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Abstract

Many risk measures have been recently introduced which (for discrete random variables) result
in Linear Programming (LP) models. While some LP computable risk measures may be viewed as
approximations to the variance (e..g., the mean absolute deviation or the Gini’s mean absolute dif-
ference), shortfall or quantile risk measures are recently gaining more popularity in various financial
applications. In this paper we study LP solvable portfolio optimization models based on extensions
of the Conditional Value at Risk (CVaR) measure. The models use multiple CVaR measures thus
allowing for more detailed risk aversion modeling. We study both the theoretical properties of the
models and their performance on real-life data.

Key words. Portfolio optimization, mean-risk and mean-safety model, linear programming, conditional
value at risk, Gini’s mean difference, multiple criteria, experimental analysis.

1 Introduction

Following the seminal work by Markowitz (1952), the portfolio optimization problem is modeled as a
mean-risk bicriteria optimization problem where the expected return is maximized and some (scalar) risk
measure is minimized. In the original Markowitz model the risk is measured by the standard deviation
or variance. Several other risk measures have been later considered thus creating the entire family of
mean-risk (Markowitz-type) models. While the original Markowitz model forms a quadratic program-
ming problem, following Sharpe (1971a), many attempts have been made to linearize the portfolio opti-
mization procedure (c.f., Speranza (1993) and references therein). The LP solvability is very important
for applications to real-life financial decisions where the constructed portfolios have to meet numerous
side constraints (including the minimum transaction lots (Mansini and Speranza (1999), Bonaglia et al.
(2002)), transaction costs (Kellerer, Mansini and Speranza (2000), Konno and Wijayanayake (2001)) and
mutual funds characteristics (Chiodi, Mansini and Speranza (2003))). The introduction of these features
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leads to mixed integer LP problems. In order to guarantee that the portfolio takes advantage of diversi-
fication, no risk measure can be a linear function of the portfolio weights. Nevertheless, a risk measure
can be LP computable in the case of discrete random variables, i.e., in the case of returns defined by their
realizations under specified scenarios.

The simplest LP computable risk measures are dispersion measures similar to the variance. The
mean absolute deviation was very early considered in portfolio analysis (Sharpe (1971b) and references
therein) while Konno and Yamazaki (1991) presented and analyzed the complete portfolio optimization
model (the so-called MAD model). Yitzhaki (1982) introduced the mean-risk model using Gini’s mean
(absolute) difference as the risk measure. Both the mean absolute deviation and the Gini’s mean differ-
ence turn out to be special aggregation techniques of the multiple criteria LP model (Ogryczak (2000))
based on the pointwise comparison of the absolute Lorenz curves. The latter leads the quantile short-
fall risk measures which are more commonly used and accepted. Recently, the second order quantile
risk measures have been introduced in different ways by many authors (Artzner et al. (1999), Ogryczak
(1999), Rockafellar and Uryasev (2000)). The measure, now commonly called the Conditional Value
at Risk (CVaR) (after Rockafellar and Uryasev (2000)) or Tail VaR, represents the mean shortfall at a
specified confidence level. It leads to LP solvable portfolio optimization models in the case of discrete
random variables represented by their realizations under specified scenarios. The CVaR has been shown
by Pflug (2000) to satisfy the requirements of the so-called coherent risk measures (Artzner et al. (1999))
and is consistent with the second degree stochastic dominance as shown by Ogryczak and Ruszczyński
(2002a). Several empirical analyses (Andersson et al. (2001), Rockafellar and Uryasev (2002), Mansini,
Ogryczak and Speranza (2003b), Topaloglou, Vladimirou and Zenios (2002)) confirm its applicability
to various financial optimization problems. Thus, the CVaR models seem to overstep the measure of
Value-at-Risk (VaR) defined as the maximum loss at a specified confidence level which is commonly
used in banking (c.f., Jorion (2001) and references therein).

This paper deals with portfolio optimization models based on the use of multiple CVaR risk measures.
Such an extension allows for more detailed risk aversion modeling while preserving the simplicity of the
original CVaR model. Both the theoretical properties of the models and their performance on real data
are analyzed. The paper is organized as follows. In the next section we introduce basics of the mean-
risk portfolio optimization, the CVaR risk measures and the concepts necessary to make the paper self-
contained. Section 3 is devoted to the extended multiple CVaR model. Our analysis has been focused on
the weighted CVaR (WCVaR) measures defined as simple combinations of a few CVaR measures. The
general model is presented and its two specific weights setting schemes relating the WCVaR measure to
the Gini’s mean difference and its tail version, respectively, are analyzed in detail. Moreover, a CVaR-
related LP technique to directly enforce portfolio diversification is introduced. Section 4 presents the
experimental analysis on real data from the Milan Stock Exchange. Extensive in-sample and out-of-
sample computational results are provided and commented. Finally, some concluding remarks are given.

2 Basic models

2.1 Mean-safety portfolio optimization

At the beginning of a period, an investor allocates the capital among various securities, thus assigning a
nonnegative weight (share of the capital) to each security. Let J = {1, 2, . . . , n} denote a set of securities
considered for investment. For each security j ∈ J , its rate of return is represented by a random variable
Rj with a given mean µj = E{Rj}. Further, let x = (xj)j=1,2,...,n denote a vector of decision variables
xj expressing the weights defining a portfolio. To represent a portfolio, the weights must satisfy a set
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of constraints that form a feasible set P . The simplest way of defining a feasible set is by a requirement
that the weights must sum to one and short sales are not allowed, i.e.

∑n
j=1 xj = 1 and xj ≥ 0 for

j = 1, . . . , n. Hereafter, it is assumed that P is a general LP feasible set given in a canonical form as a
system of linear equations with nonnegative variables: This allows one to include upper bounds on single
shares as well as several more complex portfolio structure restrictions which may be faced by a real-life
investor.

Each portfolio x defines a corresponding random variable Rx =
∑n

j=1 Rjxj that represents the port-
folio rate of return. We consider T scenarios with probabilities pt (where t = 1, . . . , T ). We assume that
for each random variable Rj its realization rjt under the scenario t is known. Typically, the realizations
are derived from historical data treating T historical periods as equally probable scenarios (pt = 1/T ).
The realizations of the portfolio return Rx are given as yt =

∑n
j=1 rjtxj and the expected value can be

computed as µ(x) =
∑T

t=1 ytpt =
∑T

t=1

[

∑n
j=1 rjtxj

]

pt. Similarly, several risk measures can be LP
computable with respect to the realizations yt.

Following Markowitz (1952), the portfolio optimization problem is modeled as a mean-risk bicriteria
optimization problem where the mean µ(x) is maximized and the risk measure %(x) is minimized. In
the original Markowitz model, the standard deviation σ(x) = [E{(Rx − µ(x))2}]1/2 was used as the
risk measure. Several other risk measures have been later considered thus creating the entire family of
mean-risk models (see Mansini, Ogryczak and Speranza (2003a, 2003b)). These risk measures, similar
to the standard deviation, are not affected by any shift of the outcome scale and are equal to 0 in the
case of a risk-free portfolio while taking positive values for any risky portfolio. Unfortunately, such
risk measures are not consistent with the stochastic dominance order (Whitmore and Findlay (1978)) or
other axiomatic models of risk-averse preferences (Rothschild and Stiglitz (1969) and risk measurement
(Artzner et al. (1999)).

In stochastic dominance, uncertain returns (modeled as random variables) are compared by point-
wise comparison of some performance functions constructed from their distribution functions. The
first performance function F

(1)
x is defined as the right-continuous cumulative distribution function:

F
(1)
x (η) = Fx(η) = P{Rx ≤ η} and it defines the first degree stochastic dominance (FSD). The

second function is derived from the first as F
(2)
x (η) =

∫ η
−∞

Fx(ξ) dξ and it defines the (weak) relation

of second degree stochastic dominance (SSD): R
x
′ �

SSD
R

x
′′ if F

(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η. We say

that portfolio x
′ dominates x

′′ under the SSD (R
x
′ �

SSD
R

x
′′ ), if F

(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η, with at

least one strict inequality. A feasible portfolio x
0 ∈ P is called SSD efficient if there is no x ∈ P such

that Rx �
SSD

R
x

0 .
Several other portfolio performance measures were introduced as safety measures to be maximized,

like the worst realization, analyzed by Young (1998), and the CVaR risk measures we consider further.
Contrary to risk measures, the safety measures may be consistent with formal models of risk-averse
preferences (Rothschild and Stiglitz (1969)) and risk measurement (Artzner et al. (1999)). It has been
shown by Mansini, Ogryczak and Speranza (2003a, 2003b) that for any risk measure %(x) a correspond-
ing safety measure µ%(x) = µ(x) − %(x) can be defined and viceversa. Note that while risk measure
%(x) is a convex function of x, the corresponding safety measure µ%(x) is concave. A safety measure is
considered risk relevant if for any risky portfolio its value is less than the value for the risk-free portfolio
with the same expected returns. We say that the safety measure µ%(x) is SSD consistent (or that the risk
measure %(x) is SSD safety consistent) if R

x
′ �

SSD
R

x
′′ implies µ%(x

′) ≥ µ%(x
′′). If the safety measure

is SSD consistent, then except for portfolios with identical values of µ(x) and µ%(x) (and thereby %(x)),
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every efficient solution of the bicriteria problem

max{[µ(x), µ%(x)] : x ∈ P} (1)

is an SSD efficient portfolio (Ogryczak and Ruszczyński (1999)). Therefore, we will focus on the mean-
safety bicriteria optimization (1) rather than on the classical mean-risk model.

