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Abstract

The Markowitz model of portfolio optimization quantifies the problem in a lucid form of only
two criteria: the mean, representing the expected outcome, and the risk, a scalar measure of the
variability of outcomes. The classical Markowitz model uses the variance as the risk measure, thus
resulting in a quadratic optimization problem. Following Sharpe’s work on linear approximation
to the mean–variance model, many attempts have been made to linearize the portfolio optimization
problem. There were introduced several alternative risk measures which are computationally attrac-
tive as (for discrete random variables) they result in solving linear programming (LP) problems. The
LP solvability is very important for applications to real-life financial decisions where the constructed
portfolios have to meet numerous side constraints and take into account transaction costs. The vari-
ety of LP solvable portfolio optimization models presented in the literature generates a need for their
classification and comparison. It is the main goal of our work. The paper introduces a systematic
overview of the LP solvable models with a wide discussion of their theoretical properties. This al-
lows us to classify the models with respect to the types of risk or safety measures they use. The paper
provides also the first complete computational comparison of the discussed models on real-life data.

Key words. Portfolio optimization, mean–risk and mean-safety model, linear programming, experimen-
tal analysis

1 Introduction

The portfolio optimization problem considered in this paper follows the original Markowitz’ formulation
which is based on a single period model of investment. At the beginning of a period, an investor allocates
his capital among various securities, thus assigning a nonnegative weight (share of the capital) to each
security. During the investment period, a security generates a random rate of return. This results in a
change of the capital invested (observed at the end of the period) which is measured by the weighted
average of the individual rates of return.

∗The revised version as accepted for publication in IMA Journal of Management Mathematics, vol. 14 (2003), 187–220.
†University of Brescia, Department of Electronics for Automation, via Branze 38, 25123 Brescia, Italy.
‡Partial support provided by grant PBZ-KBN-016/P03/99 from The State Committee for Scientific Research.
§University of Brescia, Department of Quantitative Methods, C. da S.Chiara 48/B, 25122 Brescia, Italy.
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Let J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each security
j ∈ J , its rate of return is represented by a random variable Rj with a given mean µj = E{Rj}.
Further, let x = (xj)j=1,2,...,n denote a vector of decision variables xj expressing the weights defining
a portfolio. To represent a portfolio, the weights must satisfy a set of constraints that form a feasible set
P . The simplest way of defining a feasible set is by a requirement that the weights must sum to one and
short sales are not allowed, i.e.

∑n
j=1 xj = 1 and xj ≥ 0 for j = 1, . . . , n. Hereafter, it is assumed that

P is a general LP feasible set given in a canonical form as a system of linear equations with nonnegative
variables.

Each portfolio x defines a corresponding random variable Rx =
∑n

j=1 Rjxj that represents the
portfolio rate of return. The mean rate of return for portfolio x is given as µ(x) = E{Rx} =

∑n
j=1 µjxj .

Hence, the mean rate of return is a linear function of portfolio x.
Following the seminal work by Markowitz (1952), the portfolio optimization problem is modeled

as a mean–risk bicriteria optimization problem where µ(x) is maximized and some risk measure %(x)
is minimized. In the original Markowitz model the risk is measured by the standard deviation or vari-
ance: σ2(x) = E{(µ(x) − Rx)2}. Several other risk measures have been later considered thus creating
the entire family of mean–risk models (Mitra et al., 2003 and references therein). While the original
Markowitz model forms a quadratic programming problem, following Sharpe (1971a), many attempts
have been made to linearize the portfolio optimization procedure (c.f., Speranza (1993) and references
therein). The LP solvability is very important for applications dealing with real-life financial decisions
where the constructed portfolios have to meet numerous side constraints, such as minimum transaction
lots (Mansini & Speranza, 1999), cardinality constraints (Jobst et al., 2001), and to take into account
transaction costs (Kellerer et al., 2000; Konno & Wijayanayake, 2001; Chiodi et al., 2000; Bonaglia et
al., 2002).

Certainly, in order to guarantee that the portfolio takes advantage of diversification, no risk measure
can be a linear function of x. Nevertheless, a risk measure can be LP computable in the case of discrete
random variables, i.e., in the case of returns defined by their realizations under the specified scenarios.
We will consider T scenarios St (where t = 1, . . . , T ) with corresponding probabilities pt. We will
assume that for each random variable Rj its realization rjt under the scenario t is known. Typically, the
realizations are derived from historical data treating T historical periods as equally probable scenarios
(pt = 1/T ). The realizations of the portfolio return Rx are given as

yt =
n

∑

j=1

rjtxj (1)

and thus they are linear functions of portfolio x. The expected value µ(x) can be then expressed as a
linear function of the realizations yt as µ(x) =

∑T
t=1 ytpt. Similarly, several risk measures can be LP

computable with respect to the realizations yt. The mean absolute deviation was very early considered in
the portfolio analysis (Sharpe, 1971b) and references therein) while more recently Konno & Yamazaki
(1991) presented and analyzed the complete portfolio LP solvable optimization model based on this risk
measure — the so-called MAD model. Yitzhaki (1982) introduced the mean–risk model using Gini’s
mean (absolute) difference as the risk measure (the GMD model). Recently, Young (1998) analyzed the
LP solvable portfolio optimization model based on risk defined by the worst case scenario (the minimax
approach), while Ogryczak (2000) introduced the multiple criteria LP model covering all the above as
special aggregation techniques. During the achievement of this study, some risk measures for portfolio
management have been proposed (Chekhlov et al., 2000), which result in models reducible to LP solvable
problems. This is a further evidence of the high interest shown for the subject dealt with in our paper and
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of the constant evolution of this research domain.
The Markowitz model is frequently criticized as not consistent with axiomatic models of preferences

for choice under risk (Rothschild & Stiglitz, 1969). Models consistent with the preference axioms are
based on the relations of stochastic dominance or on expected utility theory (Whitmore & Findlay, 1978;
Bawa, 1982; Levy, 1992). If the rates of return are normally distributed, then the mean absolute deviation
and the Gini’s mean difference become proportional to the standard deviation σ(x) (Kruskal & Tanur,
1978, pp. 1216–1217). Hence, the corresponding LP solvable mean–risk models are then equivalent
to the Markowitz mean–variance model. However, the LP solvable mean–risk models do not require
any specific type of return distributions. Moreover, opposite to the mean–variance approach, for general
random variables some consistency with the stochastic dominance relations was shown for the Gini’s
mean difference (Yitzhaki, 1982), for the MAD model (Ogryczak & Ruszczyński, 1999) and for many
other LP solvable models as well (Ogryczak, 2000). Recently, in Artzner et al. (1999), a class of coherent
risk measures has been defined by means of several axioms. Again, the coherence has been shown for
the MAD model (Ogryczak & Ruszczyński, 2002) and for some other LP computable measures (Acerbi
& Tasche, 2002).

It is often argued that the variability of the rate of return above the mean should not be penalized
since the investors are concerned with an underperformance rather than the overperformance of a portfo-
lio. This led Markowitz (1959) to propose downside risk measures such as (downside) semivariance to
replace variance as the risk measure. Consequently, one observes growing popularity of downside risk
models for portfolio selection (Bawa, 1978; Fishburn, 1977; Zagst, 2002). Some authors pointed out that
the MAD model opens up opportunities for more specific modeling of the downside risk (Feinstein &
Thapa, 1993; Speranza, 1993). In fact, most of the LP solvable models may be viewed as based on some
downside risk measures. Moreover, the models may be extended with some piecewise linear penalty
(risk) functions to provide opportunities for more specific modeling of the downside risk (Carino et al.,
1998; Konno, 1990; Michalowski & Ogryczak, 2001).

The variety of LP solvable portfolio optimization models presented in the literature generates a need
for their classification and comparison. This is the major goal of this paper. We provide a systematic
overview of the models with a wide discussion of their theoretical properties such as SSD consistency
(Ogryczak & Ruszczyński, 2001) and the coherence in the sense of Artzner et al. (1999). In particular, we
classify the performance measures of the models in risk measures (to be minimized) and safety measures
(to be maximized). We show that for each risk measure there exists a corresponding well-defined safety
measure and viceversa.

Since theoretical results provide only a limited background for models comparison, we also present
extensive computational results. The literature provides computational results only for individual models
and not all the models were tested in a real-life decision environment. While the MAD model was quite
extensively tested (Konno & Yamazaki, 1991)including its application to portfolios of mortgage-backed
securities (Zenios & Kang, 1993) where distribution of rate of return is known to be not symmetric, the
other LP solvable models seem to get much less recognition from applied studies.

The paper is organized as follows. In the next section we consider the stochastic dominance and
the related shortfall criteria. We show how various LP computable performance measures can be derived
from the shortfall criteria. Section 3 gives a detailed review and classification of the LP solvable portfolio
optimization models we examine. Section 4 is devoted to the experimental analysis on real-life data from
the Milan Stock Exchange. Extensive in-sample and out-of-sample computational results are provided
and commented. Finally, some concluding remarks are given.
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2 Shortfall criteria and performance measures

2.1 Shortfall criteria and stochastic dominance

The notion of risk is related to a possible failure of achieving some targets. It was formalized as the
so-called safety-first strategies (Roy, 1952; Bawa, 1978) and later led to the concept of below-target
risk measures (Fishburn, 1977; Zagst, 2002) or shortfall criteria. The simplest shortfall criterion for the
specific target value τ is the mean below-target deviation

δ̄τ (x) = E{max{τ − Rx, 0}}. (2)

In the case of returns represented by their realizations, the mean below-target deviation is a convex
piecewise linear function of realizations yt given as

∑T
t=1 max{τ − yt, 0}pt. Hence, due to (1), the

mean below-target deviation is also a convex piecewise linear function of the portfolio x itself and it is
LP computable as

δ̄τ (x) = min
T

∑

t=1

d−t pt subject to d−t ≥ τ − yt, d−t ≥ 0 for t = 1, . . . , T.

The concept of mean below-target deviation is related to the second degree stochastic dominance
relation (Whitmore & Findlay, 1978) which is based on an axiomatic model of risk-averse preferences
(Rothschild & Stiglitz, 1969; Levy, 1992). In stochastic dominance, uncertain returns (random variables)
are compared by pointwise comparison of functions constructed from their distribution functions. The
first function F

(1)
x is given as the right-continuous cumulative distribution function of the rate of return

F
(1)
x (η) = Fx(η) = P{Rx ≤ η} and it defines the weak relation of the first degree stochastic dominance

(FSD) as follows
R

x
′ �

FSD
R

x
′′ ⇔ F

x
′(η) ≤ F

x
′′(η) for all η.

The second function is derived from the first as

F
(2)
x (η) =

∫ η

−∞

Fx(ξ) dξ for real numbers η,

and defines the (weak) relation of second degree stochastic dominance (SSD)

R
x
′ �

SSD
R

x
′′ ⇔ F

(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η.

