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Abstract

Telecommunications networks are facing increasing demand for Internet services. Therefore, the
problem of telecommunications network design with the objective to maximize service data flows
and provide fair treatment of all services is very up-to-date. In this application, the so-called Max-
Min Fair (MMF) solution concept is widely used to formulate the resource allocation scheme. It
assumes that the worst service performance is maximized and the solution is additionally regular-
ized with the lexicographic maximization of the second worst performance, the third one etc. In
this paper we discuss solution algorithms for MMF problems related to telecommunications network
design. Due to lexicographic maximization of ordered quantities, the MMF solution concept cannot
be tackled by the standard optimization model (mathematical programme). However, one can for-
mulate a sequential lexicographic optimization procedure. The basic procedure is applicable only
for convex models, thus it allows to deal with basic design problems but fails if practical discrete
restrictions commonly arriving in telecommunications network design are to be taken into account.
Then, however, alternative sequential approaches allowing to solve non-convex MMF problems can
be used. They depend on replacement of the original problem with the lexicographic minimization of
the vector that describes the distribution of outcome values, which, fortunately enough, is convex as
long as an original problem is defined with a convex feasible set and a concave objective functions.
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1 Introduction

Since the emergence of the Internet one has witnessed an unprecedented growth of traffic
that is carried in the telecommunications networks. The pace at which the number of
network users and the amount of traffic related to data-oriented applications are growing
has been and still is much higher than several percent of growth that were typical for
traditional voice-only networks; as a matter of fact data traffic almost doubles every
year. It can also be observed that the distribution of traffic in data networks changes
quickly, both - in the short and long time-scales, and is very difficult to predict. As a
result, from the network operator’s perspective the network extension process becomes
very complicated - while it is not economically feasible to sufficiently over-dimension a
network, it is also hard to decide when and where the network should be augmented.
An inevitable effect of the situation that the capacity of a network does not match the
traffic generated by network service users, is network overload - a phenomenon commonly
encountered in current data-oriented networks.

Overloads influence the quality of service perceived by users - data transfer slows down
because packet transfer delays increase and packet losses occur much more frequently.
Overloads are one of the major concerns of network operators, because the guaranteed
quality of service level is one of the basic elements of network operators’ differentiation
and a prerequisite of their success. In order to avoid overloads and provide the guaranteed
quality of service level (instead of offering the so-called best-effort service) the network
operator must control the amount of traffic that enters the network. The traffic admission
control process is responsible for deciding how many users can be served and how much
traffic each of these users can generate. What is important is that, in general, some users
will be denied the service in order to reduce the overall stream of traffic that enters the
network. Since the service denial probability is another important measure of the quality
of service level, one of the primary objectives of the admission control process must
be to guarantee that the users have fair access to network services. The most common
“fairness-oriented” (as opposed to “revenue-oriented”) approach is to admit equal amount
of traffic from every stream - the amount being expressed in absolute or relative terms.
Unfortunately, this approach can result in poor network capacity utilization, since for
many streams much more traffic could still be admitted than this actual amount. Thus,
one of the alternative approaches is to admit as much traffic as possible from every stream
while making the smaller admitted amounts as large as possible.

The problem to determine how much traffic of every traffic stream should be admitted into
the network, and how the admitted traffic should be routed through the network so as to
satisfy the requirements of high network utilization and to guarantee fairness to the users,
is one of the most challenging problems of current telecommunications networks design. In
this paper we show how this problem is related to two well known OR problems - namely
the max-min optimization problem and the lexicographic optimization problem. We study
the general formulations of these problems and analyze how to use their notions to express
the fairness of the traffic admission process. We go on to formulate basic network design
problems and study the complexity of the obtained formulations. We analyze the methods
of max-min and lexicographic optimization and examine how they can be applied to solve
the presented network design problem.

The paper is organized as follows. In Section 2 we introduce the lexicographic Max-
Min or the Max-Min Fair (MMF) solution concept and summarize its major properties.



In Section 3 we present details of three telecommunications problems leading to MMF
formulations. Further in Section 4 we discuss solution algorithms for the lexicographic
Max-Min optimization and analyze their applicability for telecommunications problems.

2 Max-Min and the MMF solution concept

2.1 Max-Min solution concepts

The problem we consider may be viewed in terms of resource allocation decisions as fol-
lows. Let us assume there is a set of m services. There is also a set () of resource allocation
patterns (allocation decisions). For each service j a function f;(x) of allocation pattern
x has been defined. This function, called the individual objective function, measures the
outcome (effect) y; = f;(x) of the allocation pattern for service j. The outcomes can
be measured (modeled) as service quality, service amount, service time, service costs as
well as in a more subjective way the (client’s) utility of the provided service. In typical
formulations a greater value of the outcome means a better effect (higher service quality
or client satisfaction); otherwise, the outcomes can be replaced with their complements
to some large number. Therefore, without loss of generality, we can assume that each in-
dividual outcome y; is to be maximized which results in a multiple criteria maximization
model. The problem can be formulated as follows:

max {f(x) : x € Q} (2.1)
where @ C R" is a feasible set and f(x) = (fi(x),..., fm(X)) is a vector of real-valued
functions f; : @ — R,j = 1,2,...,m, where x = (21,%2,...,%,) is an n-vector. We

refer to the elements of the criterion space as outcome vectors. An outcome vector y is
attainable if it expresses outcomes of a feasible solution x € @ (i.e., y = f(x)). The set of
all the attainable outcome vectors is denoted by Y. Note that, in general, convex feasible
set () and concave function f do not guarantee convexity of the corresponding attainable
set Y. Nevertheless, the multiple criteria maximization model (2.1) can be rewritten in
the equivalent form

max {y : y; < f;(x) Vj, x € @} (2.2)

where the attainable set Y is convex whenever () is convex and functions f; are concave.
Model (2.1) only specifies that we are interested in maximization of all objective func-
tions f; for j € M = {1,2,...,m}. Each attainable outcome vector y € Y is called
nondominated if one cannot improve any individual outcome without worsening another
one. Each feasible solution x € ) generating the nondominated outcome is called an ef-
ficient (Pareto-optimal) solution of the multiple criteria problem (2.1). In other words, a
feasible solution for which one cannot improve any outcome without worsening another is
efficient [33]. In order to make model (2.1) operational, one needs to assume some solution
concept specifying what it means to maximize multiple objective functions. Simple solu-
tion concepts are defined by achievement functions 6 : Y — R to be maximized. Thus the
multiple criteria problem (2.1) is replaced with the aggregation max {0(f(x)) : x € @}.

The most commonly used achievement function is the mean (or simply the sum) of in-
dividual performances; this defines the so-called maxsum solution concept. This solution
concept is primarily concerned with the overall system efficiency. As based on averaging, it
often provides a solution where some services are discriminated in terms of performances.



An alternative approach depends on the so-called Max-Min solution concept, where the
worst performance is maximized:

max{j_nlqinm filx) : xe@ }. (2.3)
The Max-Min solution concept has been widely studied in the multi-criteria optimization
methodology [33, 35]. The optimal set of the Max-Min problem (2.3) always contains an
efficient solution of the original multiple criteria problem (2.1). Thus, if unique, the opti-
mal Max-Min solution is efficient. In the case of multiple optimal solutions, one of them
is efficient but also some of them may not be efficient. It is a serious flaw since practical
large problems usually have multiple optimal solutions and typical optimization solvers
generate one of them (essentially at random). Therefore, some additional regularization
is needed to overcome this flaw of the Max-Min scalarization.
The Max-Min solution concept is regarded as maintaining equity. Indeed, in the case of
a simplified resource allocation problem, the Max-Min solution

max{ min y; : 2; Yy < b} (2.4)
]:

takes the form y; = b/m for all j € M thus meeting the perfect equity requirement
Y1 =Yz = ... = Ym. In the general case, with possibly more complex feasible set structure,
this property is not fulfilled [23]. Nevertheless, the following assertion is valid.