The commonly accepted approach to implement the Markowitz-type mean-risk models is based on
the use of a specified lower bound µ0 on expected return while minimizing the risk criterion. In our
analysis we use the bounding approach applied to the maximization of the safety measures, i.e.

max{µ%(x) : x ∈ P, µ(x) ≥ µ0}. (2)

For small values of the bound µ0, the constraint µ(x) ≥ µ0 does not influence the optimization (2).
In this case, the portfolio obtained is the so called Maximum Safety Portfolio (MSP), whose return is
referred to as µ(MSP). The MSP is the solution of max

x∈P
µ%(x). When µ0 ≥ µ(MSP), then the optimal

solution of the corresponding problem represents a mean-safety efficient solution. In our computational
analysis we will examine the MSPs for the different models. We will obtain the MSPs by solving (2),
with µ0 set to zero.

2.2 Absolute Lorenz curve and related measures

Stochastic dominance relates the notion of risk to a possible failure of achieving some targets. Note
that function F

(2)
x , used to define the SSD relation, can also be presented as follows (Ogryczak and

Ruszczyński (1999, 2001)): F
(2)
x (η) = E{max{η − Rx, 0}} and its values are LP computable for

returns represented by their realizations yt as:

F
(2)
x (η) = min

T
∑

t=1

d−t pt subject to d−t ≥ η − yt, d−t ≥ 0 for t = 1, . . . , T. (3)

In this paper we focus on quantile shortfall risk measures related to the so-called Absolute Lorenz
Curves (ALC) (Levy and Kroll (1978), Shorrocks (1983), Shalit and Yitzhaki (1994), Ogryczak (1999),
Ogryczak and Ruszczyński (2002a)) which represent the second quantile functions defined as

F
(−2)
x (p) =

∫ p

0
F

(−1)
x (α)dα for 0 < p ≤ 1 and F

(−2)
x (0) = 0, (4)

where F
(−1)
x (p) = inf {η : Fx(η) ≥ p} is the left-continuous inverse of the cumulative distribution

function Fx. Actually, the pointwise comparison of ALCs provides an alternative characterization of
the SSD relation (Ogryczak and Ruszczyński (2002a)) in the sense that R

x
′ �

SSD
R

x
′′ if and only if

F
(−2)
x
′ (β) ≥ F

(−2)
x
′′ (β) for all 0 < β ≤ 1. The duality (conjugency) relation between F (−2) and F (2)

(Ogryczak (1999), Ogryczak and Ruszczyński (2002a)) leads to the following formula:

F
(−2)
x (β) = max

η∈R

[

βη − F
(2)
x (η)

]

= max
η∈R

[βη − E{max{η − Rx, 0}}] (5)

where η is a real variable taking the value of β-quantile Qβ(x) at the optimum.
For any real tolerance level 0 < β ≤ 1, the normalized value of the ALC defined as Mβ(x) =

F
(−2)
x (β)/β is now commonly called the Conditional Value-at-Risk (CVaR). This name was introduced
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by Rockafellar and Uryasev (2000) who considered (similar to the Expected Shortfall by Embrechts,
Klüppelberg and Mikosch (1997)) the measure CVaR defined as E {Rx|Rx ≤ F

(−1)
x (β)} for continuous

distributions showing that it could then be expressed by a formula analogous to (5) and thus potentially
LP computable. The approach has been further expanded to general distributions (Rockafellar and Urya-
sev (2002)). For additional discussion of relations between various definitions of the measures we refer
to (Ogryczak and Ruszczyński (2002b)).

The CVaR measure is a safety measure according to our classification (Mansini, Ogryczak and Sper-
anza (2003a)). The corresponding risk measure ∆β(x) = µ(x) − Mβ(x) (Ogryczak and Ruszczyński
(2002b)) is called hereafter the (worst) conditional semideviation. Note that, for any 0 < β < 1, the
CVaR measures defined by F (−2)(β), opposite to below-target mean deviations F (2)(η), are risk rele-
vant. They are also coherent (Pflug (2000) and SSD consistent (Ogryczak and Ruszczyński (2002a)).
For a discrete random variable represented by its realizations yt, due to (3), problem (5) becomes an LP.
Thus

Mβ(x) = max

[

η −
1

β

T
∑

t=1

d−t pt

]

s.t. d−t ≥ η − yt, d−t ≥ 0 for t = 1, . . . , T. (6)

The CVaR measure is an increasing function of the tolerance level β, with M1(x) = µ(x). For β
approaching 0, the CVaR measure tends to the Minimax safety measure (Young (1998))

M(x) = min
t=1,...,T

yt (7)

whose corresponding risk measure is

∆(x) = µ(x) − M(x). (8)

One may notice that ∆0.5(x) represents the mean absolute deviation from the median (Mansini,
Ogryczak and Speranza (2003a)), the risk measure suggested by Sharpe (1971b) as the right MAD model.

Yitzhaki (1982) introduced the GMD model using Gini’s mean (absolute) difference as the risk
measure. For a discrete random variable represented by its realizations yt, the Gini’s mean difference
Γ(x) = 1

2

∑T
t′=1

∑T
t′′=1 |yt′ −yt′′ |pt′pt′′ is LP computable (when minimized). Actually, Yitzhaki (1982)

suggested to use the corresponding safety measure

µ
Γ
(x) = µ(x) − Γ(x) = E{Rx ∧ Rx} (9)

to take advantages of its SSD consistency. The measure is LP computable as:

µ
Γ
(x) = max

T
∑

t=1

p2
t yt + 2

T−1
∑

t′=1

T
∑

t′′=t′+1

pt′pt′′ut′t′′

s.t. ut′t′′ ≤ yt′ , ut′t′′ ≤ yt′′ for t′ = 1, . . . , T − 1; t′′ = t′ + 1, . . . , T.

(10)

Both the Gini’s mean difference and the CVaR measures are related to the absolute Lorenz curve
(4). The graph of F

(−2)
x is a continuous convex curve connecting points (0, 0) and (1, µ(x)), whereas

a deterministic outcome with the same expected value µ(x), yields the chord (straight line) connecting
the same points. Hence, the space between the curve (p, F

(−2)
x (p)), 0 ≤ p ≤ 1, and its chord represents

the dispersion (and thereby the riskiness) of Rx in comparison to the deterministic outcome of µ(x). It
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Figure 1: The absolute Lorenz curve and risk measures.

is called the Lorenz dispersion space. One may notice that ∆β(x) = 1
βhβ(x) where hβ(x) denotes the

vertical diameter of the Lorenz dispersion space at point p = β (Fig. 1).
Actually, all the classical LP computable risk measures are well defined size characteristics of

the Lorenz dispersion space (Ogryczak (2000),Ogryczak and Ruszczyński (2002a)). The Gini’s mean

difference may be expressed as Γ(x) = 2
1
∫

0

(µ(x)α − F
(−2)
x (α))dα = 2

1
∫

0

hα(x)dα thus represent-

ing the doubled area of the Lorenz dispersion space. Therefore, any CVaR measure (the conditional
semideviation) is a rather rough (diameter) measure of the Lorenz dispersion space when compar-
ing to the Gini’s mean difference. The GMD safety measure summarizes all the CVaR measures as

µΓ(x) = µ(x) − Γ(x) = 2
1
∫

0

F
(−2)
x (α)dα = 2

1
∫

0

αMα(x)dα. Therefore, the stronger SSD consis-

tency results have been recently shown for the GMD model by Ogryczak and Ruszczyński (2002a), i.e.,
R

x
′ �

SSD
R

x
′′ implies µΓ(x′) > µΓ(x′′) which guarantees that every efficient solution of the bicriteria

problem (1) is an SSD efficient portfolio. On the other hand, its computational LP model (10) requires
T 2 variables which makes it much more complicated than the CVaR model (6) using only T variables.
In the next sections we will demonstrate that models based on a few CVaR criteria offer a very good
compromise between the computationally complex GMD model and simplified CVaR.