We say that portfolio x
′ dominates x

′′ under the SSD (R
x
′ �

SSD
R

x
′′), if F

(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all

η, with at least one strict inequality. A feasible portfolio x
0 ∈ P is called SSD efficient if there is no

x ∈ P such that Rx �
SSD

R
x

0 . If R
x
′ �

SSD
R

x
′′ , then R

x
′ is preferred to R

x
′′ within all risk-averse

preference models where larger outcomes are preferred.
Note that the SSD relation covers increasing and concave utility functions, while the first stochastic

dominance is less specific as it covers all increasing utility functions (Levy, 1992), thus neglecting a risk
averse attitude. It is therefore a matter of primary importance that a model for portfolio optimization be
consistent with the SSD relation, in the sense that R

x
′ �

SSD
R

x
′′ implies that the performance measure

in x
′ takes a value not worse than (lower than or equal to, in the case of a risk measure) in x

′′. The
consistency with the SSD relation implies that an optimal portfolio is SSD efficient.
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Function F
(2)
x , used to define the SSD relation, can also be presented as follows (Ogryczak &

Ruszczyński, 1999)

F
(2)
x (η) = P{Rx ≤ η}E{η − Rx|Rx ≤ η} = E{max{η − Rx, 0}} = δ̄η(x). (3)

Hence, the SSD relation can be seen as a dominance for mean below-target deviations from all possible
targets. We call them hereafter the basic SSD shortfall criteria.

The mean below-target deviation from a specific target (2) represents only a single basic SSD short-
fall criterion. One may consider several, say m, targets τ1 > τ2 > . . . > τm and use the weighted sum
of the shortfall criteria as a risk measure

m
∑

k=1

wk δ̄τk
(x) =

m
∑

k=1

wkE{max{τk − Rx, 0}} = E

{

m
∑

k=1

wk max{τk − Rx, 0}

}

(4)

where wk (for k = 1, . . . ,m) are positive weights which maintain LP computability of the measure
(when minimized). Actually, the measure (4) can be interpreted as a single mean below-target deviation
applied with a penalty function: E{u(max{τ1 − Rx, 0})} where u is increasing and convex piecewise
linear penalty function with breakpoints bk = τ1 − τk and slopes sk = w1 + . . . + wk, k = 1, . . . ,m.
Such a piecewise linear penalty function is used in the Russel-Yasuda-Kasai financial planning model
(Carino et al., 1998) to define the corresponding risk measure.

When an investment situation involves minimal acceptable returns, then the below-target deviation
and its extensions, as presented in the previous section, are considered to be good risk measures (Fish-
burn, 1977). However, they are in general not risk relevant as for some targets they may do not prevent
concentration of risks to remain undetected. When the mean portfolio return is used to define target
achievements, then the corresponding risk measure should relate to shortfalls with respect to the mean
µ(x) rather than to any fixed target τ . We will call such below-mean characteristics downside measures
or semideviations (if applicable). In the following subsections we show how various possible downside
performance measures can be derived from the basic SSD shortfall criteria and that some are consistent
with the stochastic dominance relations and are coherent in the sense of Artzner et al. (1999). Some
of the performance measures are risk measures (to be minimized) and some are safety measures (to be
maximized). We show that there are complementary pairs of risk and safety measures. That means, for
each risk measure there exists a corresponding safety measure and viceversa. We also show how these
measures become LP computable in the case of returns defined by discrete random variables.

2.2 MAD and downside versions

Let us simply use the mean portfolio return µ(x) in the shortfall criterion (2) instead of a fixed target τ .
This results in the risk measure known as the downside mean semideviation from the mean:

δ̄(x) = E{max{µ(x) − Rx, 0}} = F
(2)
x (µ(x)). (5)

The downside mean semideviation is always equal to the upside one δ̄(x) = E{max{µ(x) −Rx, 0}} =
E{max{Rx − µ(x), 0}}, therefore we refer to it hereafter as to the mean semideviation. Note that
the mean semideviation represents both downside as well as upside mean deviations (Kenyon et al.,
1999; Ogryczak & Ruszczyński, 1999). Actually, the mean semideviation is a half of the mean absolute
deviation from the mean, i.e. δ(x) = E{|Rx − µ(x)|} = 2δ̄(x). Hence, the corresponding mean–risk
model is equivalent to the MAD model (Speranza, 1993). For a discrete random variable represented by
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its realizations, the mean semideviation (5) is a convex piecewise linear function of realizations y t, given
as

∑T
t=1 max{µ(x) − yt, 0}pt. Hence, due to (1), the mean semideviation is also a convex piecewise

linear function of the portfolio x itself and it is LP computable as

δ̄(x) = min

T
∑

t=1

d−t pt subject to d−t ≥ µ(x) − yt, d−t ≥ 0 for t = 1, . . . , T.

Due to the use of distribution dependent target value µ(x), the mean semideviation cannot be directly
considered a basic SSD shortfall criterion. However, as shown by Ogryczak & Ruszczyński (1999), the
mean semideviation is closely related to the graph of F

(2)
x . The function F

(2)
x is continuous, convex,

nonnegative and nondecreasing. The graph F
(2)
x (η), referred to as the Outcome–Risk (O–R) diagram, has

two asymptotes which intersect at the point (µ(x), 0) (Figure 1). Exactly, the η-axis is the left asymptote
and the ascent line η − µ(x) is the right asymptote. In the case of a risk-free return (Rx = µ(x)), the
graph of F

(2)
x (η) coincides with the asymptotes, whereas any uncertain return with the same expected

value µ(x) yields a graph above (precisely, not below) the asymptotes. Thus, the space between the
curve (η, F

(2)
x (η)), and its asymptotes represents the dispersion (and thereby the riskiness) of Rx in

comparison to the deterministic return µ(x). Therefore, it is called the dispersion space. The mean
semideviation turns out to be the largest vertical diameter of the dispersion space while the variance
represents its doubled area (Ogryczak & Ruszczyński, 1999).

-
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Figure 1: The O–R diagram and the mean semideviation

Every shortfall risk measure or, more precisely, every pair of a target value τ and the corresponding
downside deviation defines also the quantity of mean below-target underachievement

τ − δ̄τ (x) = E{τ − max{τ − Rx, 0}} = E{min{Rx, τ}}.

The latter portfolio performance measure can be considered a safety measure as the larger values are
preferred. In the case of a fixed target τ one gets τ − δ̄τ (x′) ≥ τ − δ̄τ (x

′′) iff δ̄τ (x
′) ≤ δ̄τ (x′′).

Hence, the minimization of the mean below-target deviation (risk measure) and the maximization of the
corresponding mean below-target underachievement (safety measure) are equivalent. The latest property
is no longer valid when µ(x) is used as the target. One may introduce the safety measure of mean
downside underachievement

µ(x) − δ̄(x) = E{µ(x) − max{µ(x) − Rx, 0}} = E{min{Rx, µ(x)}} (6)

but the minimization of the mean semideviation is, in general, not equivalent to the maximization of the
mean downside underachievement. Note that, as shown in Ogryczak & Ruszczyński (1999), R

x
′ �

SSD

6
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R
x
′′ implies the inequality µ(x′) − δ̄(x′) ≥ µ(x′′) − δ̄(x′′) while the corresponding inequality on the

mean semideviations δ̄(x′) ≤ δ̄(x′′) may not be valid. Thus, the mean downside underachievement is
consistent with the SSD relation, while the consistency is not guaranteed for the mean semideviation. In
Artzner et al. (1999), a class of coherent risk measures has been defined by means of several axioms. In
our terms, these measures correspond to composite objectives of form f(x) = −µ(x) + %(x) (note the
opposite scalarization via the sign change). The axioms are: translation invariance, positive homogeneity,
subadditivity, monotonicity (R

x
′ ≥ R

x
′′ ⇒ f(x′) ≤ f(x′′)), and relevance (Rx ≤ 0, Rx 6= 0 ⇒

f(x) < 0). As pointed out in (Ogryczak & Ruszczyński, 2002, Rem. 1), δ̄(x) is seminorm in L1, is
convex and positively homogeneous. Therefore, the composite objective −µ(x) + δ̄(x) does satisfy
the first three axioms. Moreover, owing to the consistency with stochastic dominance, it also satisfies
monotonicity and relevance, because R

x
′ ≥ R

x
′′ ⇒ R

x
′ �

SSD
R

x
′′ . Theorems 3 and 4 (see Appendix)

generalize this assertion making its applicable to various LP computable measures, we consider.
For better modeling of the downside risk, one may consider a risk measure defined by the mean

semideviation applied with a piecewise linear penalty function (Konno, 1990) to penalize larger downside
deviations. It turns out, however, that for maintaining both the LP computability and SSD consistency
(Michalowski & Ogryczak, 2001), the breakpoints (or additional target values) must be located at the
corresponding mean downside underachievements (6). Namely, when using m distribution dependent
targets µ1(x) = µ(x), µ2(x),. . . , µm(x) and the corresponding mean semideviations δ̄1(x) = δ̄(x),
δ̄2(x),. . . , δ̄m(x) defined recursively according to the formulas:

δ̄k(x) = E{max{µk(x) − Rx, 0}} = E{max{µ(x) −

k−1
∑

i=1

δ̄i(x) − Rx, 0}}, (7)

µk+1(x) = µk(x) − δ̄k(x) = µ(x) −

k
∑

i=1

δ̄i(x) = E{min{Rx, µk(x)}},

one may combine the semideviations by the weighted sum to the measure

δ̄
(m)
w (x) =

m
∑

k=1

wk δ̄k(x), 1 = w1 ≥ w2 ≥ · · · ≥ wm ≥ 0, (8)

as in the m–MAD model (Michalowski & Ogryczak, 2001). Actually, the measure can be inter-
preted as a single mean semideviation (from the mean) applied with a penalty function: δ̄

(m)
w (x) =

E{u(max{µ(x) − Rx, 0})} where u is increasing and convex piecewise linear penalty function with
breakpoints bk = µ(x)− µk(x) and slopes sk = w1 + . . . + wk, k = 1, . . . ,m. Therefore, we will refer
to the measure δ̄

(m)
w (x) as to the mean penalized semideviation.

Note that the mean semideviations δ̄k(x) defined by the recursive formula (7), in general, may be
not convex functions of portfolio x. Nevertheless, the mean penalized semideviation (8) is a convex
piecewise linear function of portfolio x with returns represented by its realizations (1). This follows
from the properties of the cumulative deviation function δ̄(k)(x) =

∑k
i=1 δ̄i(x) and the restriction used

in (8). In the case of returns represented by their realizations (1), δ̄(1)(x) = δ̄1(x) = δ̄(x) is a convex
piecewise linear function of x. Due to (7), the following recursive formula is valid:

δ̄(k)(x) = δ̄k(x) + δ̄(k−1)(x) = E{max{µ(x) − Rx, δ̄(k−1)(x)}} =

T
∑

t=1

max{µ(x) − yt, δ̄
(k−1)(x)}pt

7
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which justifies δ̄(k)(x) as a convex piecewise linear function of portfolio x, for any k ≥ 1. Further, the
mean penalized semideviation (8) can be expressed as the linear combination of the cumulated devia-
tions:

δ̄
(m)
w (x) = wmδ̄(m)(x) +

m−1
∑

k=1

(wk − wk+1)δ̄
(k)(x),

where all the coefficients are nonnegative. Hence, in the case of returns represented by their realizations,
the mean penalized semideviation is a convex piecewise linear function of x.