Proposition 1 If there exists a nondominated outcome vectory € Y satisfying the perfect
equity requirement Y, = Ya = ... = Ym, then ¥ is the unique optimal solution of the Max-
Min problem

max{j_nlqinm y; - yeyYy L (2.5)
Proof. Let ¥y € Y be a nondominated outcome vector satisfying the perfect equity
requirement. This means, there exists a number a such that y; = o for j = 1,2,...,m.
Let y € Y be an optimal solution of the Max-Min problem (2.5). Suppose, there exists
some index jo such that y;, # ¥;,. Due to the optimality of y, we have:

> min y; > min g = a = §; =1,...
yj = min y; 2 min g = o =y Vi=1,....m

which together with y;, # y;, contradicts the assumption that y is nondominated. W

According to Proposition 1, the perfectly equilibrated outcome vector is a unique optimal
solution of the Max-Min problem if one cannot improve any of its individual outcome
without worsening some others. Unfortunately, it is not a common case and, in general,
the optimal set to the Max-Min aggregation (2.3) may contain numerous alternative so-
lutions including dominated ones. While using standard algorithmic tools to identify the
Max-Min solution, one of many solutions is then selected randomly.

Actually, the distribution of outcomes may make the Max-Min criterion partially passive
when one specific outcome is relatively very small for all the solutions. For instance,
while allocating clients to service facilities, such a situation may be caused by existence
of an isolated client located at a considerable distance from all the location of facilities.



Maximization of the worst service performances (equivalent to minimization of the maxi-
mum distance) is then reduced to maximization of the service performances for that single
isolated client leaving other allocation decisions unoptimized. This is a clear case of inef-
ficient solution where one may still improve other outcomes while maintaining fairness by
leaving at its best possible value the worst outcome. The Max-Min solution may be then
regularized according to the Rawlsian principle of justice. Rawls [30] considers the prob-
lem of ranking different “social states”which are different ways in which a society might
be organized taking into account the welfare of each individual in each society, measured
on a single numerical scale [30, p. 62]. Applying the Rawlsian approach, any two states
should be ranked according to the accessibility levels of the least well-off individuals in
those states; if the comparison yields a tie, the accessibility levels of the next—least well-off
individuals should be considered, and so on. Formalization of this concept leads us to the
lexicographic Max-Min concepts.

The lexicographic Max-Min solution is known in the game theory as the nucleolus of a ma-
trix game. It originates from an idea, presented by Dresher [7], to select from the optimal
(Max-Min) strategy set of a player a subset of optimal strategies which exploit mistakes
of the opponent optimally. It has been later refined to the formal nucleolus definition [32]
and generalized to an arbitrary number of objective functions [29]. The concept was early
considered in the Tschebyscheff approximation [31] as a refinement taking into account
the second largest deviation, the third one and further to be hierarchically minimized.
Similar refinement of the fuzzy set operations has been recently analyzed [8]. Within
the telecommunications or network applications the lexicographic Max-Min approach has
appeared already in [11, 3] and now under the name Max-Min Fair (MMF) is treated as
one of the standard fairness concepts. The approach has been used for general linear pro-
gramming multiple criteria problems [1, 17], as well as for specialized problems related to
(multiperiod) resource allocation [12, 16]. In discrete optimization it has been considered
for various problems [4, 5] including the location-allocation ones [21].

2.2 Lexicographic optimization and MMF

Typical solution concepts for the multiple criteria problems are based on the use of ag-
gregated achievement functions 6 : Y — R to be maximized, thus ranking the outcomes
according to a complete preorder

Y zey' = 0y)=0G"). (2.6)

This allows one to replace the multiple criteria problem (2.1) with the standard maxi-
mization problem max {0(f(x)) : x € Q}. However, there are also well defined solution
concepts which do not introduce directly any scalar measure, despite they rank the out-
come vectors with a complete preorder. Especially, the lexicographic (preemptive) order
is used for this purpose.

Let a = (a1, az,...,a,) and b = (b, by, ..., b,) be two m-vectors. Vector a is lexico-
graphically greater than vector b, a >, b, if there exists index k, 0 < k& < m, such
that a; = b; for all j < k and agy1 > byy1. Consequently, a is lexicographically greater
or equal b, a >, b, if a >, b or a=b. Contrary to the standard vector inequality
aZbe a; > b;V j, the lexicographic order is complete which means that for any two
vectors a and b either a >, b or b >;., a. Moreover, for any two different vectors
a # b either a >;., b or b >, a. Vector inequality a =Z b implies a >;., b but the



opposite implication is not valid. The lexicographic order is not continuous and it cannot
be expressed in terms of any aggregation function. Nevertheless, it is a limiting case of
the order (2.6) for the weighting aggregation functions 6(y) = Z;ﬂzl w;y; defined by
decreasing sequences of positive weights w; with differences tending to the infinity.

The lexicographic order allows us to consider more complex solution concepts defined
by several (say m) outcome functions 6 : ¥ — R to be maximized according to the
lexicographic order. Thus one secks a feasible solution x° such that

(O1(F(x")), O2(£(x)), - Om(£(x)) 2, (1(£(x)), O2(f(x)).. ... 0n(f(x))) Vx€Q.

In other words, the multiple criteria problem (2.1) is replaced with the lexicographic
maximization problem

lexmax {(0;(f(x)), 02(f(x)),...,0,(f(x))) : x € Q}. (2.7)

Problem (2.7) is not a standard mathematical programme. Nevertheless, the lexicographic
inequality defines a linear order of vectors an therefore the lexicographic optimization is
a well defined procedure where comparison of real numbers is replaced by lexicographic
comparison of the corresponding vectors. In particular, the basic theory and algorithmic
techniques for linear programming have been extended to the lexicographic case [10].
Certainly, the lexicographic optimization may also be treated as a sequential (hierarchical)
optimization process where first 6, (f(x)) is maximized on the entire feasible set, next
05(f(x)) is maximized on the optimal set, and so on. This may be implemented as in the
following standard sequential algorithm.

Algorithm 1: Sequential algorithm for lexicographic maximization

Step O: Put k£ := 1.
Step 1: Solve programme
Py i max {ry; 7, < 0,(f(x)), 79 <0;(f(x)) Vi <k, x € Q}

and denote the resulting optimal solution by (x°,79).

Step 2: If k = m then stop (x is the optimal solution of problem (2.7)).
Otherwise, put k := k+ 1 and go to Step 1.

Note that directly from the properties of the lexicographic order it follows that for any
achievement functions 6, the lexicographic optimization problem always has unique values
of those functions, as stated in the following assertion.

Proposition 2 For any two optimal solutions x',x*> € Q of problem (2.7) the equalities
0r,(f(x")) = 0, (f(x?)) V k hold.

The most commonly used lexicographic models are based on simple functions 6;(y) = y;,
thus introducing an hierarchy of original outcomes. In such a case, according to Proposi-
tion 2 the optimal solution is unique in the criterion space.