3 Enhanced CVaR measures

3.1 The multiple CVaR model

Although any CVaR measure (for 0 < β < 1) is risk relevant, it represents only the mean within a
part (tail) of the distribution of returns. Therefore, such a single criterion is in some manner crude for
modeling various risk aversion preferences. In order to enrich the modeling capabilities, one needs to
treat differently some more or less extreme events (Haimes (1993)). For this purpose one may consider
multiple CVaR measures as risk (safety) criteria. In particular, one may consider several, say m, tolerance
levels 0 < β1 < β2 < . . . < βm ≤ 1 and use the corresponding CVaR measures Mβk

(x) to build a
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multiple criteria portfolio selection model:

max{[Mβ1(x),Mβ2(x), . . . ,Mβm
(x)] : x ∈ P}. (11)

The model may contain the original mean value as the last criterion M1(x) = µ(x), if βm = 1. One
may notice that, for any portfolio x, one gets [Mβ1(x),Mβ2(x), . . . ,Mβm

(x)] ≤ [µ(x), µ(x), . . . , µ(x)]
with at least one inequality strict. Hence, the multiple criteria model (11) is risk relevant in the sense
that for any risky portfolio its outcome vector is dominated by that for the risk-free portfolio with the
same expected return. Actually, the model (11) is SSD consistent in the sense that R

x
′ �

SSD
R

x
′′ im-

plies [Mβ1(x
′),Mβ2(x

′), . . . ,Mβm
(x′)] ≥ [Mβ1(x

′′),Mβ2(x
′′), . . . ,Mβm

(x′′)]. Actually, the following
assertion is valid.

Theorem 1 For any set of levels 0 < β1 < β2 < . . . < βm ≤ 1, except for portfolios with identical
values of all the corresponding CVaR measures Mβk

(x), every efficient solution of the multiple criteria
problem (11) is an SSD efficient portfolio.

Proof. Let x
0 ∈ P be an efficient solution of (11). Suppose that there exists x

′ ∈ P such that
R

x
′ �

SSD
R

x
0 . Then, due to SSD consistency of the CVaR measures, Mβk

(x′) ≥ Mβk
(x0) for all

k = 1, . . . ,m. The latter together with the fact that x0 is efficient, implies that Mβk
(x′) = Mβk

(x0) for
k = 1, . . . ,m, which completes the proof.

The weighted sum is the simplest aggregation technique in multiple criteria optimization. It can also
be used to combine the CVaR criteria in (11). The weighted CVaR objective was first introduced by
Ogryczak (2000) (not using the name CVaR introduced later by Rockafellar and Uryasev (2000)); the
portfolio optimization model based on historical data and its LP computability was then proven. Later
it was extended and considered in various forms for portfolio optimization (Ogryczak and Ruszczyński,
2002b; Acerbi and Simonetti, 2002), general decisions under risk (Ogryczak, 2002), as well as for re-
gression analysis (Rockafellar, Uryasev and Zabarankin, 2002).

In order to distinguish clearly the µ(x) criterion, further we will consider it separately from the m
tolerance levels 0 < β1 < β2 < . . . < βm < 1 (thus excluding β = 1). Combining µ(x) and the
CVaR values Mβk

(x) with positive (and normalized) weights we introduce the Weighted multiple CVaR
(WCVaR) measure as

M
(m)
w (x) = w0µ(x) +

m
∑

k=1

wkMβk
(x)

m
∑

k=0

wk = 1, w0 ≥ 0, wk > 0 for k = 1, . . . ,m.

(12)

The WCVaR measure is, obviously, a safety measure and it is risk relevant. The corresponding risk
measure turns out to be the weighted sum of the ∆βk

(x) measures thus forming the weighted conditional
semideviation:

∆
(m)
w (x) = µ(x) − M

(m)
w (x) =

m
∑

k=1

wk∆βk
(x),

m
∑

k=1

wk ≤ 1, wk > 0 for k = 1, . . . ,m. (13)

The latter is not affected by any shift of the outcome scale and it is equal to 0 in the case of a risk-free
portfolio while taking positive value for any risky portfolio, thus representing a translation invariant and

7
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risk relevant dispersion parameter. Therefore, we can consider the corresponding Markowitz-type model
and its mean-safety formalization (1):

max{[µ(x),M
(m)
w (x)] : x ∈ P} = max{[µ(x), µ(x) − ∆

(m)
w (x)] : x ∈ P}. (14)

Since the CVaR measures are coherent (Pflug, 2000) and SSD consistent (Ogryczak and Ruszczyński
(2002a)), the same applies to the WCVaR measure. In particular, R

x
′ �

SSD
R

x
′′ implies M

(m)
w (x′) ≥

M
(m)
w (x′′) (Ogryczak and Ruszczyński (2002b)). Actually, the SSD consistency relation for the WCVaR

measure is stronger since it takes into account all the individual CVaR measures as shown in the following
assertion.

Theorem 2 For any set of levels 0 < β1 < β2 < . . . < βm ≤ 1, except for portfolios with identical
values of µ(x) and all conditional semideviations ∆βk

(x), respectively, every efficient solution of the
bicriteria problem (14) is an SSD efficient portfolio.

Proof. Let x0 ∈ P be an efficient solution of (14). Suppose that there exists x
′ ∈ P such that R

x
′ �

SSD

R
x

0 . Then, due to SSD consistency of the CVaR measures, µ(x′) ≥ µ(x0) and Mβk
(x′) ≥ Mβk

(x0) for
all k = 1, . . . ,m. The latter, together with the fact that x

0 is efficient, implies that µ(x′) = µ(x0) and
∑m

k=1 wkMβk
(x′) =

∑m
k=1 wkMβk

(x0). Hence, Mβk
(x′) = Mβk

(x0) for k = 1, . . . ,m, and therefore,
∆βk

(x′) = ∆βk
(x0) for all k = 1, . . . ,m, which completes the proof.

For returns represented by their realizations we get an LP optimization problem. The model con-
tains the following core LP constraints to define a feasible portfolio, portfolio realizations, and portfolio
expected return:

x ∈ P and z ≥ µ0,
n

∑

j=1

µjxj = z and
n

∑

j=1

rjtxj = yt for t = 1, . . . , T (15)

where z is an unbounded variable representing the mean return of the portfolio x and yt (t = 1, . . . , T )
are unbounded variables to represent the realizations of the portfolio return under the scenario t.

The general WCVaR model (14) leads us to the following LP problem:

maximize w0z +
m

∑

k=1

wkqk −
m

∑

k=1

wk

βk

T
∑

t=1

ptdtk

subject to (15) and dtk − qk + yt ≥ 0, dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . ,m

(16)

where qk (for k = 1, . . . ,m) are unbounded variables taking the values of the corresponding βk-quantiles
(in the optimal solution). Except from the core constraints (15), model (16) contains T nonnegative
variables dtk and T corresponding linear inequalities for each k. Thus, its dimensionality is proportional
to the number of scenarios T and to the number of tolerance levels m. Note that model (16) with m = 1
and w0 = 0 covers the standard CVaR model, while m > 1 and various settings of positive weights
wk allow us to model a wide gamut of risk averse preferences. The model itself does not require any
specific relation between the number of scenarios T and the number of securities n or the number of
tolerance levels m. Certainly, similar to the Markowitz model, a very low number of scenarios may
result in much less diversified portfolios. Increasing the number of tolerance levels m, generally, enables
a larger diversification. However, such diversification is not guaranteed since, as demonstrated later, it
also depends on a specific weights setting.
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Recall that the absolute Lorenz curve, and thereby the CVaR measures, represent a dual character-
ization of the SSD relation (Ogryczak and Ruszczyński (2002a)). Hence, the weighted combination of
the CVaR measures may be interpreted as the dual utility criterion within the theory developed by Yaari
(1987) which was recently reintroduced into the finance literature in a simplified form of the spectral risk
measures (Acerbi, 2002). Indeed, according to (12),

M
(m)
w (x) = w0

1
∫

0

F
(−1)
x (α)dα +

m
∑

k=1

wk

βk

βk
∫

0

F
(−1)
x (α)dα =

1
∫

0

φ(α)F
(−1)
x (α)dα

where

φ(α) =































w0 +

m
∑

k=1

wk

βk
, 0 < α ≤ β1

w0 +

m
∑

k=i

wk

βk
, βi−1 < α ≤ βi

w0, βm < α ≤ 1

(17)

is a decreasing risk aversion function (note the sign change for our safety measures to be maximized).
As pointed out by Acerbi (2002), the subjective risk aversion of an investor can be encoded in a

function φ(α) defined for all possible confidence levels α ∈ (0, 1] and from a financial point of view
one cannot see any natural choice of function φ(α). The use of a wide class of risk aversion functions in
portfolio optimization (Acerbi and Simonetti (2002)) seems to be rather far from the simplicity necessary
to make possible an effective implementation of the portfolio optimization procedure. In the following
we will focus on the WCVaR measures defined as simple combinations of a very few CVaR measures
(thus stepwise risk aversion functions φ with a very few steps). On the other hand, we introduce two
specific types of weights settings which relate the WCVaR measure to the Gini’s mean difference and its
tail version. This allows us to use a few tolerance levels βk as the only parameters specifying the entire
WCVaR measures (modeling risk aversion function) while the corresponding weights are automatically
predefined by the requirements of the corresponding Gini’s measures. In other words, the investor’s
preferences are modeled by a selection of a few tolerance levels. It turns out that we have managed
to identify a class of simple WCVaR measures performing better in a real-life portfolio optimization
environment than typical CVaR measures and the GMD model itself.