As defined by a convex piecewise linear function, the penalized mean semideviation is LP com-
putable. Exactly, it can be computed from the following LP problem:

δ̄
(m)
w (x) = min

m
∑

k=1

wkzk s.t. zk =

T
∑

t=1

d−ktpt for k = 1, . . . ,m,

d−kt ≥ µ(x) − yt −
k−1
∑

i=1

zi, d−kt ≥ 0 for t = 1, . . . , T ; k = 1, . . . ,m.

The mean penalized semideviation (8) defines the corresponding safety measure µ(x) − δ̄
(m)
w (x)

which may be expressed directly as the weighted sum of the mean downside underachievements µk(x):

µ(x)− δ̄
(m)
w (x) = (w1−w2)µ2(x)+(w2−w3)µ3(x)+ . . .+(wm−1−wm)µm(x)+wmµm+1(x) (9)

where the coefficients are nonnegative and sum to 1. This safety measure was shown by Michalowski
& Ogryczak (2001) to be SSD consistent in the sense that R

x
′ �

SSD
R

x
′′ implies µ(x′) − δ̄

(m)
w (x′) ≥

µ(x′′) − δ̄
(m)
w (x′′). Moreover, due to Theorem 3, the corresponding safety measure (its negative) is

coherent in the sense of Artzner et al. (1999).

2.3 Minimax and the worst conditional expectation

For a discrete random variable represented by its realizations yt, the worst realization

M(x) = min
t=1,...,T

yt (10)

is a well appealing safety measure, while the maximum (downside) semideviation

∆(x) = µ(x) − M(x) = max
t=1,...,T

(µ(x) − yt) (11)

represents the corresponding risk measure. The latter may be interpreted as the maximal drawdown
(Chekhlov et al., 2000). It is also a well defined measure in the O–R diagram (Fig. 1) as it represents the
maximum horizontal diameter of the dispersion space. According to (11), the maximum semideviation
is convex piecewise linear function of realizations yt and, due to (1), it is also a convex piecewise linear
function of the portfolio x itself. Similar to the mean semideviation, it is LP computable as:

∆(x) = min d−t subject to d−t ≥ µ(x) − yt, d−t ≥ 0 ∀t = 1, . . . , T.

The measure M(x) is known to be SSD consistent and it was applied to portfolio optimization by
Young (1998). By the use of Theorem 4, one easily get that −M(x) is a coherent risk measure in the

8
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sense of Artzner et al. (1999). A natural generalization of the measure M(x) is the worst conditional
expectation defined as the mean of the specified size (quantile) of worst realizations. For the simplest case
of equally probable scenarios (pt = 1/T ), one may define the worst conditional expectation M k

T

(x) as
the mean return under the k worst scenarios. In general, the worst conditional expectation and the worst
conditional semideviation for any (real) tolerance level 0 < β ≤ 1 are defined as:

Mβ(x) =
1

β

∫ β

0
F

(−1)
x (α)dα for 0 < β ≤ 1 (12)

and
∆β(x) = µ(x) − Mβ(x) for 0 < β ≤ 1, (13)

respectively, where F
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-continuous inverse of the cumulative

distribution function Fx. For any 0 < β ≤ 1, the conditional worst realization Mβ(x) is an SSD
consistent measure. Actually, the conditional worst expectations provide an alternative characterization
of the SSD relation (Ogryczak & Ruszczyński, 2002) in the sense of the following equivalence:

R
x
′ �

SSD
R

x
′′ ⇔ Mβ(x′) ≥ Mβ(x′′) for all 0 < β ≤ 1. (14)

Note that M1(x) = µ(x) and Mβ(x) tends to M(x) for β approaching 0. By the theory of convex
conjugent (dual) functions (Rockafellar, 1970), the worst conditional expectation may be defined by the
optimization (Ogryczak & Ruszczyński, 2002):

Mβ(x) = max
η∈R

[η −
1

β
F

(2)
x (η)] = max

η∈R
[η −

1

β
E{max{η − Rx, 0}}], (15)

where η is a real variable taking the value of β–quantile Qβ(x) at the optimum. Formula (15) may be
also interpreted as Mβ(x) = max{η − 1

β
ξ : ξ ≥ F

(2)
x (η)}. Hence, the worst conditional expectations

and the corresponding worst conditional semideviations express the results of the O–R diagram analysis
according to a slant direction defined by the slope β (Fig. 2).

-

6

η

Mβ(x) µ(x)∆β(x)

-�
Qβ(x)

�
�

�
�

�
�

�
�

�
��
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slope 1

slope β

F
(2)
x (η)

����

Figure 2: Quantile safety measures in the O-R diagram

For a discrete random variable represented by its realizations yt, problem (15) becomes an LP:

Mβ(x) = max [η −
1

β

T
∑

t=1

d−t pt] s.t. d−t ≥ η − yt, d−t ≥ 0 for t = 1, . . . , T, (16)

9
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where η is an auxiliary (unbounded) variable. The worst conditional semideviations are then available as
the corresponding differences from the mean ∆β(x) = µ(x) −Mβ(x). Alternatively, by using equation
(15) one gets

∆β(x) = µ(x) − Mβ(x) = min
η∈R

E

{

Rx − η +
1

β
max{η − Rx, 0}

}

= min
η∈R

E

{

max{Rx − η, 0} +
1 − β

β
max{η − Rx, 0}

}

which allows to compute the worst conditional semideviation directly from the following LP:

∆β(x) = min

T
∑

t=1

(d+
t +

1 − β

β
d−t )pt s.t. d−t − d+

t = η − yt, d+
t , d−t ≥ 0 for t = 1, . . . , T.

(17)
Thus, the worst conditional semideviation is a convex piecewise linear function of realizations y t and,
due to (1), it is also a convex piecewise linear function of the portfolio x itself. It follows from Theorem 3
that −Mβ(x) is coherent in the sense of Artzner et al. (1999).

Note that for β = 0.5 one has 1 − β = β. Hence, ∆0.5(x) represents the mean absolute deviation
from the median, the risk measure suggested by Sharpe (1971b). The LP problem for computing this
measure takes the form:

∆0.5(x) = min

T
∑

t=1

(d+
t + d−t )pt s.t. d−t − d+

t = η − yt, d+
t , d−t ≥ 0 for t = 1, . . . , T.

The worst conditional expectation is closely related to the measure called Conditional Concentra-
tion (Shalit & Yitzhaki, 1994), Expected Shortfall (Embrechts et al., 1997) or Conditional Value-at-Risk
(CVaR) (Rockafellar & Uryasev, 2000) which may be expressed as CVaRβ(x) = E{Rx|Rx ≤ Qβ(x)}.
Exactly, Mβ(x) = CVaRβ(x) in the case of continuous distributions of returns, while they can take
different values for discrete distributions (Ogryczak & Ruszczyński, 2002). Nevertheless, recently con-
sidered models for portfolio optimization (Rockafellar & Uryasev, 2000) use the LP formula for the
worst conditional expectation as a computational approximation to CVaR for continuous distributions.
Therefore, the models using the worst conditional expectation or the worst conditional semideviation as
a performance measure we will refer to as the CVaR models.

2.4 Gini’s mean difference

Yitzhaki (1982) introduced the mean-risk model using Gini’s mean (absolute) difference as the risk
measure. For a discrete random variable represented by its realizations yt, the Gini’s mean difference

Γ(x) =
1

2

T
∑

t′=1

T
∑

t′′=1

|yt′ − yt′′ |pt′pt′′ (18)

is obviously a convex piecewise linear function of realizations yt and, due to (1), it is also a convex
piecewise linear function of the portfolio x. This allows to compute the Gini’s mean difference directly
from the following LP:

Γ(x) = min

T
∑

t′=1

∑

t′′ 6=t′

dt′t′′pt′pt′′ s.t. dt′t′′ ≥ yt′ − yt′′ , dt′t′′ ≥ 0 for t′, t′′ = 1, . . . , T ; t′′ 6= t′.

10
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In the case of equally probable T scenarios with pt = 1/T , the Gini’s mean difference may be
expressed as the weighted average of the worst conditional semideviations ∆ k

T

(x) for k = 1, . . . , T

(Ogryczak, 2000). Exactly, using weights wk = (2k)/T 2 for k = 1, 2, . . . , T − 1 and wT = 1/T =
1 −

∑T−1
k=1 wk, one gets Γ(x) =

∑T
k=1 wk∆ k

T

(x). On the other hand, for general discrete distributions,
directly from the definition (18) and from (3):

Γ(x) =

T
∑

t′=1

[
∑

t′′:y
t′′<y

t′

(yt′ − yt′′)pt′′ ]pt′ =

T
∑

t=1

F
(2)
x (yt)pt =

T
∑

t=1

δ̄yt
(x)pt.

Hence, Γ(x) can be interpreted as the weighted sum of multiple mean below-target deviations (4) but
both the targets and the weights are distribution dependent. This corresponds to an interpretation of Γ(x)

as the integral of F
(2)
x with respect to the probability measure induced by Rx (Ogryczak & Ruszczyński,

2002). Thus although not representing directly any shortfall criterion, the Gini’s mean difference is a
combination of the basic shortfall criteria.

Note that the Gini’s mean difference defines the corresponding safety measure Yitzhaki (1982):

µ(x) − Γ(x) = E{Rx ∧ Rx} (19)

which is the expectation of the minimum of two i.i.d.r.v. Rx thus representing the mean worse return.
This safety measure is SSD consistent (Yitzhaki, 1982; Ogryczak & Ruszczyński, 2002) in the sense
that R

x
′ �

SSD
R

x
′′ implies µ(x′) − Γ(x′) ≥ µ(x′′) − Γ(x′′). Moreover, due to Theorem 3, the safety

measure (its negative) is coherent in the sense of Artzner et al. (1999).

3 Portfolio optimization

3.1 Risk and safety measures

Following Markowitz (1952), the portfolio optimization problem is modeled as a mean–risk bicriteria
optimization problem:

max{[µ(x),−%(x)] : x ∈ P}, (20)

where the mean µ(x) is maximized and the risk measure %(x) is minimized. A feasible portfolio x
0 ∈ P

is called efficient solution of problem (20) or µ/%–efficient portfolio if there is no x ∈ P such that
µ(x) ≥ µ(x0) and %(x) ≤ %(x0) with at least one inequality strict.

The original Markowitz (1952) model uses the standard deviation σ(x) as the risk measure. As shown
in the previous section, several other risk measures may be used instead of the standard deviation thus
generating the corresponding LP solvable mean-risk models. In this paper we restrict our analysis to the
risk measures which, similar to the standard deviation, are shift independent dispersion parameters. Thus,
they are equal to 0 in the case of a risk free portfolio and take positive values for any risky portfolio. This
excludes the direct use of the mean below-target deviation (2) and its extensions with penalty functions
(4). Nevertheless, as shown in Section 2, there is a gamut of LP computable risk measures fitting the
requirements.