6



Proposition 3 In the case of problem (2.7) with 8;(y) = y; V5 € M, for any two optimal
solutions x',x* € Q the equality f(x') = f(x?) holds and this unique outcome vector is
nondominated.

Applying to achievement vectors O(y) a linear cumulative map one gets the cumulated
achievements

k
Ocly) =Y 0i(y) fork=12_.. m (2.8)
j=1
Note that for any two vectors y’,y” € Y one gets

@(yl) Zlez @(y,/) <~ @(yl) Zlez é(y,/) (29)
Hence, the following assertion is valid.

Proposition 4 A feasible vector x € Q is an optimal solution of problem (2.7), if and
only if it is the optimal solution of the cumulated lexicographic problem

lexmax {(6;(f(x)),02(f(x)),...,0n(f(x))) : x € Q}. (2.10)

The lexicographic order may also be used to construct refinements of various solution con-
cepts [23]. We focus on application of the lexicographic optimization to refine the Max-Min
solution concept according to the Rawlsian theory of justice. Let (a) = (ay, agy, - -, aum))
denote the vector obtained from a by rearranging its components in the non-decreasing
order. That means apy < ap) < ... < agy and there exists a permutation 7 of set
M such that ag = ag@ for j = 1,2,...,m. Comparing lexicographically such ordered
vectors (y) one gets the so-called leximin order. The general problem considered in the
balance of this paper depends on searching for the solutions that are maximal according
to the leximin order. The problem called hereafter the Max-Min Fair (MMF) problem
reads as follows.
P-MMF: Find x° € @ such that (f(x°)) >, {f(x))Vx € Q.

—lex

This problem may also be viewed as a standard lexicographic optimization (2.7) with the
aggregation functions 6,(y) = y;:

lexmax {(01(f(x)),02(f(x)),...,0n(f(x))) : x € Q}, where 0;(y) = y). (2.11)

Problem (2.11) represents the lexicographic Max-Min approach to the original multiple
criteria problem (2.1). It is a refinement (regularization) of the standard Max-Min opti-
mization, but this time, in addition to the smallest outcome, we also maximize the second
smallest outcome (provided that the smallest one remains as large as possible), maximize
the third smallest (provided that the two smallest remain as large as possible), and so
on. Note that the lexicographic maximization is not applied to any specific order of the
original criteria.

The lexicographic Max-Min is the only regularization approach of the Max-Min that
satisfies the reduction (addition/deleting) principle [9]. Namely, if the individual outcome
does not distinguish two solutions, then it does not affect the preference relation:

<(y17'--ay;ay*ay;-fla"'?y;n» zlez <(y1/>"'7y;/>y*>y;',+1>"'ay1,7/1)> = <y/> Zlez <y”>
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For the lexicographic Max-Min one may also take advantage of Proposition 4. Applying
the cumulative map (2.8) to ordered outcomes 6;(y) = y; one gets 0j(y) = S Y
expressing, respectively: the worst (smallest) outcome, the total of the two worst out-
comes, the total of the three worst outcomes, etc. Following Proposition 4, solution of
the P-MMF is equivalent to the lexicographic problem

lexmax {(61(y),02(y),....0m(y)) :y = f(x), x € Q}, where 0;(y) = Z Y- (2.12)

Jj=1

Note that

k
Ou(y) = ; w) = ggg; ()
where the minimum is taken over all permutations of the index set M. Hence, 0, (y) is a
concave piecewise linear function of y which, due to (2.12) guarantees several important
properties of the lexicographic Max-Min solution itself.

Recall, that every optimal solution of the lexicographic Max-Min model is an efficient solu-
tion of the original multiple criteria optimization problem. Note that every lexicographic
Max-Min solution is also an optimal solution of the standard Max-Min problem. Hence,
by virtue of Proposition 1, the lexicographic Max-Min model, generates efficient solutions
satisfying the perfect equity of individual outcomes, whenever such an efficient solution
exists. When there does not exist any efficient solution with perfectly equal individual
outcomes, then the lexicographic Max-Min model generates another efficient solution but,
due to concave functions 0 (y), still providing equitability of individual outcomes with
respect to the Pigou-Dalton principle of transfers [14]. The principle of transfers states, in
the context considered here, that a transfer of small amount from an individual outcome
to any relatively worse-off individual outcome results in a more preferred outcome vector.
Indeed, the following assertion is valid.

Proposition 5 For any outcome vectory € Y
yp <y = (y+eey—cep) > (y) V0<e<ypy—yj (2.13)
where e; denotes the j-th unit vector.

Proof. Let y® =y +cej —ee;n for ¢ < y;» —y; and let yuy = vy, Yy = y;». Then,
yjr < Yury and Zi‘le Yy = Zi‘le yy) for all K = 1,2,...,m with at least one strict
inequality for some &' < k < k”. Hence, (y°) >,., (y), due to (2.9). ®

Following Proposition 2, any two optimal solutions x!, x> € @ of problem (2.11) result in
the same ordered outcome vectors (f(x')) = (f(x?)). Hence, all the optimal solutions have
the same distributions of outcomes. Nevertheless, they may generate different (differently
ordered) outcome vectors themselves. The unique outcome vector is guaranteed, however,
in the case of convex problems. It follows from the alternative convex formulation (2.12)
of the MMF problem.

Proposition 6 In the case of conve feasible set () and concave objective functions f;(x),
for any two optimal solutions x*, x> € Q of problem P-MMTF the equality f(x!) = f(x?)
holds.



Proof. First of all, let us notice that problem P-MMF is equivalent (in the criterion
space) to the following

lexmax {(y) : y; < f;(x) Vj, x € Q} (2.14)

and we need to prove that the problem has a unique optimal solution y € Y. Due to
the convexity assumptions the attainable set Y is convex. Let, y' # y? € Y be optimal
solutions of (2.14), thus (y') = (y?). Define y° = (1 — &)y + ey? for some positive ¢
satisfying

O<e< ll’nlq |y]1/ — y]1n|/ {na)l( ‘y]l/ - yjl-//‘.

yjl yj” yjl yjl/

Due to the bound on e, there exists a permutation 7 ordering both y! and y®, i.e.,
y}r(j) < y}r(jﬂ) and Yri) < Y1) forall j =1,...,m — 1. Further, identifying the index
jo for which y; is the smallest value y; such that y; # y7 one gets i) = y}r(j) for 7 < j,
and Yz ) > Yy(;,) Which contradicts optimality of y'. ®

The leximin order cannot be expressed in terms of any aggregation function. Nevertheless,
it is a limiting case of the order (2.6) for the Ordered Weighted Aggregation functions
O(y) = ZTZI w;y,;y defined by decreasing sequences of positive weights w; with differences
tending to the infinity [36, 38].

3 Telecommunications network design examples

Below we shall give three examples showing how the MMF concept can be used in for-
mulations of multi-commodity network flow problems related to telecommunications ap-
plications.

3.1 Routing design for networks with elastic traffic

The first example is a problem of finding flows in a network with given link capacities so
as to obtain the MMF distribution of flow sizes. This type of problem is applicable to
networks carrying the so-called elastic traffic, which means that traffic streams can adapt
their intensity to the available capacity of the network [28].

