (57) introduces a nonlinear relation into relative models.

Many contributions are available in the literature on portfolio selection problems including
transaction lots either in absolute and in relative models. For instance, absolute models
that include transaction lots are presented in Mansini and Speranza [54] and in Kellerer,
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Mansini and Speranza [33], whereas Streichert, Ulmer and Zell [86] introduce transaction
lots into a relative mean-variance model. In Chang et al. [17] transaction lots are only
mentioned. In Jobst et al. [31] the cash value of each transaction lot is expressed as
a fraction of the portfolio wealth so that the portfolio weights are defined in terms of
such fractions and the integer number of lots. Budget constraint is made elastic using
undershoot and overshoot variables, ǫ− and ǫ+, respectively, which are penalized in the
objective function with a high cost, γ. In an optimum solution ǫ− and ǫ+ are made as
small as possible so that the fractional holdings xi sum to a value as close as possible to 1.

3. Cardinality constraint One basic implication of modern portfolio theory is that investors
hold well diversified portfolios. However, there is empirical evidence that individual in-
vestors typically hold only a small number of securities. Market imperfections such as fixed
transaction costs provide one of the possible explanations for the selection of undiversified
portfolios (see Wilding [91]), but frequently the need to avoid costs of monitoring and of
portfolio re-weighting leads investors to the common practice of limiting the number of
securities (portfolio cardinality) that can be selected in a portfolio.

Cardinality constraint can be expressed either as a strict equality or as an inequality
imposing that the number of selected securities cannot be larger than a predefined number
k

n
∑

j=1

zj ≤ k, (58)

and is usually associated with threshold constraints to correctly enforce the value of binary
variables.

Many works both on mean variance approach and on linear risk/safety measures have
been presented in the literature dealing with cardinality constraint portfolio optimization.
In Chang et al. [17] the authors extend the relative mean-variance model to include the
cardinality constraint. The same model was previously studied by Bienstock [14]. Mean-
variance models with the cardinality constraint are presented in Jobst et al., [31], Lui and
Stefek [49], in Lee and Mitchell [42], in Lin, Sun and Wang [46], in Fieldsend, Matatko
and Peng [26] and many others (see Table 3). All these models are relative. Linear models
including cardinality constraint are proposed by Speranza [85] and by Angelelli, Mansini
and Speranza [4], [6] and are all absolute models. In [77] Sankaran and Patil introduce
the cardinality constraint into an absolute model. Finally, in [1] cardinality constraint is
directly minimized as an objective function.

4. Investment threshold constraints These constraints define lower and upper limits on the
proportion/amount of each asset held in the portfolio. They may model institutional
restrictions on the composition of the portfolio and usually are used to rule out negligible
holdings of asset in the portfolio, thus making its control easier.

If the constraint is on a single security it is commonly formulated as:

lj ≤ xj ≤ uj (59)

in relative models, and as

20



Institute of Control & Computation Engineering Report 12–09

Lj ≤ Xj ≤ Uj (60)

in absolute models, where lj (uj) and Lj (Uj) are the lower (upper) bounds on the invest-
ment in security j, the former expressed in percentage, the latter in amount of capital.
When such constraints are generalized to all the securities they are modeled using binary
variables.

In general, it may happen that a single security or a little diversified portfolio is SSD dom-
inating over all other (more diversified) portfolios, and the SSD consistent Markowitz-type
models will select such an undiversified solution. Especially, the SSD consistent models
based on the LP computable risk measures may fail to generate sufficiently diversified port-
folios. Therefore, additional restrictions may be set on the feasible portfolios to guarantee
the required diversification. The simplest way to enforce portfolio diversification is to limit
the maximum share as in (59) and (60). This, however, gives as a result a portfolio with
a few shares at the maximum level. A better modeling alternative would be to allow for
a relatively large maximum share provided that the other shares are smaller. Such a rich
diversification scheme may be introduced with the CVaR constructs applied to the right
tail of the distribution of shares (see Mansini, Ogryczak and Speranza [53] for a detail
description). In particular, any model under consideration can easily be extended with
direct diversification constraints specified as follows:

ksk +
n
∑

j=1

dskj ≤ γk and dskj ≤ xj − sk, d
s
kj ≥ 0 j = 1, ..., n, (61)

where sk is an unbounded variable (representing the k-th largest share at the optimum),
dskj are additional nonnegative (deviational) variables, and γk is the upper bound on the
total of the k largest shares.