In Section 2 we have seen that in the literature some of the LP computable measures are dispersion
type risk measures and some are safety measures, which, when embedded in an optimization model, are
maximized instead of being minimized. Moreover, we have shown that each risk measure %(x) has a
well defined corresponding safety measure µ(x) − %(x) and viceversa. Although the risk measures are
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more ”natural”, due to the consolidated familiarity with Markowitz model, we have seen that the safety
measures, contrary to the dispersion type risk measures, are SSD consistent in the sense that R

x
′ �

SSD

R
x
′′ implies µ(x′)−%(x′) ≥ µ(x′′)−%(x′′) (Michalowski & Ogryczak, 2001; Ogryczak & Ruszczyński,

1999, 2002; Yitzhaki, 1982; Young, 1998). Moreover, one may notice that the safety measures, we
consider, satisfy axioms of the so-called coherent risk measurement as in Artzner et al. (1999) (with the
sign change). We want to emphasize that the convexity of (dispersion type) risk measures is essential
for the portfolio optimization solvability, while their additional properties of positive homogeneity and
appropriate scaling (see Theorem 4) guarantee that the corresponding safety measures are coherent.

Table 1: Sample returns.

Scenario Rx
o R

x
′ R

x
′′

P{S1} = 0.5 1.5 3.5 5.0
P{S2} = 0.5 1.5 4.5 4.0

The practical consequence of the lack of SSD consistency or the lack of coherence can be illustrated
by three portfolios x

o, x
′ and x

′′ with rate of return (given in percents) under two equally probable
scenarios S1 and S2 (Table 1). Note that the risk free portfolio x

o with the guaranteed result 1.5 is
obviously worse than the risky portfolios: x

′ giving 3.5 or 4.5 and x
′′ giving 5.0 or 4.0. Certainly, in all

models consistent with the preference axioms of either coherence (Artzner et al., 1999) or SSD (Levy,
1992; Whitmore & Findlay, 1978) portfolio x

o is dominated by both x
′ and x

′′. When a dispersion type
risk measure %(x) is used, then all the portfolios may be efficient in the corresponding mean–risk model.
Unfortunately, it also applies to portfolio x

o, since for each such measure %(x′) > 0 and %(x′′) > 0 while
%(xo) = 0. This is a common flaw of all mean–risk models where risk is measured with some dispersion
measure (Markowitz-type models). Further, let us notice that R

x
′′ �

SSD
R

x
′ although R

x
′′ 6≥ R

x
′ .

Hence, the SSD consistency of a model guarantees that R
x
′′ will be selected while the coherence allows

that either R
x
′′ or R

x
′ may be selected (it only guarantees that Rx

o will not be selected).
It is interesting to note that, in order to overcome this weakness of the Markowitz model already in

Baumol (1964) the author suggested to consider a safety measure, which he called the expected gain-
confidence limit criterion, µ(x) − λσ(x) to be maximized instead of the σ(x) minimization. Thus, on
the basis of the above remarks, for each risk measure, it is reasonable to consider also an alternative
mean-safety bicriteria model:

max{[µ(x), µ(x) − %(x)] : x ∈ P}. (21)

Table 2: Risk and safety measures.

Model Risk measure %(x) Safety measure µ(x) − %(x)

MAD model (Konno & Yamazaki, 1991) δ̄(x) (5) E{min{Rx, µ(x)}} (6)
m–MAD model (Michalowski & Ogryczak, 2001) δ̄

(m)
w (x) (8) µ(x) − δ̄

(m)
w (x) (9)

Minimax model (Young, 1998) ∆(x) (11) M(x) (10)
CVaR model (Rockafellar & Uryasev, 2000) ∆β(x) (12) Mβ(x) (13)
GMD model (Yitzhaki, 1982) Γ(x) (18) E{Rx ∧ Rx} (19)

The full set of risk and safety measures is presented in Table 1. Note that the MAD model was first
introduced (Konno & Yamazaki, 1991) with the risk measure of mean absolute deviation δ(x) whereas
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the mean semideviation δ̄(x) we consider is half of it. This is due to the fact that the resulting opti-
mization models are equivalent and that the model with the semideviation is more efficient (Speranza,
1993). For the MAD model, the safety measure represents the mean downside underachievement. For
the m–MAD model the two measures represent the mean penalized semideviation and the weighted sum
of the mean downside underachievements, respectively.

The Minimax model was considered and tested (Young, 1998) with the safety measure of the worst
realization M(x) but it was also analyzed with the maximum semideviation ∆(x) (Ogryczak, 2000).
The CVaR model was considered with the safety measure of the worst conditional expectation (Rock-
afellar & Uryasev, 2000) while the risk measure represents the worst conditional semideviation. Yitzhaki
(1982) introduced the GMD model with the Gini’s mean difference Γ(x) but he also analyzed the model
implementation with the corresponding safety measure of the mean worse return E{Rx ∧ Rx}.

As shown in the previous section, all the risk measures we consider may be derived from the basic
SSD shortfall criteria. However, they are quite different in modeling of the downside risk aversion. Defi-
nitely, the strongest in this respect is the maximum semideviation ∆(x) used in the Minimax model. It is
a strict worst case measure where only the worst scenario is taken into account. The CVaR model allows
to extend the analysis to a specified β quantile of the worst returns. The measure of worst conditional
semideviation ∆β(x) offers a continuum of models evolving from the strongest downside risk aversion
(β close to 0) to the complete risk neutrality (β = 1). The MAD model with risk measured by the mean
(downside) semideviation from the mean is formally a downside risk model. However, due to the sym-
metry of mean semideviations from the mean (Ogryczak & Ruszczyński, 1999), it is equally appropriate
to interpret the MAD model as an upside risk model. Actually, the m–MAD model has been introduced
to incorporate downside risk modeling capabilities into the MAD model. The Gini’s mean difference
although related to all the worst conditional semideviations is, similar to the mean absolute deviation, a
symmetric risk measure (in the sense that for Rx and −Rx it has exactly the same value).

Note that having µ(x′) ≥ µ(x′′) and %(x′) ≤ %(x′′) with at least one inequality strict, one gets
µ(x′) − %(x′) > µ(x′′) − %(x′′). Hence, a portfolio dominated in the mean-risk model (20) is also
dominated in the corresponding mean-safety model (21). In other words, the efficient portfolios of
problem (21) form a subset of the entire µ/%–efficient set. Due to the SSD consistency of the safety
measures, except for portfolios with identical mean and risk measure, every portfolio belonging to this
subset is SSD efficient. Although very important, the SSD efficiency is only a theoretical property. For
specific types of distributions or feasible sets the subset of portfolios with guaranteed SSD efficiency
may be larger (Ogryczak & Ruszczyński, 1999, 2002) than the corresponding mean-safety efficient set.
Hence, the mean-safety model (21) may be too restrictive in some practical investment decisions.

3.2 Bicriteria portfolio selection

In order to compare on real-life data the performance of various mean–risk models, one needs to deal
with specific investor preferences expressed in the models. There are two ways of modeling risk averse
preferences and therefore two major approaches to handle bicriteria mean–risk problems (20). First,
having assumed a trade-off coefficient λ between the risk and the mean, the so-called risk aversion
coefficient, one may directly compare real values µ(x)−λ%(x) and find the best portfolio by solving the
optimization problem:

max {µ(x) − λ%(x) : x ∈ P}. (22)

Various positive values of parameter λ allow to generate various efficient portfolios. By solving the
parametric problem (22) with changing λ > 0 one gets the so-called critical line approach (Markowitz,
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1959). Due to convexity of risk measures %(x) with respect to x, λ > 0 provides the parameterization of
the entire set of the µ/%–efficient portfolios (except of its two ends which are the limiting cases). Note
that (1−λ)µ(x)+λ(µ(x)−%(x)) = µ(x)−λ%(x). Hence, bounded trade-off 0 < λ ≤ 1 in the mean–
risk model (20) corresponds to the complete weighting parameterization of the mean–safety model (21).
The critical line approach allows to select an appropriate value of the risk aversion coefficient λ and the
corresponding optimal portfolio through a graphical analysis in the mean-risk image space.

Unfortunately, in practical investment situations, the risk aversion coefficient does not provide a clear
understanding of the investor preferences. The commonly accepted approach to implementation of the
mean–risk model is then based on the use of a specified lower bound µ0 on expected returns which results
in the following minimum risk bounded problem:

min{%(x) : µ(x) ≥ µ0, x ∈ P}. (23)

This bounding approach is wider accepted and provides a clear understanding of investor preferences
and a clear definition of solution portfolios to be used in the models comparison. Therefore, we use the
bounding approach (23) in our analysis.

Due to convexity of risk measures %(x) with respect to x, by solving the parametric problem (23)
with changing µ0 ∈ [ min

j=1,...,n
µj , max

j=1,...,n
µj ] one gets various efficient portfolios. Actually, the efficient

frontier is bounded by the minimum risk portfolio (MRP) defined as solution of min
x∈P

%(x). For µ0 smaller

than the expected return of the MRP problem (23) generates always the MRP while larger values of µ0

provide the parameterization of the µ/%–efficient set as the optimal solution of the fixed return problem

min {%(x) : µ(x) = µ0, x ∈ P} (24)

is then also an optimal solution to (23). It follows from the general properties of a convex bicriteria
minimization as shown in Theorem 1 (see Appendix) when applied to f(x) = %(x).

As a complete parameterization of the entire µ/%–efficient set, the approach (23) generates also
portfolios belonging to the subset of efficient solutions of the corresponding mean–safety problem (21).
The latter correspond to larger values of bound µ0 as these portfolios are bounded by the maximum safety
portfolio (MSP), i.e. the solution to the problem

max{µ(x) − %(x) : x ∈ P}. (25)

Note that, opposite to the critical line approach, having a specified value of parameter µ0 one does not
know if the optimal solution of (23) is also an efficient portfolio with respect to the corresponding mean–
safety model (21) or not. Therefore, when using the bounding approach to the mean–risk models (20),
essentially, we need to consider explicitly a separate problem of the maximum safety under bounded
return

max{µ(x) − %(x) : µ(x) ≥ µ0, x ∈ P} (26)

for the corresponding mean–safety model (21). However, the solutions to the bounded maximum safety
problem (26) can be found by the analysis of the corresponding minimum risk problem (23), provided
that there is already known the maximum safety portfolio. Namely, if µ0 ≤ µ(MSP ), then the MSP is
an optimal solution to (26). When µ0 ≥ µ(MSP ), then according to Theorem 2 (see Appendix), the
optimal solution of the corresponding problem of risk minimization under fixed return (24) is the optimal
solution to both bounded problems: the corresponding minimum risk problem (23) and the maximum
safety problem (26).
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3.3 The LP models

We provide here the detailed LP formulations for all the models we have analyzed. For each type of
model, the pair of problems (23) and (26), we have analyzed, can be stated as the problem:

max{αµ(x) − %(x) : µ(x) ≥ µ0, x ∈ P} (27)

covering the minimization of risk measure %(x) (23) for α = 0 while for α = 1 it represents the
maximization of the corresponding safety measure µ(x)− %(x) (26). Both optimizations are considered
with a given lower bound on the expected return µ(x) ≥ µ0.