Problem 1: Routing optimization for MMF' distribution of demand volumes

indices
d=1,2,...,D demands (pairs of nodes)
p=1,2,...,P; allowable paths for demand d
e=1,2,...,F links

constants

deap equals 1 if link e belongs to path p of demand d; 0, otherwise
Ce capacity of link e

variables
x4, flow (bandwidth) allocated to path p of demand d (non-negative continuous)

Xy total flow (bandwidth) allocated to demand d (non-negative continuous),
X = (X1, Xs,..., Xp)



objective

lex max (X(1>,X<2>,...,X<D>) (3.15&)
(3.15b)

constraints
prdp:Xd d= 1,2,...,D (3150)
Zdzpéedpxdp < e e=12,...,F (3.15d)
Zap > 0 d=1,2,....D p=1,2,..., P (3.15e)

In the above formulation, equation (3.15b) defines the total flow, X, allocated to demand
d, and constraint (3.15¢) assures that the link load (left-hand side) does not exceed the
link capacity. A solution of Problem 1 for an example network is discussed in Appendix A.

3.2 Restoration design for networks with elastic traffic

The second example corresponds to the problem of designing an optimal strategy of elastic
traffic flows restoration in case of network failures ([27, Chapter 13]). It is assumed that
a set of network failure situations have been identified. The adopted failure model is
such that a failure may reduce the capacity of one or more network links. The design
should determine optimal capacities of links and for each failure situation the optimal
size and routing of every traffic flow so as to obtain the MMF distribution of revenue for
all network failure situations. It is assumed that the revenue generated by a single traffic
flow is proportional to the logarithm of this flow’s size.

Problem 2: Flow restoration optimization for MMF distribution of revenues

indices
d=1,2,...,D demands
p=12,...,P; allowable paths for demand d
e=1,2,...,F links
s=1,2,...,8 states (including normal operation state)

constants
deq equals 1 if link e belongs to the fixed path of demand d; 0, otherwise

rqs revenue from demand d in situation s

¢, unit cost of link e

aes fractional availability coefficient of link e in situation s (0 < as < 1)
B assumed budget

variables
Y.  capacity of link e (non-negative continuous)

Taps How allocated to path p of demand d in situation s (non-negative continuous)
Xgs  total flow allocated to demand d in situation s (non-negative continuous)

R logarithmic revenue in situation s (continuous), R = (Ry, Rs, ..., Rg)
objective
lex max (R<1>, R<2>, ceey R(S)) (3.16&)

10



constraints

dezszdps d=1,2,....D s=1,2,...,8 (3.16b)
Ry =" raslog X5 s=1,2,...,8 (3.16¢)
Zdzpéedpxdps < Qesle e=1,2,...,F (3.16d)
YLy < B (3.16¢)
Taps >0  d=1,2,....D p=1,2....P; s=12,...,8 (3.16f)

3.3 Capacity protection design

The last example corresponds to the problem of designing the protection of network links’
capacity [20]. It is assumed that the capacity of network links and the size and routing
of all network flows are given. The design should determine how much capacity of each
link should be freed and reserved so in case of any single-link failure the capacity of the
failed link could be restored using the reserved protection capacity. In order to free the
capacity of links the size of traffic flows should be reduced in such a way so as to obtain
the MMF distribution of traffic flow sizes.

Problem 3: Protection capacity optimization for MMF' distribution of flow sizes

indices
d=1,2,...,D  demands
p=1,2, .. P; allowable paths for demand d

e, =1,2,...,.F links
q=1,2,...,Q, candidate restoration paths for link /¢

constants
hgy  7reference” volume of demand d

dedqp equals 1 if link e belongs to path p realizing demand d; 0, otherwise
Ce total capacity of link e
Breg equals 1 if link £ belongs to path g restoring link e; 0, otherwise

variables
Yo resulting normal capacity of link e

xqp normal flow realizing demand d on path p

w, protection capacity of link e

2¢q How restoring capacity of link e on path ¢

Xy normalized realized demand volume for demand d, X = (X3, Xs,..., Xp)
objective

lex max (X(1>,X<2>,...,X<D>) (317&)

11



constraints

Xi=Y wap/ha d=1,2,...D (3.17h)
Wetu.<c. e=12,.. F (3.17¢)
Zdzpéedpxdp <Y, €e=12,..,F (3.17d)
Ye <D g2eq €=1,2,. F (3.17e)
Zqﬁgeqzeq <w, (=1,2,..,.F e=12..,FE (F#e (3.17f)
Zap > 0 d=1,2,....D p=1,2,...,P,; (3.17g)

Note that the lexicographic Max-Min solution assures that all demand volumes will be in
the worst case decreased by the same optimal proportion r*, since in the optimal solution
przp >1r*hg, d=1,2,..., D, for some number r*, such that przp = r*hg for some d.

3.4 Non-convex extensions of the example problems

All three problems presented in the previous subsections have convex sets of feasible solu-
tions. As we will see in Section 4, this property allows for efficient solution algorithms of
the introduced problems, but, unfortunately, it is not always present in telecommunica-
tions problems. For instance, we may require that the demand volumes are realized only
on single paths and that the choice of these single paths is subject to optimization. This
requirement usually leads to Mixed-Integer Programme (MIP) formulations. In particu-
lar, Problem 1 in the single-path version requires additional multiple choice constraints
to enforce nonbifurcated flows. Assuming existence of some constants Uy upper bounding
the largest possible total flows Xy, this can be implemented with additional binary (flow
assignement) variables 14, used to limit the number of positive flows x4, with constraints:

:Edngdudp d:1,2,...,D p:1,2,...,Pd (318&)
Sup=1 d=12..D (3.18b)
ugp € {0,1} d=1,2,....D p=1,2,..., P, (3.18¢)

In fact, as demonstrated in [13], such a modification makes Problem 1 NP-complete. The
same requirement can be introduced to Problems 2 and 3 as well.

Another requirement leading to non-convex MIP problems is the modularity of the link
capacity, which means that link capacities should be multiples of a given module C'. Then,
capacity variables become non-negative integers and respective constraints change. For
example, for Problem 2 variables y. are non-negative integers and constraints (3.16d) take
the form

Yad_pOedpTaps < QesCle, e=1,2,...,F. (3.19)

Certainly, the capacity variables in Problem 3 can also be made integral.

4 MMF solution algorithms

4.1 Sequential Max-Min algorithms for convex problems

The (point-wise) ordering of outcomes causes that the lexicographic Max-Min problem
(2.11) is, in general, hard to implement. Note that the quantity y.) representing the
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worst outcome can be easily computed directly by the maximization:
yay = max ry subject to r <y; forj=1,2,...,m

Similar simple formula does not exist for the further ordered outcomes y ). Nevertheless,
for convex problems it is possible to use iterative algorithms for finding the consecutive
values of the (unknown) optimal unique vector T® = (TP, T3, ..., T°) = (f(x")) by solving
a sequence of properly defined Max-Min problems. Such algorithms are described below.
Suppose B is a subset of the index set M, B C M, and let t¥ = (¢; : j € B) be a
| B|-vector. Also, let B’ denote the set complementary to B : B’ = M\B. For given B
and t? we define the following convex mathematical programming problem in variables
x and 7:

P(B,t5):
maximize T (4.20a)
subject to fix)>71 jeB (4.20b)
fi(x) > t7 jEB (4.20c)
x € X. (4.20d)

It is clear that the solution 7° of the convex problem P((,0)) (defined by (4.20) for empty
set B and empty sequence t¥) will yield the smallest value of T, i.e. the value T} (and

possibly some other consecutive entries of TY). This observation suggests the following
algorithm for solving problem P-MMF specified by (2.11).