3.2 Wide WCVaR measures

In the case of equally probable T scenarios with pt = 1/T (historical data for T periods), the weighted
CVaR measure M

(T−1)
w (x) defined with m = T − 1 tolerance levels βk = k/T for k = 1, 2, . . . , T − 1

represents the standard weighting approach in the multiple criteria LP portfolio optimization model with
criteria F (−2)(k/T ) (Ogryczak (2000)). The use of weights wk = (2k)/T 2 for k = 1, 2, . . . , T − 1

and w0 = 1/T results then in ∆
(T−1)
w (x) = 2

T

∑T−1
k=1 h k

T

(x) = Γ(x) (c.f. Fig. 1). Hence, the WCVaR
model is then equivalent to the GMD model. One may notice that LP formulation (16), similarly to the
GMD one, requires T 2 linear inequalities. Hence, this very specific model cannot provide us with any
new modeling capabilities while causing a significant computational burden due to the large number of
CVaRs.

In the general case of T scenarios with arbitrary probabilities pt, one may use an approximation
to Γ(x) with ∆

(m)
w (x) based on some reasonably chosen grid of tolerance levels βk, k = 1, . . . ,m

9
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and weights wk expressing the corresponding trapezoidal approximation to the integral formula Γ(x) =

2
∫ 1
0 (µ(x)α−F

(−2)
x (α))dα. Such an approximation is a very attractive risk measure itself as it allows us

to dramatically reduce the computational burden caused by T 2 dimensionality of the LP implementation
of the GMD model (10) while introducing new modeling capabilities connected to the grid selection.
Exactly, for any grid of m tolerance levels 0 < β1 < . . . < βk < . . . < βm < 1 one gets the trapezoidal
approximation:

Γ(x) ∼=

m
∑

k=1

(βk+1 − βk−1)hβk
(x) =

m
∑

k=1

(βk+1 − βk−1)βk∆βk
(x)

where β0 = 0 and βm+1 = 1. Note that
∑m

k=1(βk+1 − βk−1)βk = βm < 1. This leads us to the
weighted CVaR measure with weights defined as:

wk = (βk+1 − βk−1)βk, for k = 1, . . . ,m, and w0 = 1 − βm. (18)

Precisely, when using the weights given by (18), the corresponding WCVaR measure defined by (12)
is an approximation to the GMD safety measure (9) (i.e., M

(m)
w (x) ∼= µ

Γ
(x)), and the corresponding

weighted conditional semideviation (13) is an approximation to the Gini’s mean difference itself (i.e.,
∆

(m)
w (x) ∼= Γ(x)). This can be also illustrated in terms of the spectral measures (Acerbi (2002)) as

integrating by parts one gets

µ
Γ
(x) = 2

1
∫

0

F
(−2)
x (α)dα = 2αF

(−2)
x (α)

]1

0
− 2

1
∫

0

αF
(−1)
x (α)dα

= 2F
(−2)
x (1) − 2

1
∫

0

αF
(−1)
x (α)dα =

1
∫

0

2(1 − α)F
(−1)
x (α)dα

which allows us to express the GMD safety measure by the risk aversion function φ(α) = 2(1−α) while
formula (17) with the weights (18) defines a stepwise approximation to this function.

Again, the WCVaR measures may be considered the exact GMD measure applied to (m + 1)-point
distributions approximating the original distribution of returns Rx, thus providing a trapezoidal ap-
proximation to the original Lorenz dispersion space. In particular, for the (m + 1)-point distribution
R

x
(β1,...,βm)

P{R
x

(β1,...,βm) = ξ} =















β1, ξ = a1

βk − βk−1, ξ = ak for k = 1, . . . ,m
1 − βm, ξ = am+1

0, otherwise

such that a1 ≤ a2 ≤ . . . ≤ am+1, the weighted conditional semideviation ∆
(m)
w (x(β1,...,βm)) with

weights (18) is equal to the Gini’s mean difference Γ(x(β1,...,βm)). In general, ∆
(m)
w (x) is a lower ap-

proximation to Γ(x) (∆(m)
w (x) ≤ Γ(x)) and thereby M

(m)
w (x) ≥ µΓ(x).

It must be emphasized that despite being only an approximation to the Gini’s mean difference, any
WCVaR measure with weights defined by (18) is a well defined LP computable risk measure with guar-
anteed SSD consistency in the sense of Theorem 2. In other words, we are interested in the GMD ap-
proximation properties only for a reasonable weights definition. We will refer to the WCVaR measures

10
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with weights defined by (18) as the Wide WCVaR as covering (spanning) a wide area of the quantile
scale. The wide WCVaR measures need not to employ a very dense grid to provide a proper modeling
of risk averse preferences. This allows us to build relatively small LP models with mT variables. In our
computational analysis we have considered m = 3 while testing three different patterns of the tolerance
levels (see Table 1) corresponding to three types of preferences defined by the tolerance levels location.

3.3 Tail WCVaR measures

The Wide WCVaR measures, based on the approximation to the Gini’s measure, contain the risk neutral
term M1(x) = µ(x) with the weight w0 = 1−βm. This may cause the measure to pay too much attention
to very low probable but very large returns. Actually, the measure can be more sensitive to large returns
than the Gini’s mean difference itself. We encountered such a situation in our computational analysis
where in a few cases all the models based on the WCVaR approximation to GMD selected a single
security portfolio with very high expectation caused by a very few but extremely high return realizations.

In order to overcome this flaw one may use the Tail WCVaR measures, built with an approximation to
the tail GMD measures instead of the GMD itself. The tail Gini’s measure (Ogryczak and Ruszczyński
(2002a, 2002b)) defined for any β ∈ (0, 1] by averaging the vertical diameters hp(x) within the tail
interval p ≤ β as:

Γβ(x) =
2

β2

β
∫

0

(µ(x)α − F
(−2)
x (α))dα. (19)

A simple analysis of the absolute Lorenz curve (Ogryczak and Ruszczyński (2002a)) shows that, for
any 0 < β ≤ 1, the tail Gini’s measure Γβ(x) is SSD safety consistent. One may notice that the
corresponding safety measure µ

Γβ
(x) = µ(x) − Γβ(x) can be expressed as

µ
Γβ

(x) = µ(x) −
2

β2

β
∫

0

(µ(x)α − F
(−2)
x (α))dα =

2

β2

β
∫

0

F
(−2)
x (α)dα

which allows us to consider it as a second degree CVaR measure.
In the simplest case of equally probable T scenarios with pt = 1/T , the tail Gini’s measure for

β = K/T may be expressed as the weighted conditional semideviation ∆
(K)
w (x) with tolerance levels

βk = k/T for k = 1, 2, . . . ,K and properly defined weights (Ogryczak and Ruszczyński (2002a)). In
a general case, we may resort to an approximation with the weighted CVaR measure based on some
reasonably chosen grid βk, k = 1, . . . ,m and weights wk expressing the corresponding trapezoidal
approximation of the integral in the formula (19). Exactly, for any 0 < β ≤ 1, while using the grid of m
tolerance levels 0 < β1 < . . . < βk < . . . < βm = β one may define the weights:

wk =
(βk+1 − βk−1)βk

β2
, for k = 1, . . . ,m − 1, and wm =

(βm − βm−1)βm

β2
(20)

where β0 = 0. This results in the weighted sum
∑m

k=1 wk∆βk
(x) expressing the trapezoidal approx-

imation to the tail Gini’s measure (19). Note that
∑m

k=1 wk = β2
m/β2 = 1 and thus we get a regular

weighted conditional semideviation (13) ∆
(m)
w (x) ∼= Γβ(x). Further, weights (20) together with w0 = 0

generate a WCVaR measure (12) such that M
(m)
w (x) ∼= µ

Γβ
(x). This can be also illustrated in terms of

11
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the spectral measures (Acerbi (2002)) as integrating by parts one gets

µΓβ
(x) =

2

β2

β
∫

0

F
(−2)
x (α)dα =

2

β2
αF

(−2)
x (α)

]β

0

−
2

β2

β
∫

0

αF
(−1)
x (α)dα

=
2

β
F

(−2)
x (β) −

2

β2

β
∫

0

αF
(−1)
x (α)dα =

1
∫

0

2(β − α)+

β2
F

(−1)
x (α)dα

allowing us to express the tail GMD safety measure by the risk aversion function φ(α) = 2(β −α)+/β2

where (.)+ denotes the nonnegative part of a number. Formula (17) with the weights (20) define a
stepwise approximation to this function.

Again, we emphasize that despite being only an approximation to (19), any Tail WCVaR measure
(e.g., a WCVaR measure with weights defined according to (20)) is a well defined LP computable mea-
sure with guaranteed SSD consistency in the sense of Theorem 2. They need not be built on a very dense
grid to provide proper modeling of risk averse preferences. Actually, we are interested in a direct pref-
erence modeling with simple Tail WCVaR measures rather than strict approximation to the Tail GMD
measure. In our computational analysis we have tested two Tail WCVaR models with m = 2 and m = 3.
Obviously, all the Tail WCVaR models measure are implemented as LP problems (16) but with w0 = 0.
Again, for a small value of m we get rather small LP models with mT variables.