By definition, any model (27) contains the following linear constraints:

x ∈ P and z ≥ µ0, (28)

where z is an unbounded variable representing the mean return of the portfolio x. Further, all the models
contain equation defining the mean return and explicitly defined realization of the portfolio return, i.e.,

n
∑

j=1

µjxj − z = 0 and
n

∑

j=1

rjtxj − yt = 0 for t = 1, . . . , T, (29)

where yt (t = 1, . . . , T ) are unbounded variables to represent the realizations of the portfolio return
under the scenario t. In addition to these common variables and constraints, each model contains its
specific linear constraints to define the risk or safety measure. Note that, in order to use a more standard
LP notation and to relate models of the same class, we modify here the notation for some of the variables
introduced in Section 2.
MAD and downside versions. The standard MAD model (Konno & Yamazaki, 1991), when imple-
mented with the mean semideviation as the risk measure (%(x) = δ̄(x)), leads to the following LP
problem:

maximize αz − z1

subject to (28)–(29) and

z1 −

T
∑

t=1

ptd1t = 0, (30)

d1t − z + yt ≥ 0, d1t ≥ 0 for t = 1, . . . , T, (31)

where nonnegative variables d1t represent downside deviations from the mean under several scenarios t
and z1 is a variable to represent the mean semideviation itself. The latter can be omitted by using the
direct formula for mean semideviation in the objective function instead of equation (30). The above LP
formulation uses T + 1 variables and T + 1 constraints to model the mean semideviation.

In the m–MAD model (Michalowski & Ogryczak, 2001) constraints of type (30)–(31) have to be
repeated for each penalty level k = 2, . . . ,m. It results in the following problem:

maximize αz − z1 −

m
∑

k=2

wkzk

subject to (28)–(29), (30)–(31) and for k = 2, . . . ,m :

zk −
T

∑

t=1

ptdkt = 0,

15



Institute of Control & Computation Engineering Report 01-25

dkt − z +
k−1
∑

i=1

zi + yt ≥ 0, dkt ≥ 0 for t = 1, . . . , T.

This results in an LP formulation that uses m(T + 1) variables and m(T + 1) constraints to model the
m-level penalized mean semideviation.
Minimax and the worst conditional expectation. For any 0 < β < 1 the CVaR model (Rockafellar &
Uryasev, 2000) with %(x) = ∆β(x) may be implemented as the following LP problem (the variables d+

t

which appear in (17) have been substituted in the objective function):

maximize y − (1 − α)z −
1

β

T
∑

t=1

ptdt

subject to (28)–(29) and dt − y + yt ≥ 0, dt ≥ 0 for t = 1, . . . , T.

Recall that the optimal value of y represents the value of β-quantile. T + 1 variables and T constraints
are used here to model the worst conditional semideviation.

As the limiting case when β tends to 0 one gets the standard Minimax model (Young, 1998). The
latter may be additionally simplified by dropping the explicit use of the deviational variables:

maximize y − (1 − α)z

subject to (28)–(29) and yt − y ≥ 0 for t = 1, . . . , T,

thus resulting in T constraints and a single variable used to model the maximum semideviation.
Gini’s mean difference. The model with risk measured by the Gini’s mean difference (%(x) = Γ(x))
(Yitzhaki, 1982), due to the relation Γ(x) = µ(x) − E{Rx ∧ Rx}, may be implemented as follows:

maximize (α − 1)z +

T
∑

t=1

p2
t yt + 2

T−1
∑

t′=1

T
∑

t′′=t′+1

pt′pt′′ut′t′′

subject to (28)–(29) and

ut′t′′ ≤ yt′ , ut′t′′ ≤ yt′′ for t′ = 1, . . . , T − 1; t′′ = t′ + 1, . . . , T,

where ut′t′′ are unbounded variables to represent min{yt′ , yt′′}. The above LP formulation uses T (T −
1)/2 variables and T (T − 1) constraints to model the Gini’s mean difference.

The direct formulation of the GMD model according to (18) takes the form:

maximize αz −

T
∑

t′=1

∑

t′′ 6=t′

pt′pt′′dt′t′′

subject to (28)–(29) and dt′t′′ ≥ yt′ − yt′′ , dt′t′′ ≥ 0 for t′, t′′ = 1, . . . , T ; t′′ 6= t′,

which contains T (T − 1) nonnegative variables dt′t′′ and T (T − 1) inequalities to define them. The
symmetry property dt′t′′ = dt′′t′ is here ignored and, therefore, the number of variables is doubled in
comparison to the previous model. However, variables dt′t′′ are associated with the singleton coefficient
columns. Hence, while solving the dual instead of the original primal, the corresponding dual constraints
take the form of simple upper bounds (SUB) (Nazareth, 1987) which are handled implicitly outside the
LP matrix. In other words, the dual contains T (T −1) variables but the number of constraints (excluding
the SUB structure) is then proportional to T . Such a dual approach may dramatically improve the LP
model efficiency in the case of large number of scenarios.

16



Institute of Control & Computation Engineering Report 01-25

4 Computational results

4.1 Testing environment

This section is devoted to a comprehensive analysis and comparison of all the discussed models in a real-
life decision environment. In particular, we have compared the practical performance of the models using
datasets from Milan Stock Exchange. Tests have been conducted on a PC with the Pentium 200 MHz
processor by using the CPLEX 6.5 package (ILOG Inc., 1997). The Barrier solver of CPLEX has been
applied to the quadratic programs resulting from the Markowitz model. Below, firstly we describe the
analytical framework of the experiments. Secondly, we present and discuss the results of an in-sample
analysis, and, thirdly, we provide an extensive out-of-sample comparison of the models. Due to the large
number of solved instances, we have summarized and commented only the main results.

Since the measure of conditional maximum semideviation ∆β(x) offers a continuum of models
evolving from the strongest downside risk aversion (β close to 0) to the complete risk neutrality (β = 1),
some decisions need to be taken on these parameter values. We have decided to consider two different
values, i.e. β = 0.1 and 0.5, in order to compare the corresponding CVaR models versus the standard
Minimax and the other models. From now on, we will refer to such models as CVaR(0.1) and CVaR(0.5),
respectively. Note that β = 0.5 corresponds to the median and, therefore, the two analyzed CVaR models
can be considered as downside risk models. The mean penalized semideviation δ̄(m)(x) of m–MAD
model is defined by the number of penalty levels m and by the weights 1 ≥ w2 ≥ . . . wm > 0. The
latter may be simplified by the use of a single parameter 0 < a ≤ 1 and the power sequence wk = ak−1

for k = 2, . . . ,m. Larger m (or larger a) implies larger downside risk aversion, while a approaching 0
(or simply m = 1) reduces the m–MAD to the standard MAD model. In particular, when a = 1 and m
tends to infinity the Minimax model (maximum semideviation) is obtained as the limiting case. In order
to compare the m–MAD model versus the standard MAD, the selected CVaR models and the Minimax
rule we have considered the following parameter values: m = 2, while a = 1 and a = 0.4. We will
identify these models as 2-MAD(1) and 2-MAD(0.4), respectively.

We have prepared four sets of data, consisting of the rates of return of different sets of stocks over
periods of about 104 weeks (2 years). Historical realizations have been derived from the stock index
prices as listed in the Milan Stock Exchange. In-sample datasets are as follows:

Period A (1994–1995): 103 weekly observations and 209 securities available;
Period B (1995–1996): 104 weekly observations and 220 securities available;
Period C (1996–1997): 105 weekly observations and 235 securities available;
Period D (1997–1998): 105 weekly observations and 246 securities available.
The choice of a weekly periodicity for the rates of return is consistent with the requirement of hav-

ing a large historical sample to reduce estimation errors (see, Simaan, 1997). The same number of
realizations, but with monthly rates of return, would have implied, for each set, a historical period
longer than 8 years. The rates of return have been computed as relative variations of the prices Pjt,
i.e. rjt = (Pj,t+1 − Pjt)/Pjt; no dividends have been taken into account. Results are reported with
annualized returns.

The number of securities available in each in-sample dataset is different, since the number of se-
curities quoted with continuity on the market varies according to the period taken into account. Each
security has to meet predefined BSE (Board Stock Exchange) standards to be quoted with continuity on
the market. It is worth noticing that, over the four periods, more than 90% of the available securities have
been suspended at least once and usually for not less than one week.

Each dataset, corresponding to one of the periods from A to D, has been used to find the mean-
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risk/safety portfolios through the solution of all the described models including that of Markowitz. The
target weekly required return has been set to seven different values (corresponding to the yearly rates
5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20%, respectively). Moreover, for each period and model,
the minimum risk portfolio (MRP) and the maximum safety portfolio (MSP) have been computed. The
ex-post behavior of all the selected portfolios has been examined out-of-sample at the end of the twelve
months investment periods following the portfolios selection date (the last date of the corresponding
in-sample period).

The objective of the present section is to provide (when possible) an experimental evidence of what
has been discussed from a theoretical point of view.

One may expect that some models will show a more aggressive behavior, typically providing larger
returns and lower diversification. This is indeed one of the main results from our computational anal-
ysis: while MAD and Markowitz might be classified as the most ”risk seeking” models, Minimax and
CVaR(0.1) are the most ”risk averse” providing portfolios with a stable diversification and lower returns.

4.2 In-sample analysis

For each dataset and each level of required rate of return, we have solved all the LP problems defined
in Section 3.3 and the Markowitz (mean-variance) model. As an example of information one can get
from the analysis of the optimal portfolio selected by a given model, we show Table 3 representing the
findings for the Minimax model over Period A. Table 3 is divided into two parts: the first corresponds
to the problem formulated as minimization of the risk measure (α = 0), while the second refers to the
maximization of the corresponding safety measure (α = 1). Each part consists of five columns showing:
the objective function value (obj.), the portfolio per cent average return (z), the portfolio diversification
(div.) represented by the number of selected securities, the minimum and the maximum share within the
portfolio, respectively. The average return is reported as converted onto a yearly basis (e.g., z = 8.34%
per year is equivalent to a mean return 0.1542% per week). Each row of the table corresponds to a
level of the required return (µ0). The first row refers to the minimum risk portfolio (MRP) and to the
maximum safety portfolio (MSP), respectively (no required return bound). Recall that, for a bound
on the expected return larger than the MRP (equal to 1.08% per year), the mean-risk model provides
the complete parameterization of the µ/ρ–efficient set. The latter includes the portfolios belonging to
the subset of the efficient solutions of the corresponding mean-safety problem, i.e. the portfolios with
required return exceeding the mean return of the MSP (8.34% per year), as proven in Section 3.2. The
full set of tables for all the models in the four periods, along with extensive details on the in-sample
computational results, can be found in Mansini et al. (2002).