Algorithm 2: Straightforward algorithm for solving Problem P-MMF

Step 0: Put B := () (empty set) and t? := () (empty sequence).

Step 1: If B = M then stop ({t”) is the optimal solution of problem P-MMTF,
i.e. (t8) = TY). Else, solve programme P (B, t?) and denote the result-
ing optimal solution by (x%, 7°).

Step 2: For each index k € B’ such that fi.(x°) = 7% solve the following test
problem T(B,t5,7° k):

maximize fr(x) (4.21a)

subject to fi(x) > 7° j € B\{k}  (4.21b)

fi(x) > t7 jEB (4.21c)

x € X. (4.21d)

If for optimal x!, while solving test T(B,t?, 7% k) we have fi(x!) = 7°,
then we put B := BU {k} and t;, := 7°.

Step 3: Go to Step 1.

It can happen that as a result of solving the test in Step 2 for some index k € B’,
will turn out that fj(x!) > 7° for some other, not yet tested, index [ € B’ (I # k). In
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such an (advantageous) case, the objective function with index ! does not have to be
tested, as its value can be further increased without disturbing the maximal values t?.
Observe that set B is the current set of blocking indices, i.e. the indices j for which
the value f;(x°) is equal to 7 in every optimal solution of Problem P-MMF. Note
also, that although the tests in Step 2 are performed separately for individual indices
Jj € B, the values of objective functions f; for the indices j € B’, where set B’ is
results from Step 2, can be simultaneously increased above the value of 7° in the next
execution of Step 1. This follows from convexity of the set defined by constraints (4.21b-
d): if f;(x) = @ > 7° and %/ satisfies (4.21b-d), then a convex combination of the
points x/, x = 3" p %) (3 icpad =1, &/ >0, j € B') also satisfies (4.21b-d), and
fi(x) > 7% for all j € B'.

Another version of Algorithm 2 may be more efficient, provided that the complexity of
problems (4.20) and (4.21) is similar.

Algorithm 3: Algorithm for solving Problem P-MMF

Step 0: Put B := 0 and t? := (.

Step 1: If B = M then stop ({t”) is the optimal solution of problem P-MMTF,
i.e. (tP) =T?). Else, solve programme P (B, t?) and denote the result-
ing optimal solution by (xY, 7°).

Step 2: Start solving the test problem T(B,t5, 79 k) for all indices k € B’ such
that f(x°) = 7%, When the first ¥ € B’ with f,(x') = 7° is detected,
then put B := BU {k} and t; := 7°, and go to Step 3.

Step 3: Go to Step 1.

The idea behind the modification in Algorithm 3 is that in total it may involve solving
less instances of problems P(B,t?) and T(B,t?, 7% k) than Algorithm 2. If at optimum
x? all values f;(x°) are the same (equal to 0), then Algorithm 2 will require solving
m + 1 problems (problem P(@,0) and m tests T(0,0, 7% k) for k = 1,2,...,m), whilst
Algorithm 3 will require solving 2m+ 1 problems (problem P((, ), m tests T(B,tZ, 7, k)
and m problems P (B, t?)). Hence, in this case, Algorithm 3 requires solving O(m) more
problems than Algorithm 2. Now let us consider a somewhat opposite case where all values
f;(x°) are different. Additionally, assume that all optimal solutions x of the consecutively
solved problems P(B, t?) and T(B,t?,7° k) yield the same values f;(x) for j € B'. In
this case Algorithm 3 will require solving O(m?/4) problems, while Algorithm 2 — O(m?/2)
problems. This means that Algorithm 2 requires solving O(m?/4) more problems than
Algorithm 3; this is a substantial difference.

Both algorithms presented above can be time consuming due to excessive number of
problems P (B, t?) and T(B, t?,7°, k) that may have to be solved in the iteration process.
Therefore, below we give an alternative algorithm which is very fast provided that dual
optimal variables problems P (B, t?) can be effectively computed (this is for instance the
case for linear programmes and the simplex algorithm).

Suppose XA = ();)jep denotes the vector of dual variables (multipliers) associated with
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constraints (4.20b). It leads to the following Lagrangian function for problem P(B,t?):

Lx;m;A) = =7+ ZJ.EB, M= fi(x) = 17— ZJ.EB, Aifi(x). (4.22)

jen "

The domain of Lagrangian (4.22) is defined by

x € Y (where Y is determined by constraints (4.20c — d)) (4.23a)
—00 < T < 400 (4.23b)
A>0. (4.23¢)

Hence, the dual function is formally defined as
W(A) = min, xey L(x,7;A) A >0 (4.24)
and the dual problem reads:
maximize W (A) over A > 0. (4.25)
The following proposition can be proved [27].

Proposition 7 Let A° be the vector of optimal dual variables solving the dual problem
(4.25). Then

(1)
0 _
Z]EBI A =1 (4.26)
(2) if )\? > 0 for some j € B', then f;j(x) cannot be improved, i.e. fj(x°) =7 for every
optimal primal solution (x°,7°) of (4.20).

Note that in general the inverse of (2) in Proposition 7 does not hold: )\2 = 0 does not
necessarily imply that f;(x) can be improved (for an example see [27, 28]). In fact, it
can be proved [27, Chpt. 13| that the inverse implication holds if and only if set B is
regular (set B is called regular if for any non-empty proper subset G of B, in the modified
formulation P(B\G, t?\%) the value of fi(x) can be improved for at least one of the
indices k € B\G).

Whether or not the consecutive sets B are regular, the following algorithm solves problem
P-MMF.

Algorithm 4: Algorithm for solving Problem P-MMF based on dual variables

Step 0: Put B := 0 and t? := (.

Step 1: If B = M then stop ((t?) is the optimal solution of problem P-MMF,
i.e. (tP) =T?). Else, solve programme P (B, t?) and denote the result-
ing optimal solution by (x°, 7% A°).

Step 2: Put B:=BU{je B : \) >0}
Step 3: Go to Step 1.
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Observe that if for some j € B’ with )\? =0, fj(x) cannot be further improved, then in
Step 1 the value of 70 will not be improved; still at least one such index j will be detected
(due to property (3.5)) and included into set B in the next execution of Step 2. The
regularity of set B simply ensures that in each iteration at least one f;(x) (j € B') will
be improved.

In the case of LP problems, the dual quantities used in Algorithm 4 can be obtained
directly from the simplex tableau. Indeed, it was a basis of early implementations of the
lexicographic Max-Min solution for LP problems [1, 2, 12].