3.4 Direct diversification enforcement

Since the seminal work of Markowitz (1952), the notion of investing in diversified portfolios is consid-
ered one of the most fundamental concepts of portfolio management. Diversification should be enforced
by the mean/risk preference model. Indeed, in the original Markowitz model it was usually guaranteed
by the standard deviation (variance) minimization. In general, it may happen that a single security or a
low diversified portfolio is SSD dominating over all other (more diversified) portfolios, and the SSD con-
sistent Markowitz-type models will select such an undiversified solution. Especially, the SSD consistent
models based on the LP computable risk measures may fail to generate sufficiently diversified portfolios,
although it also happens for the original Markowitz model (Mansini, Ogryczak and Speranza (2003b)).
Therefore, additional restrictions may be posed on the feasible portfolios to guarantee the required di-
versification. The simplest way to enforce portfolio diversification is to limit the maximum share. This,
however, allows us to form a portfolio with a few shares at the maximum level. A better modeling alter-
native would be to allow for a relatively large maximum share provided that the other shares are smaller.
Such a rich diversification scheme may be introduced with the CVaR constructs applied to the right tail
of the distribution of shares.

A natural generalization of the maximum share is the (right-tail) conditional mean defined as the
mean within the specified tolerance level (amount) of the worst shares. One may simply define the
conditional mean as the mean of the k largest shares. This can be formalized as follows. First, we
introduce the ordering map Θ : Rn → Rn such that Θ(x) = (θ1(x), θ2(x), . . . , θn(x)), where θ1(x) ≥
θ2(x) ≥ · · · ≥ θn(x) and there exists a permutation τ of set J such that θj(x) = xτ(j) for j = 1, . . . , n.
The use of ordered outcome vectors Θ(x) allows us to focus on distributions of shares impartially. Next,
the linear cumulative map is applied to ordered vectors to get Θ̄(x) = (θ̄1(x), θ̄2(x), . . . , θ̄n(x)) defined

12
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as

θ̄k(x) =

k
∑

j=1

θj(x), for k = 1, . . . , n.

The coefficients of vector Θ̄(x) express, respectively: the largest share, the total of the two largest shares,
the total of the three largest shares, etc. Hence, the (worst) k

n–conditional mean share is given as 1
k θ̄k(x),

for k = 1, . . . , n.
Similar to the CVaR formulas, for a given vector x, the value of θ̄k(x) may be found by solving the

linear program (Ogryczak and Tamir (2003)):

θ̄k(x) = min {ksk +

n
∑

j=1

ds
kj : ds

kj ≥ xj − sk, ds
kj ≥ 0 for j = 1, . . . , n},

where sk is an unbounded variable (representing the k-th largest share at the optimum) and ds
kj are

additional nonnegative (deviational) variables. Hence, any model under consideration can easily be
extended with direct diversification constraints specified as θ̄k(x) ≤ ck and implemented with linear
inequalities:

ksk +

n
∑

j=1

ds
kj ≤ ck and ds

kj ≥ xj − sk, ds
kj ≥ 0 for j = 1, . . . , n. (21)

4 Experimental analysis

4.1 Testing environment

The present section is devoted to the experimental analysis in a real framework of all the described
LP models based on extensions of the CVaR measure. Models have been tested on a PC with a 500
MHz Pentium processor by using CPLEX 6.5 package. First we present the test problems, then the
results of the in-sample analysis, both on the original models and on their modifications to enforce
diversification, are described. Finally, the out-of-sample results are analyzed and the results obtained
through the simulation of a ”multiperiod-type” portfolio investment are presented.

Historical data are represented by weekly rates of return obtained by using stock prices from Milan
Stock Exchange. The rates are computed as relative price variations. Dividends are not included. The
data set consists of 157 securities quoted with continuity from 1994 to 1999. In the first years of this
historical period the Italian Stock Exchange has shown alternate short periods of up and down trends
while entering a positive growing trend at the end. This is shown in Figure 2, where the performance of
the Milan Stock Exchange index MIB30 is depicted in the period (1994–1999).

A set of 13 instances has been created, each of which takes into account the complete set of securities
over a different time period. For this reason, from now on, we will indifferently refer to them as instances
or periods. In particular, each instance is based on two years realizations (about 104 weekly observations)
as in-sample period and one year as out-of-sample. The choice of weekly periodicity is consistent with
the objective of reducing estimation errors through an adequate number of observations (Simaan (1997)).
Two consecutive instances differ from each other for a three months period, e.g. the first instance covers
the two years 1994–1995 as in-sample period, while the second instance does not include the first three
months of 1994 and does include the first three months of 1996. For each instance the Maximum Safety
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Figure 2: The Milan Stock Exchange Index (MIB30) in the years 1994–1999 (weekly quotations).

Portfolio (MSP) has been obtained through the use of the various tested models. In this section we only
summarize and comment the main figures out of the huge amount of computational results we obtained.

The model introduced by Young (1998), with safety measure the maximization of the worst realiza-
tion (7), is identified as Minimax. The model based on the safety measure corresponding to the Gini’s
mean difference (10), i.e. the mean worse return, is referred simply as GMD. The CVaR model asso-
ciated to a given tolerance level β is identified as CVaR(β). We have tested the CVaR model for five
different values of β, i.e. CVaR(0.05), CVaR(0.1), CVaR(0.25), CVaR(0.5) and CVaR(0.75). All the
CVaR and the weighted CVaR models have been formulated according to (16). The weighted CVaR
models representing an approximation to the Gini’s measure (the Wide CVaR models) have been tested
with m = 3 tolerance weights. Such models have been identified as WCVaR(AGD), WCVaR(AGS) and
WCVaR(AGT). The corresponding models weights are summarized in Table 1. Finally, we have also

Table 1: Wide Weighted CVaR models

Model Tolerance levels Weights
w0 w1 w2 w3

WCVaR(AGD): Downside Approximation
β1 = 0.1, β2 = 0.25, β3 = 0.5 0.5 0.025 0.1 0.375

WCVaR(AGS): Symmetric Approximation
β1 = 0.25, β2 = 0.5, β3 = 0.75 0.25 0.125 0.25 0.375

WCVaR(AGT): Tails Approximation
β1 = 0.1, β2 = 0.5, β3 = 0.9 0.1 0.05 0.4 0.45

tested two Tail WCVaR models:

• Model WCVaR(TG2) with two tolerance levels β1 = 0.1, β2 = 0.25 and weights w1 = 0.4 and
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w2 = 0.6.

• Model WCVaR(TG3) with three tolerance levels β1 = 0.1, β2 = 0.25, β3 = 0.5 and weights
w1 = 0.1, w2 = 0.4 and w3 = 0.5.

Since SSD consistent models based on the LP computable risk measures may fail to generate diver-
sified enough portfolios we have added the following additional restrictions to guarantee the required
diversification: any stock share cannot exceed 0.20, while any three shares cannot exceed 0.50 in total
and any six shares cannot globally exceed 0.75 of the portfolio investment. This requires the following
side constraints on the shares to be added:

xj ≤ 0.2 for j = 1, . . . , n

3s3 +

n
∑

j=1

ds
3j ≤ 0.5 and ds

3j ≥ xj − s3, ds
3j ≥ 0 for j = 1, . . . , n

6s6 +

n
∑

j=1

ds
6j ≤ 0.75 and ds

6j ≥ xj − s6, ds
6j ≥ 0 for j = 1, . . . , n

(22)

For each model we have tested the corresponding version obtained by adding constraints (22).

4.2 In-sample analysis

In the following we present and comment the characteristics of the MSPs selected by the different models
with and without the introduction of diversification enforcement. In Table 2, the complete computational
results for model CVaR(0.1) are presented as an example of the type of information obtained by solving
a single model over all the 13 periods. The table consists of a first part corresponding to the results for
the models without diversification enforcement and a second one for the models with the diversification
enforcement constraints (22). Each of the two parts of the table has five columns: the objective function
value (obj.), the portfolio per cent mean return (z), the portfolio diversification (div.) represented by the
number of selected securities, the minimum and the maximum share within the portfolio, respectively.
The average return is given on a weekly basis (a good yearly approximation can be obtained by mul-
tiplying the figures by 52). Notice that the introduction of diversification constraints may result in an
unmodified optimal portfolio. This is the case for the portfolios selected in the instances 7 and 8. Similar
results are shown in Table 3 for the model WCVaR(AGD).