In Period A (see Table 3) the Minimax model shows a small gap between the return of the MRP
and that of the MSP. However, this is not always the case. Table 4 shows the mean returns of the MRP
and the MSP, respectively, in the four periods for all the models. The symbol ”**” means that the mean
return is larger than 10,000% per year. Such large values may be caused by low diversified portfolios,
the securities of which have dramatically large weekly mean returns (sometimes close to 100%) over the
period. Usually, large weekly rates of return are a direct outcome of a stock quotation suspension for
excessive price increase: when newly admitted to quotation, the price of a security may be drastically
higher than its last quotation. For instance, the MSP for the MAD model in Period A consists of only
three securities (namely, Bintermo, Saiag and Simint) and it returns 17.47% per week, which is greater
than 40,000% on a yearly basis. This is due to stock Simint, the average weekly return of which, over
Period A, is about 94.25%. This security price during the period 1994–1995 moved from a minimum
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Table 3: Minimax model - Period A: optimal portfolios characteristics.
Min. risk models (α = 0) Max. safety models (α = 1)

µ0 obj. z div. shares obj. z div. shares
% 10−2 % # min max 10−3 % # min max
— -0.972 1.08 27 2.30 10−5 0.138 -8.804 8.34 25 4.51 10−4 0.129

5.0 -0.989 5.00 28 9.92 10−4 0.122 -8.804 8.34 25 4.51 10−4 0.129
7.5 -1.021 7.50 27 4.53 10−4 0.127 -8.804 8.34 25 4.51 10−4 0.129

10.0 -1.065 10.0 25 2.61 10−4 0.109 -8.817 10.0 25 2.61 10−4 0.109
12.5 -1.111 12.5 26 7.13 10−4 0.109 -8.840 12.5 26 7.13 10−4 0.109
15.0 -1.156 15.0 26 6.14 10−4 0.106 -8.864 15.0 26 6.14 10−4 0.106
17.5 -1.200 17.5 26 1.57 10−3 0.102 -8.891 17.5 26 1.57 10−3 0.102
20.0 -1.243 20.0 27 4.19 10−4 0.102 -8.917 20.0 27 4.19 10−4 0.102

of 0.0054 Euro to a maximum of 1.54 Euro. Simint’s quotation was suspended several times in Period
A, and in one case for more than two weeks. Similarly, the 2063.7% yearly return for the model 2-
MAD(0.4) in period A stems from the high return of the same security. Through the analysis of Table 4
some conclusions on market trend can also be drawn: the MRP return tends to increase over time being
lower than 7% for all the models in Period A and being always larger than 27% (except for GMD) in
Period D.

Table 4: MRP and MSP mean returns over the four periods (in %).
Period A Period B Period C Period D

MRP MSP MRP MSP MRP MSP MRP MSP
Minimax 1.08 8.34 1.60 12.59 10.41 26.17 34.51 51.93
MAD 6.31 ** 1.21 ** 8.93 301.22 27.39 555.50
2-MAD(0.4) 6.65 2063.7 1.18 ** 9.39 257.27 30.34 222.97
2-MAD(1) 5.88 510.63 1.32 343.86 10.86 166.09 28.22 110.09
GMD 0.00 76.44 0.00 427.97 0.00 61.45 8.79 104.25
CVaR(0.1) 3.92 8.29 1.60 12.59 10.41 27.36 35.28 48.35
CVaR(0.5) 6.75 16.06 1.16 101.70 9.10 45.95 27.48 73.65
Markowitz 3.07 344.65 1.39 297.34 8.89 292.05 27.44 409.30

In the following, for sake of simplicity, we summarize the main figures available for all the selected
portfolios.

Table 5 shows, for all the models and all the time periods, the diversification of the optimal port-
folios obtained for various required rates of return. For instance, in Period A with α = 0, the number
of selected securities for the Minimax model ranges between 25 and 28 securities, while with α = 1
the corresponding range is 25–27. The number of selected securities only takes into account the stocks
with a share larger than or equal to 10−6. On average, we have observed that, when the required re-
turn increases, the diversification decreases (with the lowest diversification achieved by the MSP). The
Markowitz model provides the ranges with the largest upper limits but it may also result in extremely low
diversified portfolios (lower limits from 3 to 5). Some other models (like Minimax and CVaR(0.1)) have
larger lower limits showing a more stable diversification. The single security portfolio in Period B for
the model CVaR(0.5) corresponds to the MRP and represents an exception, with respect to the diversifi-
cation, when compared to the portfolios selected by the same model in the remaining three periods. By
comparing Table 4 with Table 5 we can conclude that both the MAD and the Markowitz models generate
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the corresponding MSP with the largest mean return but with the lowest diversification.

Table 5: Diversification of optimal portfolios.
Min. risk models (α = 0) Max. safety models (α = 1)

A B C D A B C D
Minimax 25–28 38–44 41–46 20–21 25–27 38–40 41 20
MAD 3–37 2–50 12–42 9–33 3 2 12 9
2-MAD(0.4) 9–36 6–51 15–45 17–30 9 6 15 17
2-MAD(1) 21–38 24–50 31–46 21–33 21 24 31 21
GMD 28–35 29–41 35–48 19–30 28 29 35 21
CVaR(0.1) 30–34 38–44 41–46 19–21 30–31 38–40 44 19
CVaR(0.5) 33–38 1–39 37–46 25–34 33 37 37 25
Markowitz 5–37 5–63 3–63 4–34 5 5 3 4

Table 6 shows the ranges for the minimum and the maximum share held by stocks for each model
in the four periods when α = 0 and α = 1, respectively. Notice that, the minimum shares are scaled
with 10−4, while the maximum ones with 10−2 (i.e. expressed in %). On average, efficient portfolios
with respect to the mean-safety measures consist of securities with larger minimum share. This is not
always the case for the securities with maximum share. Moreover, the Markowitz model and MAD seem
to be the models which generate more frequently portfolios with a huge maximum share. This is the
case for all the four periods, if we exclude Period B. This suggests that these models might require the
introduction of artificial bounding on the maximum share to guarantee a necessary diversification.

Table 6: Minimum and maximum shares over the four periods.
Period A Period B Period C Period D

Min Max Min Max Min Max Min Max
×10−4 ×10−2 ×10−4 ×10−2 ×10−4 ×10−2 ×10−4 ×10−2

α = 0
Minimax 0.23–15.7 10.2–13.8 0.11–11.8 12.3–13.6 1.94–12.2 17.8–19.6 6.28 11.7
MAD 0.07–85.4 12.4–81.9 0.10–690 16.3–93.7 0.46–65.0 24.9–32.6 4.99 26.3
2-MAD(0.4) 0.01–34.0 12.4–32.9 0.06–159 16.2–94.3 0.15–31.2 24.1–28.2 0.58 18.5
2-MAD(1) 0.82–19.3 11.8–15.8 0.10–20.8 17.7–92.3 0.60–18.3 18.3–27.3 4.16 20.2
GMD 0.11–6.27 10.2–15.2 0.07–8.31 13.0–91.9 0.11–12.3 8.70–28.9 2.08–102 10.6–26.7
CVaR(0.1) 0.52–66.5 9.4–11.5 0.11–11.8 12.3–13.6 0.44–12.2 15.8–19.5 55.7 13.7
CVaR(0.5) 0.11–1.68 12.3–17.0 0.44–104 15.2–100 0.28–11.6 7.30–31.9 0.39 21.5
Markowitz 0.01–101 13.8–80.9 0.01–102 13.1–54.1 0.01–0.09 23.0–88.4 0.01–507 20.5–76.2
α = 1
Minimax 2.61–15.7 10.2–12.9 0.11–11.8 12.3–13.6 2.30 17.8 1.51 12.5
MAD 85.4 81.9 690 93.1 65.0 28.1 2.40 35.4
2-MAD(0.4) 34.0 32.9 159 31.6 31.2 25.0 6.21 17.8
2-MAD(1) 19.3 14.2 20.8 17.9 0.60 18.3 3.01 12.1
GMD 6.27 11.8 8.31 14.9 5.80 8.70 42.5 10.6
CVaR(0.1) 0.70–15.5 10.3–10.7 0.11–11.8 12.3–13.6 0.44 15.8 50.5 11.5
CVaR(0.5) 0.82–1.18 12.3–12.5 1.59 15.2 11.6 7.30 28.6 12.0
Markowitz 101 80.9 102 54.1 0.09 88.4 507 76.2

In order to compare the structure of the various portfolios, we have analyzed the ranking of the
securities which have been selected the most. Table 7 shows the ranking of the first four securities with
the largest share in the portfolios selected by the different models over Period A, when the required return
is set to 17.5% per year. In each cell the name of the security and its share are given.

Similar tables have been built for the remaining three periods and for different levels of the required
rates of return. The ranking of the securities selected by a specific model may vary for different levels
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Table 7: Ranking of the first four securities over Period A; required return 17.5% per year.
Security 1 Security 2 Security 3 Security 4

Minimax Bpcomin (0.102) Poligraf (0.101) Pininfrr (0.0956) Cbarlett (0.0809)
MAD Bayer (0.128) Bpcomin (0.110) Cbarlett (0.0974) Bpintra (0.0711)
2-MAD(0.4) Bayer (0.130) Bpcomin (0.106) Cbarlett (0.099) Bpintra (0.0822)
2-MAD(1) Cbarlett (0.119) Bayer (0.099) Bpcomin (0.098) Bpintra (0.076)
GMD Bayer (0.111) Bpcomin (0.110) Cbarlett (0.090) Bpintra (0.084)
CVaR(0.1) Bpcomin (0.105) Cbarlett (0.104) Bplodi (0.077) Poligraf (0.073)
CVaR(0.5) Bayer (0.124) Cbarlett (0.111) Bpcomin (0.095) Premudar (0.062)
Markowitz Bayer (0.141) Crvaltel (0.096) Bpintra (0.082) Saesgetp (0.076)

of the required return, even within the same period. Nevertheless, some core of the top ranked securities
remains quite stable. For instance, with respect to Period A, when α = 0 and for all the required rates
of return, the maximum share security selected by the Minimax model is always Bpcomin. The only
exception is for µ0 =20%; in such case the maximum share is held by Poligraf. As far as the MAD
model is concerned, the maximum share security is Bayer for µ0 =17.5% while in all the other cases is
Bpcomin. Similarly, for the models 2-MAD(0.4), 2-MAD(0.1) and CVaR(0.5). In 2-MAD(0.1) Cbarlett
is the first security only for portfolios with µ0 ≥ 15%, while in CVaR(0.5) Bpcomin is the maximum
share security for µ0 ≤ 12.5%. For all these models, one of the last ranked security is Simint. This
security has a large mean return over Period A, thus also a small investment may imply a large share of
the total portfolio return. In the MSP for the model 2-MAD(1), Simint is ranked at the eleventh position,
but it is responsible for the 81.92% of the total porfolio return. In the portfolio selected by the GMD
model the maximum share security is Bpintra when α = 1 and Bayer or Bpcomin, depending on the
bound on the expected return, when α = 0. The model CVaR(0.1) generates, on average, portfolios very
similar to those selected by the Minimax model. Finally, portfolios selected by the Markowitz model
usually contain a large number of securities with small shares; such securities often cause marginal
contributions to the portfolio return. For all the required levels of the rate of return, the Markowitz model
chooses Bayer as the first security. In Table 8 we analyze the portfolio position (ranking) of the four
securities (namely, Bayer, Cbarlett, Bpcomin and Poligraf) with the largest share out of all the portfolios
selected by the different models in Period A for a required return equal to 17.5% per year. The value of
the share and the ranking position of the security (if selected) in each portfolio are given. According to
Table 8 we can conclude that, with respect to the three most important securities in the portfolio ranking,
the models tend to produce similar results. These three top securities cover, however, only about 30% of
the total investment.