Finally, a lower and an upper bound on the investment may also refer to a set of secu-
rities instead than to a single one (class constraints). These are typical sector/industry
constraints (see Chang et al. [17] where they are only modeled and Anagnostopoulos and
Mamanis [1]). Let Γs be a set of securities of the same sector s. A class constraint is, in
relative models, formulated as follows:

ls ≤
∑

j∈Γs

xj ≤ us, (62)

where ls and us are lower and upper bounds expressed as percentage on the total unitary
investment available for securities belonging to sector s. Similarly, in the case of absolute
models, with the X’s instead of the x’s and the constants that represent amounts.

It is worth noticing that all references reported in Table 3 for cardinality constraints and
fixed costs also include threshold constraints typically used to enforce binary variables zj
value. Thus, threshold bounds only refer to contributions where lower and upper bounds
are the only real feature introduced or where investment bounds (especially upper bounds)
are modeled without the use of binary variables.
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5. Decision dependency constraints Decision dependency requirements are common in finan-
cial dealings. To be correctly modeled, they need the binary variables zj already described.
Usually they take one of the following forms:

Both securities i and j have to belong to the portfolio if security k is selected (joint
investment):

zi + zj ≥ 2zk. (63)

Stock i cannot be selected if security j is in the portfolio (mutually exclusive investment):

zi + zj ≤ 1. (64)

Security i can be selected only if security j is in the portfolio (contingent investment):

zi ≤ zj . (65)

Combinations of these conditions are also possible, resulting in more complex relationships.
These investment restrictions can be an essential part of a diversification strategy for
investing in, for instance, a mutual fund.

An early study that incorporated some of these conditions is by Weingartner [90]. Exam-
ples of such kind of constraints can also be found in Syam [87] and Young [95], where the
author mentions them without any experimental application.

In Table 3 we summarize the main contributions available in the literature on portfolio
selection problems with real features. We classify them according to the real features considered
and for the type of model (relative or absolute) in which real features have been inserted.

Table 3: State of the art on portfolio selection problems with real features.

Relative models Absolute models

Variable costs [11], [36], [93], [12], [39], [92] [95], [85], [54], [33], [50], [20], [55], [34]
[37], [13] [46], [4], [29], [43],[10], [6]

Fixed costs [92] [68], [85], [95], [33], [20], [55], [4],[29], [10],[6]

Transaction lots [31], [86], [48], [15], [9], [18] [38], [87], [54], [33], [20], [55], [46], [4], [6]

Cardinality constraint [49],[42], [77], [86], [17], [31], [21], [58], [14], [85], [46], [4], [6]
[26], [25], [12], [18], [1], [2], [92], [89]

Investment threshold [17], [36], [93], [53], [15], [9], [1] [87], [95], [54], [37], [34], [13], [46], [43]

Dependency constraints [87], [95]
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5 Solution algorithms and computational issues

In the last years developments in portfolio optimization have been especially stimulated by
efficiency issues, i.e. by the capability to handle in an efficient manner portfolios with a large
number of securities and scenarios and possibly including real features.

Without real features, also a quadratic mean-variance model can be readily solvable using a
standard quadratic programming solver, and methods available are quite competitive also with
respect to linear models. Indeed computational issues may still arise, but only for problems of
very large size and when solutions are needed quickly. On the contrary the introduction of real
features when requiring integer and/or binary variables may increase problem complexity sig-
nificantly, and the gap between linear and quadratic models solution efficiency and effectiveness
may become relevant. We will devote a part of this section to the analysis of solution algorithms
for portfolio optimization with real features dividing them in exact and heuristic approaches.
The focus will be on methods proposed for solving mixed integer linear programming portfolio
problems, but main references on solution algorithms for the mean-variance model with real
features will also be surveyed.