To simplify results presentation, we have decided to focus our attention only on a subset of instances
(periods). In Tables 4-6 we show the results obtained by the different models in the first, the sixth and the
twelfth instance without and with diversification constraints. The tables have the same structure of Tables
2-3. Tables 4 and 5 show the large values obtained by the Wide WCVaR: the fact can be explained by
the relevance given to high returns by these models which are much more sensitive to large returns than
the Gini’s mean difference itself. This also explains why, in some instances (see, for instance, Table 3),
the Wide WCVaR models select only a one security portfolio characterized by a large expected return
(about 94% per week) generated by very few realizations with dramatically high return. Moreover, it
is worth noticing that in the Wide WCVaR models the mean return z value is larger than that of all the
other models. This is also true in the twelfth period where the returns are dramatically lower than in other
periods, thus reflecting the downwards trend of the whole market. From Tables 4-6 and the analogous
results obtained for the other periods we observed that the MSPs mean return tends to increase over the
years by reaching a pick in the first quarter of the year 1998 and then decreasing. This allows us to
draw some conclusions on market trend. In general, the basic CVaR models are the most diversified.
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Table 2: CVaR(0.1) model without and with diversification constraints: optimal portfolio characteristics
in each of the 13 periods.

without diversification with diversification
periods obj. z div. shares obj. z div. shares

10−2 % # min max 10−2 % # min max

1 -1.567 0.21 18 1.77 10−3 0.293 -1.638 0.17 20 1.93 10−3 0.200
2 -1.543 0.24 18 2.09 10−3 0.281 -1.604 0.21 20 4.45 10−4 0.200
3 -1.129 0.61 18 3.33 10−3 0.204 -1.137 0.52 20 1.10 10−3 0.192
4 -0.999 0.19 23 1.68 10−3 0.144 -0.999 0.19 23 1.68 10−3 0.144
5 -0.955 0.10 24 6.24 10−3 0.138 -0.955 0.10 24 8.28 10−3 0.138
6 -0.736 0.43 26 1.18 10−4 0.165 -0.736 0.43 26 1.18 10−4 0.132
7 -0.721 0.41 27 1.48 10−4 0.112 -0.721 0.41 27 1.48 10−4 0.112
8 -0.649 0.54 27 1.53 10−3 0.138 -0.649 0.54 27 1.53 10−3 0.138
9 -0.560 0.61 29 7.64 10−4 0.128 -0.560 0.61 29 7.64 10−4 0.128

10 -0.549 1.01 24 2.07 10−3 0.121 -0.549 1.01 24 2.07 10−3 0.121
11 -1.401 0.99 19 7.81 10−5 0.245 -1.412 0.98 20 1.05 10−3 0.200
12 -2.188 0.91 18 1.11 10−4 0.210 -2.188 0.91 18 1.11 10−4 0.210
13 -2.476 0.90 17 4.49 10−3 0.223 -2.478 0.87 18 5.30 10−4 0.200

Moreover, in some of these models (see CVaR(0.05) and CVaR(0.1)) the introduction of constraints (22)
results in no further diversification (see Table 5).

In the following the main figures obtained for all the selected portfolios are summarized. Table 7
shows, for all the models over all the periods, the diversification of the optimal portfolios (MSPs). For
instance, the number of selected securities for the Minimax model varies, out of the 13 solved instances,
from 6 to 29 securities, while with the introduction of diversification constraints the corresponding range
becomes 12–29. Similar considerations can be made by analyzing portfolios composition in terms of
minimum and maximum portfolio shares. On average, the Wide WCVaR provide the ranges with the
lowest upper limits and result in extremely low diversified portfolios (or rather undiversified portfolios
as the lower limit can be equal to 1). These models seem to require the use of an additional technique to
guarantee enough diversification. Also the Minimax model may generate some low diversified portfolios
(6 securities). The other models have always selected more than 10 securities. Nevertheless, in many
cases they generated portfolios with very large shares (exceeding 30%) of particular securities. Thus,
for all the LP computable models under consideration we may recommend a support of some direct
technique for diversification enforcement. One may notice that the application of the CVaR based diver-
sification enforcement constraints (22) has resulted in portfolios always containing at least 10 securities.

4.3 Out-of-sample analysis

In this section the behavior of all the MSPs is examined in the twelve months following the date of
each portfolio selection. To describe out-of-sample results we have used the following nine ex-post pa-
rameters: the minimum, the average, the maximum and the median portfolio return (rmin, rav, rmax

and rmed, respectively); the standard deviation (std) and the semi-standard deviation (s-std); the mean
absolute deviation (MAD) and the mean downside semideviation (s-MAD); the maximum downside de-
viation (D-DEV). Such performance criteria have been computed for all the models over all the periods
and can be used to compare the out-of-sample behavior of the maximum safety portfolios selected by the
different models. The minimum, average, maximum and median ex-post portfolio returns are expressed
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Table 3: WCVaR(AGD) without and with diversification constraints: optimal portfolio characteristics in
each of the 13 periods.

without diversification with diversification
periods obj. z div. shares obj. z div. shares

10−2 % # min max 10−2 % # min max

1 40.577 94.26 1 1 1 8.422 19.52 12 1.49 10−2 0.200
2 40.464 93.88 1 1 1 8.462 19.57 11 1.56 10−2 0.200
3 42.558 95.04 1 1 1 8.842 19.67 12 4.34 10−3 0.200
4 42.467 95.21 1 1 1 8.804 19.64 14 3.63 10−3 0.200
5 42.991 95.46 1 1 1 8.881 19.55 19 8.29 10−4 0.200
6 45.953 97.16 1 1 1 9.535 20.06 15 8.77 10−3 0.200
7 0.270 1.11 15 1.18 10−3 0.204 0.270 1.10 16 8.12 10−4 0.200
8 0.313 1.19 17 7.29 10−3 0.198 0.313 1.19 17 7.29 10−3 0.198
9 0.332 1.00 21 4.53 10−3 0.106 0.332 1.00 21 4.53 10−3 0.106

10 0.673 1.57 21 2.49 10−3 0.148 0.673 1.57 21 2.49 10−3 0.148
11 0.405 1.51 16 6.30 10−3 0.168 0.405 1.51 16 6.30 10−3 0.168
12 0.182 1.51 17 2.71 10−3 0.179 0.182 1.51 17 2.71 10−3 0.179
13 0.219 1.87 14 1.32 10−2 0.237 0.217 1.84 15 8.64 10−3 0.200

Table 4: Period 1 - Maximum Safety Portfolios: optimal portfolio characteristics.
without diversification with diversification

models obj. z div. shares obj. z div. shares
10−2 % # min max 10−2 % # min max

Minimax -1.812 0.06 14 1.40 10−3 0.193 -1.823 0.12 16 3.98 10−4 0.194
CVaR(0.05) -1.767 0.15 14 5.14 10−3 0.214 -1.789 0.13 16 3.06 10−3 0.187
CVaR(0.1) -1.567 0.21 18 1.77 10−3 0.293 -1.638 0.17 20 1.93 10−3 0.200
CVaR(0.25) -1.155 0.29 11 1.57 10−3 0.316 -1.199 0.29 18 5.13 10−3 0.200
CVaR(0.5) -0.597 0.39 17 3.31 10−5 0.288 -0.611 0.40 19 4.87 10−5 0.200
CVaR(0.75) -0.055 0.62 17 1.12 10−4 0.179 -0.056 0.61 18 1.18 10−4 0.172
GMD -0.313 0.60 17 2.60 10−4 0.246 -0.318 0.61 18 7.90 10−4 0.200
WCVaR(AGD) 40.577 94.26 1 1 1 8.422 19.52 12 1.49 10−2 0.200
WCVaR(AGS) 16.147 94.26 1 1 1 3.532 19.48 13 1.19 10−2 0.200
WCVaR(AGT) 1.603 94.26 1 1 1 0.632 19.47 13 2.74 10−3 0.200
WCVaR(TG2) -1.393 0.21 16 1.34 10−3 0.343 -1.455 0.16 18 2.63 10−3 0.200
WCVaR(TG3) -0.986 0.31 15 8.99 10−5 0.304 -1.025 0.36 18 2.60 10−5 0.200

on a yearly basis. All the dispersion measures (std, s-std, MAD, s-MAD and D-DEV) have been com-
puted with respect to the target return µ0 (which is zero for the MSP) to make them directly comparable
in the different models.

In Tables 8 and 9 we present the average value of each criterion, over the thirteen periods, for the
various models in the cases without and with diversification enforcement, respectively. One may no-
tice extremely high average returns of the Wide WCVaR models (without diversification enforcement).
These performances are produced by single security portfolios with very high returns. In general, the
models are too risky as demonstrated by all the dispersion measures. When we consider the models with
diversification enforcement (Table 9), the Wide WCVaR models are still characterized by the highest
average returns and the largest dispersion parameters but the differences from the other models are not
very large. One may notice that the GMD model, which is the computationally most complex, may be
easily outperformed (in terms of average returns and dispersion) by the simpler Tail WCVaR models or
even by the CVaR(0.5) model.
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Table 5: Period 6 - Maximum Safety Portfolios: optimal portfolio characteristics.
without diversification with diversification

models obj. z div. shares obj. z div. shares
10−2 % # min max 10−2 % # min max

Minimax -0.745 0.45 27 2.31 10−4 0.169 -0.745 0.45 27 2.31 10−4 0.169
CVaR(0.05) -0.745 0.45 27 2.31 10−4 0.169 -0.745 0.45 27 2.31 10−4 0.169
CVaR(0.1) -0.736 0.43 26 1.18 10−4 0.164 -0.736 0.43 26 1.18 10−4 0.164
CVaR(0.25) -0.613 0.44 22 1.27 10−5 0.112 -0.613 0.44 22 1.27 10−5 0.112
CVaR(0.5) -0.246 2.64 26 3.30 10−3 0.180 -0.246 2.64 26 3.30 10−3 0.180
CVaR(0.75) 0.262 7.33 21 3.72 10−4 0.229 0.260 7.01 21 6.88 10−3 0.200
GMD 0.060 9.12 20 4.30 10−3 0.178 0.060 9.12 20 4.11 10−3 0.178
WCVaR(AGD) 45.953 97.16 1 1 1 9.535 20.06 15 8.77 10−3 0.200
WCVaR(AGS) 21.599 97.16 1 1 1 4.651 20.01 16 6.17 10−3 0.200
WCVaR(AGT) 7.504 97.16 1 1 1 1.868 20.07 14 2.41 10−5 0.200
WCVaR(TG2) -0.693 0.44 27 1.19 10−4 0.151 -0.693 0.44 27 1.19 10−4 0.151
WCVaR(TG3) -0.514 1.61 26 1.47 10−3 0.107 -0.514 1.61 26 1.47 10−3 0.107