4.2 Conditional means

The sequential Max-Min algorithms can be applied only to convex problems, because, in
general, it is likely that there does not exist a blocking index set B allowing for iterative
processing. This can be illustrated with the following small example. Problem

lex max {((z1 + 222,321 + x2)) : x1 + 29 = 1, x1,25 € {0,1}}

has two feasible vectors x! = (1,0), x?> = (0, 1) and corresponding outcomes y! = (1, 3),
y2 = (2,1). Obviously, x' is the MMF optimal solution as ((1,3)) >, ((2,1)). One can
easily verify that both feasible solutions are optimal for Max-Min problem

max {min{z; + 229,371 + X2} : 11 + 12 =1, 21,29 € {0,1}}

but neither f; nor f, is a blocking outcome allowing to define the second level Max-Min
optimization problem to maximize the second worst outcome. For the same reason, the
sequential algorithm may fail for the single-path version of the routing optimization for
the MMF distribution of demand volumes and other discrete models (refer to Section 3.4).
Following Yager [37], a direct, although requiring the use of integer variables, formula can

be given for any y). Namely, for any £ = 1,2,...,m the following formula is valid:
y(k> = max T
s.t.
e —y; < Czij, 21, €4{0,1} forj=1,2,....m (4.27)
Z Zkj S k—1
j=1

where C'is a sufficiently large constant (larger than any possible difference between various
individual outcomes y;) which allows us to enforce inequality r, < y; for z;; = 0 while
ignoring it for z;; = 1. Note that for £ = 1 all binary variables z;; are forced to 0 thus
reducing the optimization in this case to the standard LP model. However, for any other
k > 1 all m binary variables z;; are an important part of the model. Nevertheless, with the
use of auxiliary integer variables, any MMF problem (either convex or non-convex) can be
formulated as the standard lexicographic maximization with directly defined achievement
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functions

lexmax (71,72, ..., 7m) (4.28a)
s.t.
x € Q (4.28b)
T — fj(X) < Cij, Zkj S {0, 1} for j, k= 1, 2, e, (4286)
> ay<k—1 fork=12...m (4.28d)
j=1

Recall that one may take advantage of the formulation (2.12) with cumulated criteria
Or(y) =38 Y@) expressing, respectively: the worst (smallest) outcome, the total of the
two worst outcomes, the total of the three worst outcomes, etc. When normalized by k
the quantities p;(y) = 0x(y)/k can be interpreted as the worst conditional means [24].
The optimization formula (4.27) for yg can easily be extended to define 6;(y). Namely,
for any k = 1,2,...,m the following formula is valid:

Qk(y) — max k??“k — Z dkj
7=1
s.t.
T — Y < dij, d; >0 for j =1,
dkj < C,ij, Zkj S {O, 1} for j = 1,

Y omy<k-1
j=1

where C' is a sufficiently large constant. However, the optimization problem defining the
cumulated ordered outcome can be dramatically simplified since all its binary variables
(and the related constraints) turn out to be redundant. First let us notice that for any
given vector y € ®™, the cumulated ordered value 6,(y) can be found as the optimal
value of the following LP problem:

2,...,m (4.29)
2,....,m

Ouly) = min > yu
j=1

s.t.
Z;nzl ugj =k, 0 <wuy; <1 forj=1,2,...,m.

(4.30)

The above problem is an LP for a given outcome vector y while it becomes nonlinear for
y being a variable. This difficulty can be overcome by taking advantage of the LP dual
to (4.30) as shown in the following assertion.

Proposition 8 For any given vector y € R™, the cumulated ordered coefficient 0, (y) can
be found as the optimal value of the following LP problem:

Or(y) = max k‘rk—z dy;
i=1 (4.31)
S.1.
e — Y <dgj, dgj >0 forj=1,2,...,m.
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Proof. In order to prove the proposition it is enough to notice that problem (4.31) is the
LP dual of problem (4.30) with variable r; corresponding to the equation > 7", uy; =k
and variables dj; corresponding to upper bounds on uy;. W

It follows from Proposition 8 that

Or(f(x)) = max {kry, — > dij : X€Q; 1 — f3(x) < dyj, di; >0 for j € M}
j=1

or in a more compact form 0 (f(x)) = max {hre =200, (fj(x)=7%)+ 1 x € Q } where ()4
denotes the nonnegative part of a number and ry is an auxiliary (unbounded) variable.
The latter, with the necessary adaptation to the minimized outcomes in location problems,
is equivalent to the computational formulation of the k—centrum model introduced in [26].
Hence, Proposition 8 provides an alternative proof of that formulation.

Due to Proposition 4, the lexicographic Max-Min problem (2.11) is equivalent to the
lexicographic maximization of conditional means

lescmax { (11 (), o (E(X)), ., i (£(x))) © x € Q.

Following Proposition 8, the above leads us to a standard lexicographic optimization
problem with predefined linear criteria:

lexmax  (r — Jz:; dij, T9 — %; doj, ..o\ — % ]z:; dmj) (4.32a)
s.t.

x€Q (4.32b)

dpj > 1K — fi(x) forj,k=1,2,....m (4.32¢)

dgj >0 forjk=1,2...,m. (4.32d)

Note that this direct lexicographic formulation remains valid for nonconvex (e.g. discrete)
feasible sets @), where the standard sequential approaches [16, 17] are not applicable [21].
Model (4.32) preserves the problem convexity when the original problem is defined with
convex feasible set () and concave objective functions f;. In particular, for an LP original
problem it remains within the LP class while introducing m? + m auxiliary variables
and m? constraints. Thus, for many problems with not too large number of criteria m,
problem (4.32) can easily be solved directly. Although, in general, for convex problems
such an approach seems to be less efficient than the sequential algorithms discussed in the
previous subsection. The latter may require m iterative steps only in the worst case (only
one blocking variable at each step), while typically there are more than two blocking
variables identified at each step which reduces significantly the number of steps. The
direct model (4.32) essentially requires the sequential lexicographic Algorithm 1 with m
steps.

Further research on the increase of computational efficiency of model (4.32) seems to be
very promising. Note that all lexicographic criteria of this problem express the conditional
means which are monotonic with respect to increasing k. While solving the lexicographic
problem with the standard sequential Algorithm 1, one needs to solve at Step 2 the

18



following maximization problem:

max {7y : Tkgr—wz dj; m(f(x)) > 1) VI <k; x € Q; r— fj(x) <dj, d; >0V}

j=1

where w = 1/k. It may occur that the optimal solution of the above problem remains
also optimal for smaller coefficients w = 1/k thus defining conditional means for k > k.
In such a case, one may advance the iterative process to x + 1 instead of k + 1. Hence,
some parametric optimization techniques may allow us to reduce the number of iterations
to the same level as in the sequential Max-Min algorithms.

Note that model (4.32) offers also a possibility to build some approximations to the strict
MMEF solution as it allows us to build lexicographic problems taking into account only a se-
lected grid of indices k. In particular, the so-called augmented Max-Min solution concept,
commonly used in the multiple criteria optimization [22, 35|, is such an approximation,
although very rough as based only on p; and g,

1« .
lex max{(ry, az )i < fj(x) forj=1,2,....m, x € Q}.

4.3 Distribution approach

For some specific classes of discrete, or rather combinatorial, optimization problems, one
may take advantage of the finiteness of the set of all possible values of functions f;
on the finite set of feasible solutions. The ordered outcome vectors may be treated as
describing a distribution of outcomes generated by a given decision x. In the case when
there exists a finite set of all possible outcomes of the individual objective functions,
we can directly describe the distribution of outcomes with frequencies of outcomes. Let
V ={v1,va,...,0.} (where v; < vy < --- < wv,) denote the set of all attainable outcomes
(all possible values of the individual objective functions f; for x € @)). We introduce
integer functions hi(y) (k = 1,2,...,r) expressing the number of values vy, in the outcome
vector y. Having defined functions h; we can introduce cumulative distribution functions:

k
=> lly), fork=12.r (4.33)
=1

Function hj; expresses the number of outcomes smaller or equal to v,. Since we want
to maximize all the outcomes, we are interested in the minimization of all functions hy.
Indeed, the following assertion is valid [22]. For outcome vectors y',y” € V'™, (y’) > (y")
if and only if hy(y’) < hp(y”) for all kK = 1,2,...,7. This equivalence allows to express
the lexicographic Max-Min solution concept for problem (2.1) in terms of the standard
lexicographic minimization problem with objectives h(f(x)):

lex min {71 (E(x)), ho(£(%)), ..., by (E(x))) : x € QY. (4.34)

Proposition 9 A feasible solution x € Q) is an optimal solution of the P-MMF problem,
if and only if it is an optimal solution of the lexicographic problem (4.34).
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The quantity hx(y) can be computed directly by the minimization:

h(y) = minz 2k
=1

s.t.
U1 — Y5 < Cziy, 25 € {0,1} for j=1,2,...,m,

where C is a sufficiently large constant. Note that h,.(y) = m for any y which means
that the r-th criterion is always constant and therefore redundant in (4.34). Hence, the
lexicographic problem (4.34) can be formulated as the following mixed integer problem:

lex min Z 215, Z 295y s Z Zr—1j
Jj=1 Jj=1 Jj=1
s.t. (4.35)
Vg1 — fi(x) < Czy; forj=1,2,....m, k=12,...,r—1,
2 €{0,1} forj=1,2,...,m, k=1,2,...,r—1,
X € Q.