Another important computational issue on portfolio optimization is related to the solution of
very large size problems including a high number of securities/stocks and scenarios. LP models
have a number of constraints proportional to the number of scenarios, whereas the number of
variables is proportional to the total of the number of scenarios and of instruments (see Table
1). They can be solved effectively with general purpose LP solvers provided that the number
of scenarios is limited. In real-life contexts, financial decisions are usually based on simulation
models employed for scenario generation where one may have several thousands of scenarios.
This may lead to the solution of LP models with huge number of variables and constraints, thus
decreasing their computational efficiency and making them hardly solvable by general LP tools.
A part of this section will discuss recent results from the literature showing how computational
efficiency in solving huge LP portfolio problems can be addressed.

5.1 Exact and heuristic solution algorithms

Nowadays, computationally effective algorithms for the exact solution of non-convex quadratic
programming in which the feasible region is a mixed-integer set do not exist, and until recently
there has been relatively little work presented in the literature on this subject. Thus, while
most of the solution methodologies that tackle discrete features in portfolio selection with mean-
variance formulation are heuristic in nature, the computational challenge of solving large real
portfolio problems has justified an increasing interest for mixed integer LP portfolio models and
for both their exact and heuristic solutions. We recall that finding a feasible solution for the
portfolio selection problem with minimum transaction lots and for the portfolio selection problem
with fixed costs have been proved to be NP-complete problems (see Mansini and Speranza [54]
and Kellerer, Mansini and Speranza [33], respectively) .

In the following we will analyze the main solution algorithms proposed in the literature for
LP models classifying them according to their nature in heuristic and exact solution approaches.
Even if the main focus is on mixed integer linear programming models, we briefly survey also
main solution methods for the mean-variance model with real features (see Table 4).
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Table 4: Exact and heuristic algorithms for portfolio problems with real features.

Exact Algorithms Heuristic Algorithms

Mean Variance LP measures Mean Variance LP measures

Variable costs [13], [46], [93], [12] [36], [37], [34], [43], [55] [50], [12], [10] [85], [54], [33],
[20], [55], [4], [6]

Fixed costs [68] [55] [10] [85], [33], [20],
[55], [4], [6]

Transaction [87], [46], [15] [55] [31], [86], [48], [9], [18], [85], [54], [33],[20],
lots [55], [4], [18], [6]

Cardinality [14], [42], [77], [46], [49], [17], [31], [21], [85], [4],
constraint [12] [58], [26],[86], [25], [18], [6]

[12], [18], [1], [2]

Investment [13], [46], [93], [15] [36], [37], [34], [43] [17], [9], [1] [54]
threshold

Dependency [87] [95]
constraints

Heuristic methods

A major advantage of modeling a problem as a mixed integer linear programming problem
is that, if the problem is of small size, it can be solved by a standard commercial software.
However, if the problem is of medium or large size (as for portfolio problems) the continuous
relaxation of the MILP problem may convey useful information for its solution. Indeed, almost
all the heuristics proposed in the literature for MILP portfolio problems use as starting point
the optimal solution of the continuous relaxation either to get a feasible solution through some
rounding procedure or to ”measure” the likelihood of a variable to be in the optimal solution
(i.e., to take a positive value in the optimal solution of the MILP problem).

Speranza [85] analyzes a portfolio problem based on mean absolute semideviation including
minimum transaction lots, fixed and proportional transaction costs. An intuitive rounding
procedure of the continuous relaxation optimal solution to satisfy model constraints is proposed.

Angelelli, Mansini and Speranza [4] provide a financial and computational comparison of
MAD and CVaR models with real features analyzing their performance on real size instances.
At this aim they use simple and effective heuristics to be used when integer optimal solutions
cannot be found in a reasonable amount of time. Since the optimal solution of the continuous
relaxation of the proposed models can be efficiently computed by means of a standard commercial
software and the time required is very small, even on problems of realistic size, the basic idea
of such heuristics is that securities selected in the optimal solution of the continuous relaxation
or with the smallest reduced costs are the most interesting. Then, non-interesting securities are
discarded and the set of interesting securities is taken as the only set on which model with real
features is solved. The size of the models becomes in this way much smaller and the optimal
solution can be obtained by means of a commercial software in a reasonable time.