Table 6: Period 12 - Maximum Safety Portfolios: optimal portfolio characteristics.
without diversification with diversification

models obj. z div. shares obj. z div. shares
10−2 % # min max 10−2 % # min max

Minimax -2.848 0.99 13 3.77 10−3 0.289 -2.927 0.99 14 1.41 10−3 0.200
CVaR(0.05) -2.486 0.88 14 1.09 10−3 0.198 -2.488 0.88 15 1.51 10−3 0.200
CVaR(0.1) -2.188 0.91 18 1.11 10−4 0.210 -2.188 0.90 18 9.13 10−4 0.200
CVaR(0.25) -1.529 0.94 20 4.65 10−3 0.134 -1.529 0.94 20 4.65 10−3 0.134
CVaR(0.5) -0.608 1.05 20 7.87 10−4 0.129 -0.608 1.05 20 7.87 10−4 0.129
CVaR(0.75) 0.204 1.35 14 4.30 10−4 0.222 0.203 1.35 14 3.99 10−3 0.200
GMD -0.186 1.35 20 1.01 10−2 0.129 -0.186 1.35 20 1.01 10−2 0.129
WCVaR(AGD) 0.182 1.51 17 2.71 10−3 0.179 0.182 1.51 17 2.71 10−3 0.179
WCVaR(AGS) -0.028 1.39 18 6.10 10−3 0.158 -0.028 1.39 18 6.10 10−3 0.158
WCVaR(AGT) 0.029 1.41 20 3.36 10−3 0.135 0.029 1.41 20 3.36 10−3 0.135
WCVaR(TG2) -1.882 0.99 18 1.25 10−3 0.187 -1.882 0.99 18 1.25 10−3 0.187
WCVaR(TG3) -1.270 0.99 23 1.47 10−4 0.131 -1.270 0.99 23 1.47 10−4 0.131

We have also analyzed each model performance with respect to a long-run portfolio management.
Each of the portfolios selected by a specific model in the 13 instances has been evaluated ex-post in
the three months period following the date of selection. Tables 10 and 11 provide the single period
returns (each column corresponds to a different period from 1 to 13) for each model without and with
the diversification enforcement, respectively. It is worth noticing that single period ex-post returns quite
perfectly represent the upward and downward movements of the market. For instance, the negative results
showed by all the models in the periods 3 and 4 are mainly due to the negative trend of the market in
1996, especially in the period from April to July and then again in October. However, we noticed that in
such periods some models (such as CVaR(0.1) and CVaR(0.25)) find portfolios with a better performance
with respect to the market index MIB30. Similarly, for the periods 10-11 and partially 12 which suffered
the negative fall of the market in the second quarter of the 1998 and then again in August. Finally, the
high returns in period 9 can be partially interpreted as a consequence of the positive trend of the market
at the beginning of the 1998 with a high positive jump of the MIB30 index performances in March (see
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Table 7: Diversification of the optimal portfolios (MSPs).
MSP without MSP with

models diversification enforcement diversification enforcement

Minimax 6–29 12–29
CVaR(0.05) 14–29 15–29
CVaR(0.1) 17–29 18–29
CVaR(0.25) 11–30 18–30
CVaR(0.5) 16–29 18–27
CVaR(0.75) 12–23 13–22
GMD 12–26 16–26
WCVaR(AGD) 1–21 11–21
WCVaR(AGS) 1–23 13–21
WCVaR(AGT) 1–25 11–25
WCVaR(TG2) 15–30 17–30
WCVaR(TG3) 15–29 16–29

Table 8: Out-of-sample statistics for MSPs: average values over the 13 periods.
Without diversification enforcement

models rmin rav rmed rmax std s-std MAD s-MAD D-DEV

Minimax -54.36 30.05 17.57 337.19 0.0614 0.0270 0.0493 0.0148 0.0749
CVaR(0.05) -52.75 28.77 10.66 332.93 0.0596 0.0264 0.0477 0.0145 0.0720
CVaR(0.1) -52.43 30.57 12.24 347.98 0.0611 0.0263 0.0486 0.0141 0.0713
CVaR(0.25) -49.68 34.27 26.58 307.67 0.0591 0.0237 0.0454 0.0110 0.0718
CVaR(0.5) -53.10 31.12 32.34 282.05 0.0603 0.0267 0.0474 0.0128 0.0788
CVaR(0.75) -59.86 27.80 29.34 381.36 0.0668 0.0325 0.0512 0.0161 0.0945
GMD -58.64 27.85 26.21 315.79 0.0639 0.0304 0.0495 0.0151 0.0870
WCVaR(AGD) -72.84 92.27 48.52 3625.59 0.1153 0.0427 0.0913 0.0218 0.1148
WCVaR(AGS) -71.69 94.00 47.57 3634.52 0.1152 0.0415 0.0907 0.0209 0.1136
WCVaR(AGT) -72.17 94.15 49.47 3631.79 0.1151 0.0418 0.0908 0.0209 0.1146
WCVaR(TG2) -52.14 30.52 27.86 378.51 0.0614 0.0259 0.0473 0.0134 0.0719
WCVaR(TG3) -49.50 33.09 25.23 321.26 0.0602 0.0243 0.0458 0.0116 0.0719

Figure 2). In such period many models find higher returns with respect to the MIB30 index.
Further, we cumulated the returns over the horizon up to 13 periods (39 months) to better analyze

each model achievements. The figures shown in Table 12 are the cumulative returns of the portfolios
selected by each model in the case without diversification enforcement. Table 13 provides the same
results for the case with diversification enforcement. Each column of these tables refers to a period
and provides the cumulative returns of the portfolios selected over the preceding periods. For a better
understanding of these figures let us consider the first line of Table 12 which refers to the model Minimax.
Each of the 13 portfolios selected by the Minimax model in the 13 instances has been evaluated ex-post
in the three months investment period following the date of its selection. Let us define as r1, r2, ..., r13

the ex-post returns of these 13 portfolios (their values are shown in the first line of Table 10). Then,
the first column of Table 12 gives the ex-post return (after 3 months) of the first portfolio selected, i.e.
r1 (notice that such value is identical in Tables 12 and 10). The second column of Table 12 gives the
cumulative return of the portfolio selected in the first period and then modified after three months with
the portfolio selected in the second period: the value is computed as (1 + r1)(1 + r2) − 1. Similarly, for
all the other columns of the table. These results have been computed to simulate a multi-period setting
where, at no transaction cost, the portfolio changes over time. Rates are expressed on a yearly basis.
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Table 9: Out-of-sample statistics for MSPs: average values over the 13 periods.
With diversification enforcement

models rmin rav rmed rmax std s-std MAD s-MAD D-DEV

Minimax -53.80 31.38 25.49 337.79 0.0607 0.0263 0.0486 0.0139 0.0735
CVaR(0.05) -53.27 28.73 13.78 329.62 0.0592 0.0264 0.0473 0.0143 0.0731
CVaR(0.1) -52.17 29.88 11.94 334.94 0.0596 0.0259 0.0474 0.0138 0.0712
CVaR(0.25) -46.93 33.00 26.57 302.67 0.0581 0.0232 0.0444 0.0109 0.0678
CVaR(0.5) -53.50 30.49 32.33 289.09 0.0607 0.0268 0.0470 0.0129 0.0793
CVaR(0.75) -60.23 28.56 29.34 384.64 0.0682 0.0333 0.0522 0.0163 0.0948
GMD -59.19 27.50 27.78 323.99 0.0646 0.0308 0.0497 0.0153 0.0877
WCVaR(AGD) -63.43 35.21 38.88 439.76 0.0742 0.0337 0.0582 0.0171 0.0947
WCVaR(AGS) -62.91 36.75 36.00 426.09 0.0737 0.0327 0.0574 0.0162 0.0944
WCVaR(AGT) -62.67 36.96 38.21 426.26 0.0735 0.0328 0.0575 0.0162 0.0945
WCVaR(TG2) -52.04 30.19 27.86 366.65 0.0608 0.0257 0.0466 0.0132 0.0719
WCVaR(TG3) -49.36 31.62 25.44 322.26 0.0600 0.0246 0.0452 0.0119 0.0718