Table 8: Ranking of the four top securities over Period A; required return 17.5% per year.
Bayer Cbarlett Bpcomin Poligraf

Minimax no 0.089 (4) 0.102 (1) 0.101 (2)
MAD 0.128 (1) 0.0974 (3) 0.110 (2) 0.018 (18)
2-MAD(0.4) 0.130 (1) 0.099 (3) 0.106 (2) 0.022 (15)
2-MAD(1) 0.098 (2) 0.119 (1) 0.098 (3) 0.031 (12)
GMD 0.111 (1) 0.09 (3) 0.11 (2) 0.0314 (13)
CVaR(0.1) 0.0487 (10) 0.104 (2) 0.105 (1) 0.073 (4)
CVaR(0.5) 0.124 (1) 0.111 (2) 0.095 (3) 0.0197 (16)
Markowitz 0.141 (1) 0.0325 (13) 0.0578 (7) 0.0579 (6)
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(a) (b)

Figure 3: Period A - Efficient frontiers for the MAD-type models.

As an additional insight in models comparison, the efficient frontiers, found by the models over the
different periods, can be analyzed. In particular, it may be interesting to compare the efficient frontiers
obtained by the different models in the same period. In this case the analysis strictly depends on the
mean/risk space used to compare the models. With respect to Period A, Figure 3 shows the efficient
frontiers for the models MAD, 2-MAD(1) and 2-MAD(0.4), respectively. In particular, the part (a) of the
figure represents the frontiers in the space mean/2-MAD(1), while the part (b) in the space mean/MAD.

For each frontier we have plotted the sequence of points corresponding to the portfolios selected by
each model for the seven target required rates of return. Since in Figure 3.a the frontiers are represented
in the mean/2-MAD(1) space, in order to plot the frontier for the MAD model it has been necessary to
compute the value of the level penalized mean semideviation z2. For the model 2-MAD(0.4), we have
simply summed up the values of z1 and z2 already available. On the other hand, in Figure 3.b the frontiers
for the models 2-MAD(1) and 2-MAD(0.4) have been represented by plotting only their z1 value (i.e.
the mean absolute semi-deviation) as a component of the risk. Notice that the relative position of the
frontiers in the two figures is reversed. Hence, the relative position of the different frontiers may be
misleading in terms of models comparison.

4.3 Out-of-sample analysis

In a real-life environment, model comparisons is usually done by means of the ex-post analysis. Several
approaches can be used in order to compare models. One of the most commonly applied method is
based on the representation of the ex-post returns of the selected portfolios over a given period and on
their comparison against a required level of the return. Unfortunately, the portfolio performances are
usually affected by the market trend which makes it very difficult to draw some uniform conclusions.
This can be easily seen by comparing the behavior of the portfolios selected by the same model over
the different periods. As an example we show in Figures 4 and 5 the out-of-sample behavior of the
portfolios selected by the different mean-risk models (α = 0) with the required return 17.5% per year in
Periods C and D, respectively. In order to take into account the overall market performance, in the two
figures the Milan Stock Market Index (MIB30) has been added. This index consists of the first 30 most
important securities (so-called Blue Chips) quoted at Milan Stock Exchange. Notice that, in both the
periods, it may occur that the returns of the selected portfolios are lower than the required level and that
it usually happens when the whole market has a negative trend. By comparing the two figures it comes
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out that, depending on the period, the models may generate portfolios performing very similarly (Period
C) or very differently (Period D). In particular, in Period D, it is evident that Minimax and CVaR(0.1)
are the unique models which provide highly positive returns when the market index is decreasing, thus
confirming their extreme modeling of the downside risk aversion.

Certainly, the models have been applied directly to the original historical data treated as future returns
scenarios thus loosing the trend information. Possible application of some forecasting procedures prior
to the portfolio optimization models, we consider, seems to be an interesting direction for future research.
For references on scenarios generation see Carino et al. (1998), while on index tracking applications of
optimization models see Worzel et al. (1994), Consiglio & Zenios (2001), and Jobst & Zenios (2003).

Figure 4: Ex-post portfolios performances: Period C, required return 17.5% and α = 0.

We have decided to use some performance criteria to compare different models in the out-of-sample
period. For this purpose, we have computed the following nine ex-post parameters:

the number of times the mean portfolio return is above the required one (symbol #);
the minimum, average and maximum portfolio return (rmin, rav and rmax, respectively);
the standard deviation (std) and the semi-standard deviation (s-std);
the mean absolute deviation (MAD) and the mean downside semideviation (s-MAD);
the maximum downside deviation (D-DEV).

The minimum, maximum and average ex-post portfolio returns have been converted from monthly to
yearly basis. All the dispersion measures (std, s-std, MAD, s-MAD and D-DEV) have been computed
with respect to a given target return, thus allowing their direct comparison in the different models. Actu-
ally, we focus our analysis on the case of 17.5% target (yearly) return.

In Tables 9–11 we present the average value of each criterion, over the four periods, for several
models. In each table we also add a line for the MIB30. This allows a direct comparison of the market
index performance with that of the portfolios selected by the other models.

Table 9 shows the ex-post average performances of the optimal portfolios for the corresponding risk
minimization models (α = 0) with the required return equal to 17.5%. Similarly, Table 10 presents those
of the portfolios selected by the models when the required return is equal to 10% per year, and Table 11
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Figure 5: Ex-post portfolios performances: Period D, required return 17.5% and α = 0.

those for the MSPs. Recall that all three tables share a common required return level, equal to 17.5%,
used as a target return for the ex-post dispersion measures.

Table 9: Ex-post criteria average values: required return equal to 17.5% and α = 0.
# rmin rav rmax std s-std MAD s-MAD D-DEV

Minimax 5.75 -96.39% 23.93% 271.02% 0.0466 0.0281 0.0385 0.0173 0.0649
MAD 5.5 -77.29% 29.63% 340.91% 0.0477 0.0243 0.0366 0.0144 0.0553
2-MAD(0.4) 5.75 -78.23% 28.41% 341.89% 0.0470 0.0243 0.0365 0.0148 0.0572
2-MAD(1) 6 -77.56% 24.37% 363.28% 0.0431 0.0241 0.0336 0.0146 0.0571
GMD 5.75 -76.47% 24.77% 315.29% 0.0424 0.0241 0.0336 0.0145 0.0567
CVaR(0.1) 5.5 -92.42% 22.46% 277.66% 0.0455 0.0277 0.0362 0.0166 0.0628
CVaR(0.5) 6 -78.70% 26.30% 357.98% 0.0456 0.0242 0.0352 0.0147 0.0559
Markowitz 6 -74.31% 27.02% 337.48% 0.0446 0.0233 0.0341 0.0140 0.0550
MIB30 6.75 -192.21% 35.50% 583.21% 0.0728 0.0419 0.0585 0.0234 0.1027

Let us start with the analysis of the MIB30 performance. In Tables 9 and 10 the MIB30 index has
an average return larger than that of all the other portfolios; at the same time the minimum return is very
low and the dispersion measures are impressively larger than those of the other models. While in Table
9 the MIB30 maximum return is the largest, in Table 10 the models MAD, 2-MAD(0.4) and CVaR(0.5)
show larger values for such parameter.

In Table 11 the models MAD and 2-MAD(0.4) have an average return larger than the MIB30, but
show dispersion measures (s-std, s-MAD and D-DEV) similar in value to those of the MIB30. In general,
the MIB30 is the most unstable portfolio with the largest downside deviation. We can easily conclude
that any model is preferable to a direct investment in the market index.

Table 9 shows that for all the models the average portfolio returns exceed the required level of 17.5%
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per year. Exactly, the average returns are varying from 22.46% for the CVaR(0.1) model to 29.63% for
the MAD model. In contrast to what one might expect the results obtained for models solved with the
required return equal to 10% per year (Table 10) turn out to be better than those with 17.5% per year.
Portfolios average returns over the four periods for all the models in Table 10 are larger (from 26.07%
for CVaR(0.1) to 36.03% for 2-MAD(0.4)) than those in Table 9. Similarly, with respect to the average
minimum and maximum returns the portfolios built with the required return 10% outperform those found
for 17.5%. Moreover, downside dispersion measures are, on average, lower in Table 10 than in Table 9
(both computed with respect to the target return 17.5%). Although, if we count the number of times (on
average) the portfolio return is higher than the target return, then the results in Table 9 are better than
Table 10 with the only exceptions of the Minimax and CVaR(0.1) portfolios. In conclusion, the above
observations suggest that the required return (bound µ0) may not be the best way to control ex-post
performances.