This idea of identifying a subset of more significant securities was firstly proposed in Mansini
and Speranza [54] to solve a portfolio problem with transaction lots optimizing the mean semide-
viation risk measure, and further developed in other papers where different portfolio real features
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were considered (see Kellerer, Mansini and Speranza [33], Chiodi, Mansini and Speranza[20])
up to a more general heuristic framework called Kernel Search (see [6]) including and extending
all previous approaches. The main idea of Kernel Search is to obtain a solution, of hopefully
high quality, from a small set of promising securities, called the kernel. The kernel is initially
built using information provided by the solution of the linear relaxation of the original problem.
Then, new promising securities are identified by solving a sequence of small/moderate size MILP
problems. The first MILP problem is restricted to the initial kernel. Any other MILP problem
in the sequence is restricted to the previous kernel plus a set of other securities that were initially
excluded. The solution of the current MILP problem may identify some new securities not yet
included in the kernel. If this is the case, such new securities are added to the kernel. The pos-
sibly updated kernel will be forwarded to the next MILP problem of the sequence. The kernel
increases in a monotonic way, i.e. no security will be discharged at any time, and the solution of
any MILP problem in the sequence provides a bound on the optimal solution for all the succes-
sive ones. One of the main issues the authors address concerns the size of these MILP problems.
This value should be small enough to limit the computational time required to solve each MILP
problem and large enough to be likely to contain most of the difficult to select securities (i.e.
those that can be selected only if all securities were considered altogether). Different heuristics
can be designed as implementations of the proposed Kernel Search framework. Such heuristics
have two major characteristics relevant from a practical point of view. The first one is that they
require little implementation effort because the most cumbersome part of the search is carried
out by a commercial software for the solution of linear and mixed integer linear programming
problems. The second characteristic is that the same heuristic can be easily applicable also to
other problems. The authors apply several of such heuristics and test them on a complex port-
folio optimization problem taking different real features such as minimum transaction lots and
cardinality constraint into account. The model maximizes a performance measure represented
by the Worst Conditional Expectation. Indeed, since the Kernel Search framework exploits a
major characteristic of the portfolio selection problem which is the fact that the number of
securities selected by an optimization model is usually quite small, independently of the initial
size of the problem, any other mixed integer linear programming formulation using a different
performance measure could have been used. Kernel Search can also be easily applied also to
other combinatorial optimization problems (see, for instance, [5]). Computational results show
that this general method is extremely effective finding the optimal solution in almost all tested
instances involving up to 600 securities and 104 scenarios (2 years weekly returns).

In Mansini and Speranza [55] a local search heuristic is proposed to solve a mixed integer
linear programming portfolio problem with transaction costs and minimum lots. The method is
based on the optimal solution of the continuous relaxation of subproblems formulated considering
a subset M of securities and by adding a cardinality constraint

∑

j∈M zj = l. Value of parameter
l is iteratively changed by means of a local search procedure. At each iteration an integer solution
is constructed by using the optimal solution of the current relaxed subproblem. More precisely,
local search is guided by the parameter l and a parameter w, which represents the maximum
number of iterations allowed without any improvement of the objective function value. First,
the value of the parameter l is decreased (downside search phase). At each reduction of one
unit of l, the procedure used to construct an integer solution is repeated and a new subproblem
is solved. If the current objective function value is not improved, the value of the parameter
w is decreased by one unit. The downside search phase ends when l = 1 or w = 0. Then
the procedure searches for higher cardinality portfolios (upside search phase). The value of l is
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increased from the initial value to |M |. The upside search phase ends when l = |M | or w = 0.
The procedure is used as initial solution of an exact algorithm. Computational results show that
this procedure is extremely efficient and quite effective.