Krarup and Pruzan [15] have shown that, in the case of discrete location problems, the
use of the minisum solution concept with the outcomes raised to a sufficiently large power
is equivalent to the use of the minimax solution concept. Formulation (4.34) allows us
to extend such an approach to the lexicographic Max-Min solution concept. Note that
the achievements functions in (4.34) can be rescaled with corresponding values vy1 — vy.
When the differences among outcome values are large enough then the lexicographic min-
imization corresponds to the one-level optimization of the total of achievements which is
equivalent to minimization of the sum of the original outcomes. In general, as shown by
Burkard and Rendl [4], there is a possibility to replace then the lexicographic Max-Min
objective function with an equivalent linear function on rescaled outcomes. Algorithms
developed in [4, 5] take advantage of finiteness of the set of outcome values and they
depend on making (explicitly or implicitly) differences among the outcomes larger (with-
out changing their order) which does not affect the lexicographically maximal solutions
of problem (2.11). When the differences are large enough the optimal solution of the
maxisum problem is also the lexicographic Max-Min solution. In general, an unrealisti-
cally complicated scaling function may be necessary to generate large enough differences
among different but very close outcomes. Therefore, the outcomes should be mapped
first on the set of integer variables (numbered) to normalize the minimum difference, like
in [4, 5] approaches. All these transformations are eligible in the case of finite outcome
set. Nevertheless, while solving practical problems, large differences among coefficients
may cause serious computational problems. Therefore, such approaches are less useful for
large scale problems typically arriving in telecommunications network design.

Taking advantage of possible weighting and cumulating achievements in lexicographic op-
timization, one may eliminate auxiliary integer variables from the achievement functions.

For this purpose we weight and cumulate vector h(y) to get:

-1

hi(y) =0 and hp(y) =  (vg1 —v)h(y) fork=2,...,r (4.36)

S

N
Il
N
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Due to Proposition 4 and positive differences v; 1 —v; > 0, the lexicographic minimization
problem (4.34) is equivalent to the lexicographic problem with objectives h(f(x)):

lexmin {(hi(£(x)), ho(£(x)), ..., h (£(X))) : x € Q} (4.37)
which leads us to the following assertion.

Proposition 10 A feasible solution x € () is an optimal solution of the P-MMF' prob-
lem, if and only if it is an optimal solution of the lexicographic problem (4.37).

Actually, vector function fl(y) provides a unique description of the distribution of coeffi-
cients of vector y, i.e., for any y’,y” € V™ one gets: fl(y’) = fl(y”) s (y)=F").
Moreover, h(y’) < h(y”) if and only if B(y’) > ©(y") [22].
Note that izl(y) = 0 for any y which means that the first criterion is constant and
redundant in problem (4.37). Moreover, putting (4.33) into (4.36) allows us to express all
achievement functions hy(y) as a piece wise linear functions of y:

hi(y) = Z (v —yj)4 = Z max{v, —y;,0} fork=1,2,... 7 (4.38)

]:]_ ]Zl

Hence, the quantity & (y) can be computed directly by the following minimization:

he(y) = min Z th;
=1 (4.39)
s.t.
vp —Yj Stgj, ty; >0 forj=1,2,...,m.
Therefore, the entire lexicographic model (4.37) can be formulated as follows:
lex min Z tQj, Z tgj,..., Z trj
j=1 j=1 j=1

s.t. (4.40)
v — fi(x) <tgj, t; >0 forj=1,2,....m, k=2,...)r
X € Q.

Note that the above formulation, unlike the problem (4.35), does not use integer variables
and can be considered as an LP modification of the original multiple criteria problem
(2.1). Thus, this model preserves the problem’s convexity when the original problem
is defined with a convex feasible set () and a concave objective functions f;. The size
of problem (4.40) depends on the number of different outcome values. Thus, for many
problems with not too large number of outcome values, the problem can easily be solved
directly and even for convex problems such an approach may be more efficient than the
sequential algorithms discussed in the previous subsection. Note that in many problems of
telecommunications network design, the objective functions express the quality of service
and one can easily consider a limited finite scale (grid) of the corresponding outcome
values. Similarly, in the capacity protection design (Section 3.3), one may focus on a
finite grid of demand volumes. One may also notice that model (4.40) opens a way for
the fuzzy representation of quality measures within the MMF problems.
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5 Concluding remarks

Today, the major objective of telecommunications network design for Internet services is
to maximize service data flows and provide fair treatment of all services. Fair treatment
of services can be formalized through the MMF solution concept, which assumes that the
worst service performance is maximized and the solution is additionally regularized with
the lexicographic maximization of the second worst performance, the third one etc. We
have argued that the MMEF' solution concept is tightly related to the Rawlsian principle
of justice and is equivalent the lexicographic Max-Min concept.

We have shown that with respect to telecommunications networks carrying the so-called
elastic traffic, the problems of routing design, restoration design and protection capacity
design are examples of important design problems that can be formulated with the use of
the MMF notion to express design objectives. We have presented and evaluated several
general efficient sequential algorithms that can be used to solve the basic variants of these
problems as well as many other MMF problems. These algorithms are based on the idea
to solve a sequence of properly defined Max-Min subproblems. The algorithms differ with
respect to the strategy of choosing this sequence. We have shown that the efficiency of
different strategies depends on the distribution of outcome values of the optimal solution to
the original problem. Since the algorithms can still be time-consuming due to excessive
number of subproblems that have to be solved in the iteration process, the values of
subproblems’ dual variables can be used to considerably reduce the number of solved
subproblems. In the case of LP problem formulations the values of dual variables can be
obtained directly from the simplex tableau.

Unfortunately, sequential algorithms are only applicable to convex problems. Hence if
network design problems are augmented with the requirements that data flows are to be
routed along single paths or that link capacity is modular, these algorithms cannot be
applied any more. However, we have shown that the original problem of lexicographic
maximization of the solution vector can be replaced with the lexicographic minimization of
the vector that describes the distribution of outcome values, which, fortunately enough, is
convex as long as an original problem is defined with a convex feasible set () and a concave
objective functions f;. The complexity of the transformed problem is directly related to
the number of different outcome values. As far as telecommunications network design is
concerned, this number can be pretty small, for example if the objective functions express
the quality of service. Therefore, further research on application of distribution approach
to various classes of telecommunications MMF problems seems to be very promising.