Table 10: Ex-post criteria average values: required return equal to 10% and α = 0.
# rmin rav rmax std s-std MAD s-MAD D-DEV

Minimax 6 -84.05% 27.75% 334.19% 0.0483 0.0275 0.0398 0.0168 0.0616
MAD 5.25 -66.23% 35.00% 687.13% 0.0569 0.0230 0.0391 0.0142 0.0512
2-MAD(0.4) 5.75 -74.09% 36.03% 701.71% 0.0578 0.0232 0.0392 0.0139 0.0550
2-MAD(1) 5.75 -66.57% 30.24% 487.45% 0.0509 0.0233 0.0361 0.0141 0.0523
GMD 5.5 -79.14% 29.47% 386.20% 0.0497 0.0248 0.0370 0.0149 0.0587
CVaR(0.1) 6 -80.83% 26.07% 340.05% 0.0473 0.0272 0.0376 0.0162 0.0599
CVaR(0.5) 5.75 -66.88% 35.20% 611.25% 0.0550 0.0229 0.0385 0.0138 0.0515
Markowitz 5.75 -73.31% 32.96% 412.81% 0.0517 0.0238 0.0383 0.0144 0.0543
MIB30 6.75 -192.21% 35.50% 583.21% 0.0728 0.0419 0.0585 0.0234 0.1027

Table 11: Ex-post criteria average values: MSPs.
# rmin rav rmax std s-std MAD s-MAD D-DEV

Minimax 5 -99.09% 17.18% 244.82% 0.0456 0.0305 0.0380 0.0194 0.0658
MAD 7.5 -244.02% 75.03% 1947.24% 0.0974 0.0420 0.0756 0.0221 0.1088
2-MAD(0.4) 6.5 -159.14% 40.84% 1084.85% 0.0726 0.0361 0.0541 0.0200 0.0885
2-MAD(1) 6 -115.47% 25.53% 527.25% 0.0550 0.0308 0.0414 0.0181 0.0730
GMD 6 -114.13% 21.82% 303.09% 0.0464 0.0280 0.0358 0.0166 0.0706
CVaR(0.1) 5 -97.38% 18.34% 231.75% 0.0459 0.0301 0.0385 0.0191 0.0648
CVaR(0.5) 6.25 -86.87% 25.76% 320.68% 0.0457 0.0254 0.0346 0.0146 0.0612
Markowitz 6.5 -526.37% 33.53% 714.77% 0.0923 0.0587 0.0751 0.0326 0.1567
MIB30 6.75 -192.21% 35.50% 583.21% 0.0728 0.0419 0.0585 0.0234 0.1027

The better ex-post performances of the portfolios built with a relaxed bound on the required return
(see Table 11) suggest possible advantages of the maximum safety portfolios. The latter are built with the
expected return maximized as a part of the objective function rather than bounded by a strict constraint.
Indeed, for MAD, 2-MAD(0.4) and the Markowitz models, ex-post average returns of the MSPs (Table
11) are even higher than the corresponding performances of the portfolios found with the required return
of 10% (Table 10). On the other hand, for the Minimax, CVaR and GMD models, the average returns of
the MSPs are worse than those of the portfolios built with the required return equal to 17.5% (Table 9).
The MSPs, on average, are characterized by a larger gap between minimum and maximum return as well
as larger downside dispersion measures when compared to the portfolios built with the required return
equal to 10% or 17.5%. Moreover, the MSPs with the largest average and maximum returns (for the
Markowitz, MAD and 2-MAD(0.4) models) are simultaneously characterized by the largest downside
deviations, thus generating very unstable results.
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Table 12: Best performance: required return equal to 17.5% per year and α = 0.
# rmin rav rmax std s-std MAD s-MAD D-DEV

Minimax 1 (D) 1 (D) 1 (C) 1 (C)
MAD 1 (B) 1 (D) 1 (C) 1 (B) 1 (A) 1 (D)
2-MAD(0.4) 1 (B) 1 (D) 1 (D)
2-MAD(1) 2 (B,D) 1 (A) 1 (D)
GMD 1 (B) 2 (B,C) 2 (B,D) 1 (C) 2 (B,C)
CVaR(0.1) 1 (D) 1 (A) 1 (A) 1 (A) 1 (A)
CVaR(0.5) 1 (B)
Markowitz 1 (B) 2 (B,C) 1 (B)
MIB30 3 (A,B,C) 2 (A,B) 4

Finally, to compare the behavior of the different models for α = 0 and the required return equal
to 17.5% per year, in Table 12 we show the number of times, out of the four periods, a given model
has found the best performance for each parameter used in the ex-post comparison. The corresponding
periods in which the result was achieved are given in parentheses. For instance, the Minimax model
found a portfolio with the largest average return only once in Period D. In the first column the total
number of entries is greater than four since the highest average value for the corresponding parameter
is equally reached by different models in the same period. Notice that the MIB30 index has always the
largest maximum return and in 2 out of 4 periods also the best average return, however in no periods it
succeeds in minimizing a measure of dispersion.

Table 12 can be used as a valid means for ex-post models comparison and may represent a useful
tool as support for investor’s decisions. Similar results are also available for other levels of the required
rate of return.

Concluding remarks

The classical Markowitz model uses variance as the risk measure, thus resulting in a quadratic optimiza-
tion problem. Several alternative risk measures were introduced thereafter which are computationally
attractive as (for discrete random variables) they result in solving linear programming (LP) problems.
The LP solvability is very important for applications to real-life financial decisions where the constructed
portfolios have to meet numerous side constraints and take into account transaction costs. A gamut of
LP solvable portfolio optimization models has been presented in the literature thus generating a need
for their classification and comparison. In this paper we have provided a systematic overview of these
models with a wide discussion of their theoretical properties. We have shown that all the risk measures
used in the LP solvable models can be derived from the basic SSD shortfall criteria. This has allowed us
to classify the models with respect to the use of risk measures or the corresponding safety measures.

Theoretical properties, although crucial for understanding the modeling concepts, provide only a
very limited background for comparison of the final optimization models. Computational results are
known only for individual models and not all the models have been tested in a real-life decision envi-
ronment. The second part of this paper has presented a comprehensive experimental study comparing
practical performances of the LP solvable portfolio optimization models on real-life stock market data.
The efficient frontiers representation is mainly useful for evaluating portfolios relative position in a given
mean/risk space and not for a direct models comparison. Therefore, the experimental analysis has fo-
cused on average properties and performances of the models. This allows us to draw several interesting
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conclusions some of which may deserve further research.
First of all our analysis has shown that although the LP solvable models allow to avoid multiple

marginal shares within the optimal portfolio, they usually provide a reasonable diversification. Actually,
for various datasets and varying values of the required return bound, our experiments show that many
of the LP solvable models provide a more stable diversification than that given by the Markowitz model
(see Table 5). In terms of average ex-post performances (Tables 9–11), the MAD type models, similar
to the Markowitz one, generate the portfolios with the largest returns but also entailing the largest risk
of underachievements (expressed with various downside measures). On the other hand, the GMD and
CVaR(0.5) models demonstrate quite good average returns with relatively low risk of underachievements.
This suggests further detailed research on a proper parameter selection within the CVaR and the m–MAD
models. One may also try to take advantages of the LP models simplicity by combining the risk criteria
of different models to achieve better overall performances.

Further, our analysis shows that an historical period may affect average returns and that all the models
(including the Markowitz one) are preferable to a direct investment in the market index. Moreover, the
level of the required return does not seem to represent the best way to control ex-post performances, as
a lower level may result in higher achievements (Tables 9 and 10). Therefore, the LP solvable models as
well as all the mean-risk models, deserve further work on their operational implementations to improve
their capabilities to adjust to the investor’s preferences and to control effectively the portfolio perfor-
mances. In our experiments, the models have been applied directly to the original historical data treated
as equally probable scenarios of the future return while possible application of some scenario generation
procedures (see, Carino et al., 1998; Klaassen, 1998; Zenios & McKendall, 1993; Mulvey et al., 2000;
Jobst & Zenios, 2004) seems to be a necessary first step toward the operational implementations. Note
that the LP solvable models themselves allow to consider scenarios with different probabilities although
the experiments have been limited to the equally probable scenarios. Nevertheless, further work on better
ways to control the portfolio selection process within the mean-risk modeling environment remains an
important direction for future research.

Appendix

Theorem 1 Let f(x) be a convex function of portfolio x and x
f ∈ P be its global minimizer, i.e.

f(xf ) ≤ f(x) for all x ∈ P . The bounded minimization problem

min {f(x) : µ(x) ≥ µ0, x ∈ P} (32)

has the following properties:
if µ0 ≤ µ(xf ), then x

f is an optimal solution to (32);
if µ0 ≥ µ(xf ), then the optimal solution of the fixed return problem

min {f(x) : µ(x) = µ0, x ∈ P} (33)

is also an optimal solution to (32).

Proof If µ0 ≤ µ(xf ), then x
f is a feasible solution to (32) and, as a global minimizer, it is optimal.

Let µ0 ≥ µ(xf ) and let x
0 be an optimal solution to the corresponding fixed return problem (33).

Consider portfolio x̄ ∈ P such that µ(x̄) > µ0 and let us define x̄
0 = (1 − λ)xf + λx̄ with λ =

(µ(x0) − µ(xf ))/(µ(x̄) − µ(xf )). By the convexity of set P , portfolio x̄
0 is feasible and, due to

convexity of function f(x), one gets f(x̄0) ≤ (1 − λ)f(xf ) + λf(x̄) ≤ f(x̄), since x
f is the global
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minimizer. Moreover, µ(x̄0) = µ0 and therefore f(x0) ≤ f(x̄0) ≤ f(x̄) which proves the optimality of
x

0 for problem (32).

Theorem 2 Let %(x) be a convex risk measure and x
s ∈ P be the maximum safety portfolio, i.e. an op-

timal solution to problem (25). The maximum safety bounded problem (26) has the following properties:
if µ0 ≤ µ(xs), then the maximum safety portfolio x

s is an optimal solution to (26);
if µ0 ≥ µ(xs), then the optimal solution to the corresponding problem of risk minimization under fixed
return (24) is the optimal solution to both bounded problems: the corresponding minimum risk problem
(23) and the maximum safety problem (26).

Proof The theorem follows from Theorem 1 applied to f(x) = %(x)−µ(x) which is a convex function.
The case of µ0 ≤ µ(xs) is obvious as the minimization of f(x) is equivalent to the safety maximization.
For the second case one needs to notice that x

0, the optimal solution to problem (24), due to restriction
µ(x) = µ0, is also an optimal solution to the fixed return problem (33) with the performance function
f(x) = %(x) − µ(x).

Theorem 3 Let %(x) ≥ 0 be a convex, positively homogeneous and shift independent (dispersion type)
risk measure. If the measure satisfies additionally the SSD consistency

R
x
′ �

SSD
R

x
′′ ⇒ µ(x′) − %(x′) ≥ µ(x′′) − %(x′′)

then the corresponding performance function f(x) = %(x)−µ(x) fulfills the coherence axioms (Artzner
et al., 1999).

Proof The axioms are: translation invariance, positive homogeneity, subadditivity, monotonicity (R
x
′ ≥

R
x
′′ ⇒ f(x′) ≤ f(x′′)), and relevance (Rx ≤ 0, Rx 6= 0 ⇒ f(x) < 0). The composite objective

−µ(x) + δ̄(x) does satisfy the first three axioms by assumed properties of %(x). Moreover, due to
the consistency with stochastic dominance, it also satisfies monotonicity and relevance, because R

x
′ ≥

R
x
′′ ⇒ R

x
′ �

SSD
R

x
′′ .

Theorem 4 Let %(x) ≥ 0 be a convex, positively homogeneous and shift independent (dispersion type)
risk measure. If the measure additionally meets the risk scaling bound

Rx ≥ 0 ⇒ %(x) ≤ µ(x) (34)

then the corresponding performance function f(x) = %(x)−µ(x) fulfills the coherence axioms (Artzner
et al., 1999).

Proof By assumed properties of %(x), the performance function f(x) = %(x) − µ(x) does satisfy
the axioms of translation invariance, positive homogeneity, and subadditivity. Further, if R

x
′ ≥ R

x
′′ ,

then R
x
′ = R

x
′′ + (R

x
′ − R

x
′′) and R

x
′ − R

x
′′ ≥ 0. Hence, the subadditivity together with the risk

scaling bound (34) imply that the performance function f(x) satisfies also the axioms of monotonicity
and relevance.
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