In Lin and Liu [48] the authors present three possible relative models for portfolio selection
problems with minimum transaction lots. One of these models is based on MAD measure of risk
and is thus a mixed integer linear programming problem. The authors devise genetic algorithms
(GA) to solve all proposed models using Taiwanese mutual fund data from the year 1997 to
2000. The results of the empirical study show that the portfolios obtained using the proposed
algorithms are very close to the efficient frontier, indicating that the proposed method can
obtain near optimal and also practically feasible solutions to the portfolio selection problem
in an acceptable short time (no more than few minutes). This paper shows that a general
metaheuristic approach as GA can be easily adapted to solve different problems optimizing
MAD as well as variance.

Indeed, several contributions can be found in the literature on metaheuristic approaches for
solving the mean-variance model with different real features (we refer to di Tollo and Roli [22] for
a comprehensive survey). See, for instance, among the others, the metaheuristics proposed for
portfolio selection with cardinality constraint: Maringer and Kellerer [58] introduce an iterative
hybrid algorithm combining local search strategies with principles of simulated annealing and
evolutionary strategies; Anagnostopoulos and Mamanis [1, 2] apply multi objective evolutionary
algorithms (MOEA) and state of the art evolutionary multi objective optimization techniques,
namely the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Pareto Envelope-based
Selection Algorithm (PESA) and Strength Pareto Evolutionary Algorithm 2 (SPEA2), providing
their performance comparison; Fieldsend, Matatko and Peng [26] provide a modified MOEA to
optimize constrained portfolio frontiers in parallel; Fernández and Gómez [25] present a neural
networks method; Crama and Schyns [21] use a simulated annealing method, whereas Chang
et al. [17] apply three heuristics based upon genetic algorithms, tabu search and simulated
annealing.

Metaheuristics provide flexible and powerful solving strategies that can effectively and effi-
ciently tackle various instantiations of the portfolio problem also considering different objective
functions other than variance. Since basic building blocks of metaheuristics such as the search
space and the neighborhood structures usually do not depend on the problem objective function,
we believe that all metaheuristic methods proposed for mean-variance model with real features
could be easily extended to the corresponding problems based on LP risk measures with a large
saving in terms of computational time for evaluating solutions. This is still an open issue of
high interest.

Exact algorithms

Very few contributions can be found on exact approaches for portfolio problems. In the past the
lack of powerful computers and software made even small sized problems very difficult to solve.
Today thanks to the great advances in solution techniques (and modern specialized software,
such as CPLEX) and to the continuing growth of computers performance (power and memory
capability) exact approaches will experience a remarkable progress fueling an increased interest
of the research community on this topic.

To the best of our knowledge, Mansini and Speranza [55] propose the unique exact approach
for a MILP portfolio problem. Other contributions can be found in the literature where the
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portfolio problems optimize some LP risk measures, but the resulting model is nonlinear due
to the introduction of concave transaction costs (see Table 4). In the following we will briefly
survey all of them.

Mansini and Speranza [55] study the problem of portfolio selection in which the mean down-
side underachievement (see (17)) is maximized while taking into account fixed transaction costs
and integer transaction units (rounds). A capital-gain tax is also considered as a percentage of
the portfolio return. They propose an exact algorithm able to significantly reduce the memory
and time resources required by CPLEX to find the problem optimal solution. The algorithm
structure is quite general and is based on the idea of partitioning the feasible solution set of
the initial problem P into subsets and then solving the problem over each of the subsets. More
precisely, the method generates subproblems by introducing inequalities (cuts) to the initial
problem P . Subproblems are solved in sequence so that the solution value of problem P (i) can
be used as a cutoff bound for problem P (i+1). In particular, the instantiation for this problem
uses information provided by the optimal solution of the continuous relaxation to partition prob-
lem P into two subproblems. Assets with a reduced cost lower than a given threshold belong
to the first subproblem. The second subset is obtained by adding to problem P an inequality
imposing to select at least one asset from those not belonging to the first set. The selection
of an appropriate subset of assets entering the first problem is a critical step in the algorithm.
Such a subset should be small enough to make the first subproblem easy to solve but, at the
same time, should be large enough to contain, with a high probability, the subset of securities
which are selected in the optimal solution. This algorithm is very simple to implement, when
a commercial software for the solution of linear and mixed-integer linear programs is available.
Moreover, its structure is quite general and can be easily extended to any other mixed-integer
programming model for portfolio selection. Authors solved instances with up to 1000 securities
and 300 scenarios (almost 6 years weakly returns).