Appendix A: Numerical Example

In this appendix we present a numerical example of Problem 1 (Section 3.1). The structure
of the considered network is shown in Figure 1; c¢. denotes the capacity of link e. We
assume that the set of demands corresponds to the set of all pairs of nodes.

The results of applying Algorithm 4 (Section 4.1) to Problem 1 are presented in Table 1.
The table contains information pertaining to consecutive iterations of the algorithm. The
information includes the number of demands blocked in an iteration and their flow size.
To effectively solve the problem we applied a path (column) generation technique [27,
Section 8.2.1] allowing for problem decomposition. The overall number of paths used in
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Figure 1: 16-node square network

Table 1: Consecutive values of t* and number of blocked demands in MMF allocation

procedure
Iteration n 1 2 3 4 5 6
tr 5.286 | 6.625 | 7.013 | 10.214 | 14.606 | 16.115
Blocked Demands No. 63 8 28 8 4 1
Iteration n 7 8 9 10 11 12
tr 25.362 | 29.908 | 30.962 | 35.093 | 49.288 | 82.145
Blocked Demands No. 1 2 1 2 1 1

each iteration is presented in Figure 2. The LP subproblems were solved with the use
of the CPLEX 9.0 optimization package. Solving the problem on a PC-class computer
equipped with a 2.4 GHz P4 HT processor required 0.2 s of the processor time, of which
only 0.03 s in total was spent on solving the LP subproblems.

References

[1] F.A. Behringer, A simplex based algorithm for the lexicographically extended linear
maxmin problem, European Journal of Operational Research 7 (1981) 274-283.

[2] F.A. Behringer, Linear multiobjective maxmin optimization and some Pareto and
lexmaxmin extensions, OR Spektrum 8 (1986) 25-32.

[3] D. Bertsekas, R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, 1987.

[4] R.E. Burkard, F. Rendl, Lexicographic bottleneck problems, Operations Research
Letters 10 (1991) 303-308.

[5] F. Della Croce, V.T. Paschos, A. Tsoukias, An improved general procedure for lexi-
cographic bottleneck problem, Operations Research Letters 24 (1999) 187-194.

23



[14]

[15]

[16]

[17]

16 node network

500

4501 —

IS

o

o
T

W

a1

o
T

No. of Variables
n w
[ o
o o
:

N

o

o
T

150

100
0 6
MMF Alg. lteration

Figure 2: Number of problem columns in function of MMF algorithm iterations

R. Denda, A. Banchs, W. Effelsberg, The Fairness Challenge in Computer Networks.
Lecture Notes in Computer Science 1922 (2000) 208-220.

M. Dresher, Games of Strategy, Prentice—Hall, Englewood Cliffs, 1961.

D. Dubois, Ph. Fortemps, M. Pirlot, H. Prade, Leximin optimality and fuzzy set-
theoretic operations, European Journal of Operational Research 130 (2001) 20-28.

M. Ehrgott, Discrete decision problems, multiple criteria optimization classes and
lexicographic max-ordering, in: Trends in Multicriteria Decision Making, T.J. Stew-
art, R.C. van den Honert (red.), Springer, Berlin, 1998, pp. 31-44.

H. Isermann, Linear lexicographic optimization, OR Spektrum 4 (1982) 223-228.
J. Jaffe, Bottleneck Flow Control. IEEE Trans. on Communications 7 (1980) 207-237.

R.S. Klein, H. Luss, D.R. Smith, A lexicographic minimax algorithm for multiperiod
resource allocation, Mathematical Programming 55 (1992) 213-234.

J. Kleinberg, Y. Rabani, E. Tardos, Fairness in Routing and Load Balancing, Proc.
40th Annual IEEE Symposium on the Foundations of Computer Science, 1999.

M.M. Kostreva, W. Ogryczak, Linear optimization with multiple equitable criteria,
RAIRO Operations Research 33 (1999) 275-297.

J.K. Krarup, P.M. Pruzan, Reducibility of minimax to minisum 0-1 programming
problems, European Journal of Operational Research 5 (1981) 125-132.

H. Luss, On equitable resource allocation problems: a lexicographic minimax ap-
proach, Operations Research 47 (1999) 361-378.

E. Marchi, J.A. Oviedo, Lexicographic optimality in the multiple objective linear
programming: the nucleolar solution, European Journal of Operational Research 57
(1992) 355-3509.

24



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications,
Academic Press, New York, 1979.

P. Nilsson, M. Piéro, Solving Dimensioning Problems for Proportionally Fair Net-
works Carrying Elastic Traffic, Lund Institute of Technology, 2002.

P. Nilsson, M. Piéro and Z. Dziong, Link Protection within an Existing Backbone
Network, Proc. International Network Optimization Conference (INOC), 2003.

W. Ogryczak, On the lexicographic minimax approach to location problems, Euro-
pean Journal of Operational Research 100 (1997) 566—585.

W. Ogryczak, Linear and Discrete Optimization with Multiple Criteria: Preference
Models and Applications to Decision Support (in Polish). Warsaw Univ. Press, 1997.

W.Ogryczak, Comments on Properties of the Minimax Solutions in Goal Program-
ming, European Journal of Operational Research 132 (2001) 17-21.

W. Ogryczak, T. Sliwiﬁski, On equitable approaches to resource allocation problems:
the conditional minimax solution, J. Telecommunications and Info. Tech. 3/2002,
40-48.

W. Ogryczak, T. éliwiﬁski, On Solving Linear Programs with the Ordered Weighted
Averaging Objective. European Journal of Operational Research 148 (2002) 80-91.

W. Ogryczak, A.Tamir, Minimizing the sum of the k largest functions in linear time,
Information Processing Letters 85 (2003) 117-122.

M. Piéro, D. Medhi, Routing, Flow and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann, 2004.

M. Piéro, P. Nilsson, E. Kubilinskas, G. Fodor, On Efficient Max-Min Fair Routing
Algorithms, Proc. 8th IEEE International Symposium on Computer and Communi-
cations ISCC’03, 2003.

J.A.M. Potters, S.H. Tijs, The nucleolus of a matrix game and other nucleoli, Math-
ematics of Operations Research 17 (1992) 164-174.

J. Rawls, The Theory of Justice. Harvard University Press, Cambridge, 1971.

J.R. Rice, Tschebyscheff approximation in a compact metric space, Bull. Amer. Math.
Soc. 68 (1962) 405-410.

D. Schmeidler, The nucleolus of a characteristic function game, SIAM Journal of
Applied Mathematics 17 (1969) 1163-1170.

R.E. Steuer, Multiple Criteria Optimization: Theory, Computation & Applications,
John Wiley and Sons, New York, 1986.

A. Tomaszewski, A Polynomial Algorithm for Solving a General Max-Min Fairness
Problem, Proc. 2nd Polish-German Teletraffic Symposium PGTS 2002, pp. 253-258.

25



[35] A.P. Wierzbicki, M. Makowski and J. Wessels (eds.), Model Based Decision Support
Methodology with Environmental Applications. Kluwer, Dordrecht, 2000.

[36] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria
decision making, IEEE Trans. Systems, Man and Cybernetics 18 (1988) 183-190.

[37] R.R. Yager, Constrained OWA aggregation, Fuzzy Sets and Systems 81 (1996) 89—
101.

[38] R.R. Yager, On the analytic representation of the Leximin ordering and its applica-
tion to flexible constraint propagation, European Journal of Operational Research
102 (1997) 176-192.

26