Konno and Wijayanayake [36] analyze a portfolio construction/rebalancing problem under
concave transaction costs and minimal transaction unit constraints while employing mean ab-
solute deviation as risk measure. Since the transaction cost function C(x) is separable, i.e.,
∑n

j=1Cj(xj), the authors propose a branch and bound algorithm exploiting this structure. In
particular, they solve linear programming subproblems by introducing (piecewise) linear un-
derestimating function for the concave transaction cost functions. As claimed by the authors,
due to the recent progress in global optimization, one can solve a fairly large scale linearly con-
strained concave minimization problem using the special structure of the problem. Nevertheless,
the success of their branch and bound algorithm critically depends upon the employment of the
absolute deviation as risk measure. The proposed method allows the solution of problems with
up to 200 stocks and 60 scenarios (monthly returns).

Konno and Yamamoto [37] consider a portfolio optimization problem based on absolute
deviation as risk measure where transaction cost functions are piecewise linear concave and
piecewise constant with several jumps. The standard approach for handling a concave or piece-
wise constant cost function is to introduce a number of 0–1 variables and solve the resulting
0–1 integer programming problem by branch and bound or branch and cut algorithms. When,
however, the number of linear pieces (or number of jumps) is large, then the problem becomes
more difficult requiring the introduction of many integer variables. Their work aims at compar-
ing the branch and bound approach proposed in [36] with state-of-the-art integer programming
approach, proving the former method being much faster.

In Konno, Akishino and Yamamoto [34], the authors considered a long-short portfolio op-
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timization problem in the mean–absolute deviation framework where one can sell assets short
if this leads to a better risk-return structure of the portfolio. The purpose of their paper is
to propose a branch and bound algorithm for solving a class of long-short portfolio optimiza-
tion problem with concave transaction costs (when purchasing) and difference of two convex
functions (d.c.) transaction costs (when selling). The first step for solving the problem is to
replace nonconvex cost function by their maximal linear underestimating functions and then use
a branch and bound approach. Their experiments consider up to 84 scenarios (monthly return)
and 225 stocks.

In the recent work by Le Thi et al. [43], the authors address a portfolio optimization problem
under step increasing transaction costs using mean absolute deviation as risk measure. The step
increasing functions are approximated, as closely as desired by a difference of polyhedral convex
functions. Then they apply the difference of convex functions algorithm (DCA) available from
the literature (see [71]) to the resulting program. For testing the efficiency of their method
they compare it with CPLEX and the branch and bound algorithm proposed by Konno and
Yamamoto [37] on instances with 457 stocks and 289 scenarios (weekly returns).

Finally, Table 4 reports different exact approaches also for mean-variance model with real
features. In particular, Syam [87] analyzes a problem with dependency constraints and round
lots. He assumes independence among risky securities, which leads to a diagonal covariance
matrix, and then adopts dual ascent and branch and bound solution methods. Bienstock [14]
consider a cardinality constrained portfolio optimization problem and discuss a number of valid
inequalities (cuts) for the problem to be used in a branch and cut algorithm. Computational re-
sults were presented for both sequential and parallel implementations of his algorithm involving
up to 3897 assets. Lee and Mitchell [42] study a cardinality constrained portfolio optimization
problem and describe an interior-point algorithm within a parallel branch-and-bound framework
for solving nonlinear mixed integer programs. Best and Hlouskova [13] analyze mean-variance
problem with transaction costs and develop an exact algorithm for its solution in terms of a
sequence of subproblems with corresponding savings in computer time and storage. The key
idea was to treat the transaction costs implicitly rather than explicitly. Li, Sun and Wang [46]
analyze a round-lots and cardinality constrained portfolio selection under concave transaction
costs. The resulting model is a nonseparable, nonconvex, nonlinear integer programming prob-
lem. The authors exploit the special features of the mean–variance formulation to develop a
convergent Lagrangian and contour-domain cut method as an exact solution algorithm and test
it on instances with 30 stocks and three years monthly returns. Xue, Xu and Feng [93] modify
mean–variance portfolio to introduce concave transaction costs and thresholds on investment.
They propose an exact approach based on a branch and bound method using underestimation
functions for the concave transactions costs. They solve instances with only 9 securities.

5.2 Large scale LP risk measure optimization

In portfolio models stock returns are represented by their realizations under T scenarios. In LP
models, the number of structural constraints (matrix rows) is proportional to the number of
scenarios T , while the number of variables (matrix columns) is proportional to the total of the
number of scenarios and the number of instruments T+n. The fact that the model dimensionality
is proportional to the number of scenarios T , does not cause any computational difficulties if a
few hundreds of scenarios are taken into account. This is the case of the common computational
analysis based on historical data. However, real-life financial analysis must be usually based on
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more advanced simulation models employed for scenario generation (Carino et al., [16]) using
several thousands of scenarios (see Pflug, [70], Guastaroba, Mansini and Speranza [30]). This
leads to LP models with a huge number of auxiliary variables and constraints and thereby hardly
solvable by general LP tools. Actually, in the case of fifty thousand scenarios and one hundred
instruments the model may require more than one hour of computational time with the state-of-
art LP solver (CPLEX) or even remain unsolved. To overcome this difficulty some alternative
solution approaches were developed trying to reformulate the optimization problems as two-
stage recourse problems (Künzi-Bay and Mayer, [41]), to employ nondifferential optimization
techniques (Lim, Sheraly and Uryasev [47]), cutting planes (Fabian, Mitra and Roman [24]) or
to approximate the returns with a factor representation (Konno, Waki and Yuuki [35]).

More recently, in [67] Ogryczak and Śliwiński show that the computational efficiency can
be simply achieved with an alternative model formulation taking advantage of the LP duality.
In the introduced model the number of structural constraints is proportional to the number of
instruments n while only the number of variables is proportional to the number of scenarios
T , thus not affecting so seriously the simplex method efficiency. The new model can effectively
be solved with general LP solvers even for very large numbers of scenarios. In this case, the
computational time for the case of fifty thousand scenarios and one hundred instruments be-
comes lower than one minute. The authors test such a reformulation for all the classical LP
portfolio optimization models using medium scale instances with 5000, 7000 and 10000 scenarios
and 76 securities, and large scale tests instances with 50 or 100 securities and 50000 scenarios.
Computational advantages are particularly evident for the model based on the Weighted CVaR
measures defined as combinations of CVaR measures for m tolerance levels and for model based
on Gini’s mean difference (Yitzhaki, [94]) where standard formulation require T 2 auxiliary con-
straints which makes them hard already for medium numbers of scenarios, like a few hundred
scenarios given by historical data.

6 Conclusions

Since the milestone work by Markowitz on mean-variance portfolio selection problem, many
alternative risk and safety measures have been proposed that are computationally attractive as
LP computable in the case of discrete random variables. The LP solvability is very important
for applications to real-life problems where the portfolios have to meet numerous side constraints
as transaction lots, minimum or maximum investment thresholds, and cardinality constraints or
account for transaction costs. The inclusion of real features in a model has in most cases relevant
consequences in terms of modeling. The first is that it may be necessary to express the decision
variables in terms of absolute value of the investment. The second is that the real features
usually imply the need of integer and binary variables that make the model computationally
hard to solve.

In this paper we have introduced and surveyed the LP solvable portfolio optimization models
presented in the literature. We have also discussed the relative (variables as percentages of the
capital) and absolute (variables as absolute values of the capital) form of the models. The vari-
ous real features of portfolio selection problems are discussed and the related literature surveyed,
including the computational approaches adopted for the solution of the resulting optimization
models.
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