Table 10: Out-of-sample results for MSPs: single period returns.
Without diversification enforcement

models 1 2 3 4 5 6 7 8 9 10 11 12 13

Minimax 54.09 13.15 -16.33 -2.41 62.07 33.31 39.77 85.43 348.50 -24.86 -60.31 0.99 10.33
CVaR(0.05) 63.87 11.71 -16.33 -2.41 62.07 33.31 39.77 85.43 348.50 -24.86 -49.44 -2.84 9.51
CVaR(0.1) 64.54 11.80 -10.97 -4.88 65.87 27.61 39.23 78.16 352.58 -25.94 -48.17 -7.46 39.95
CVaR(0.25) 73.05 4.27 -5.02 -0.40 80.39 38.78 20.16 71.22 392.11 10.28 -54.66 31.95 34.90
CVaR(0.5) 96.96 20.96 -21.01 -4.74 52.95 41.05 10.14 58.21 434.77 7.51 -55.21 39.74 58.90
CVaR(0.75) 148.85 32.11 -13.21 -19.60 58.17 48.33 11.85 37.56 519.56 2.30 -58.02 87.45 4.59
GMD 128.21 29.54 -14.26 -18.64 60.09 77.01 9.75 36.80 431.47 10.76 -53.08 47.40 10.33
WCVaR(AGD) 322.73 1221.48 -13.19 79.75 245.78 186.20 12.80 39.12 442.15 3..11 -52.42 44.00 10.33
WCVaR(AGS) 322.73 1221.48 -13.19 79.75 245.78 186.20 7.30 40.06 440.93 0.26 -55.78 57.47 10.46
WCVaR(AGT) 322.73 1221.48 -13.19 79.75 245.78 186.20 12.76 29.69 453.65 8..57 -54.52 40.90 17.69
WCVaR(TG2) 53.17 1.84 -11.14 -1.79 81.30 30.09 28.27 71.23 385.45 -17.94 -47.15 10.67 140.90
WCVaR(TG3) 78.91 12.06 -11.77 -6.49 77.17 42.13 21.41 52.27 404.90 7.78 -53.40 29.80 66.31

Table 12 shows extremely high cumulated returns of the Wide WCVaR models (without diversifi-
cation enforcement). These performances are due to the single security portfolios selected in the first 6
periods which resulted in dramatically high returns. Actually, when ignoring these 6 periods and focus-
ing on the remaining horizon of the last 21 months, the cumulative returns of the Wide WCVaR models
considerably shrink as it is evident when comparing the first part of Table 14 with the last seven columns
of Table 12. Table 14 shows the ex-post cumulated returns over the last 21 months (7 periods) both for
the case without and with diversification enforcement. Moreover, as in column (7–13) of the first part of
Table 14, it can be noticed that the Wide WCVaR models perform much worse than all the other models
except for the Minimax and the extremal CVaR models (β = 0.05 or β = 0.1). Note that both the Tail
WCVaR models and the CVaR(0.5) here have the best cumulative performances.

When the models with diversification enforcement are considered (see Table 13), the Wide WCVaR
models are still characterized by the highest cumulative returns but the differences from the other models
are not very large. When ignoring the first 6 periods and focusing on the last 21 months (second part
of Table 14), one may see again the Wide WCVaR models performing much worse than all the other
models except for the Minimax and the extremal CVaR models. It is interesting to notice that, except for
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Table 11: Out-of-sample results for MSPs: single period returns.
With diversification enforcement

models 1 2 3 4 5 6 7 8 9 10 11 12 13

Minimax 67.81 13.26 -26.42 -2.25 62.07 33.31 39.77 85.43 348.50 -24.86 -61.65 -11.03 -0.52
CVaR(0.05) 57.11 16.46 -26.42 -2.25 62.07 33.31 39.77 85.43 348.50 -24.86 -54.08 -2.95 6.28
CVaR(0.1) 48.16 11.85 -15.53 -4.88 65.87 27.61 39.23 78.16 352.58 -25.94 -49.31 -7.63 25.82
CVaR(0.25) 71.10 4.17 -12.74 -0.40 80.39 38.78 20.16 71.22 392.11 10.28 -54.02 31.95 34.90
CVaR(0.5) 100.55 15.53 -21.94 -5.39 52.93 41.05 10.14 58.21 434.77 7.51 -55.21 39.74 58.90
CVaR(0.75) 145.52 29.29 -13.17 -21.09 57.85 46.87 16.47 37.56 519.56 2.30 -59.99 89.12 8.76
GMD 127.84 20.23 -18.40 -20.27 59.58 76.91 10.92 36.80 431.47 10.76 -52.45 47.40 10.39
WCVaR(AGD) 184.78 107.76 -23.10 -6.83 84.90 85.39 12.68 39.12 442.15 3.11 -52.42 44.00 9.76
WCVaR(AGS) 170.49 100.48 -21.68 -6.28 86.56 93.73 10.06 40.06 440.93 0.26 -55.32 57.47 11.57
WCVaR(AGT) 173.36 101.80 -21.99 -7.87 95.32 98.48 13.00 29.69 453.65 8.57 -54.52 40.90 17.69
WCVaR(TG2) 50.35 7.30 -14.16 -1.79 81.30 30.09 28.27 71.23 385.45 -17.94 -47.30 10.67 129.28
WCVaR(TG3) 81.68 7.66 -15.61 -6.41 77.17 42.13 21.41 52.27 404.90 7.78 -56.11 29.80 66.31

Table 12: Out-of-sample results for MSPs: cumulative returns.
Without diversification enforcement

models 3 m. 6 m. 9 m. 12 m. 15 m. 18 m. 21 m. 24 m. 27 m. 30 m. 33 m. 36 m. 39 m.

Minimax 54.09 32.04 13.41 9.23 18.20 20.59 23.16 29.63 48.80 38.97 24.00 21.90 20.97
CVaR(0.05) 63.87 35.30 15.27 10.57 19.36 21.58 24.03 30.42 49.60 39.65 27.33 24.49 23.27
CVaR(0.1) 64.54 35.63 17.87 11.72 20.91 22.00 24.33 30.04 49.37 39.25 27.28 23.95 25.11
CVaR(0.25) 73.05 34.33 19.67 14.30 25.23 27.39 26.33 31.22 51.98 47.19 32.25 32.22 32.43
CVaR(0.5) 96.96 54.35 23.46 15.71 22.35 25.29 23.00 26.93 48.93 44.15 29.62 30.43 32.43
CVaR(0.75) 148.85 81.32 41.84 23.07 29.40 32.38 29.23 30.24 54.89 48.60 32.46 36.35 33.60
GMD 128.21 71.94 36.35 19.84 26.98 34.21 30.41 31.19 53.25 48.36 33.61 34.71 32.66
WCVaR(AGD) 322.73 647.41 264.67 205.56 213.21 208.53 167.22 146.28 168.85 144.28 110.52 103.96 94.55
WCVaR(AGS) 322.73 647.41 264.67 205.56 213.21 208.53 165.32 144.96 167.49 142.49 107.74 102.99 93.71
WCVaR(AGT) 322.73 647.41 264.67 205.56 213.21 208.53 167.21 144.12 167.38 144.33 109.71 102.87 94.55
WCVaR(TG2) 53.17 24.90 11.50 8.02 19.80 21.46 22.41 27.66 48.08 39.59 27.80 26.27 32.71
WCVaR(TG3) 78.91 41.59 20.94 13.41 23.99 26.85 26.05 29.07 50.19 45.29 31.02 30.92 33.35

the Minimax and the extremal CVaR models, all the other models resulted in similar cumulative return
over the entire horizon of 39 months with (annual) rate of return exceeding 30%. Also the GMD model
is outperformed by simple Tail WCVaR models and the CVaR models for larger tolerance levels.

To better capture the models behavior over small periods with possibly different market trends we
have analyzed the ex-post cumulative returns over subperiods of length 4, that is we computed the cumu-
lative returns over the periods 7–10, 8–11, 9–12 and 10–13. In Table 15 we have shown the minimum, the
average and the maximum cumulative return (rcmin, rcav, and rcmax, respectively) for each model over
these subperiods. Note that during the periods with negative market trend, as during subperiod 10–13, all
the models have negative average cumulative returns. However, GMD and CVaR(0.5) and CVaR(0.25)
show the best, although negative, average performance. Moreover, when the maximum cumulative re-
turn is considered, the three best models are GMD, CVaR(0.25) and WCVaR(TG3), respectively. On the
contrary, in positive market trend periods such as in the subperiod 9-12 (corresponding to the first part of
the year 1998), the CVaR(0.75) has the largest average and maximum cumulative return while the largest
minimum cumulative return is obtained by GMD.

Finally, to show how consistently the composition of the portfolios selected by the same model
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Table 13: Out-of-sample results for MSPs: cumulative returns.
With diversification enforcement

models 3 m. 6 m. 9 m. 12 m. 15 m. 18 m. 21 m. 24 m. 27 m. 30 m. 33 m. 36 m. 39 m.

Minimax 67.81 37.87 11.83 8.13 17.25 19.78 22.45 28.97 48.13 38.41 23.16 19.87 18.16
CVaR(0.05) 57.11 35.26 10.42 7.11 16.36 19.03 21.79 28.36 47.50 37.88 24.77 22.18 20.88
CVaR(0.1) 48.16 28.73 11.86 7.42 17.17 18.85 21.57 27.52 46.79 37.08 25.23 22.09 22.38
CVaR(0.25) 71.10 33.50 15.86 11.56 22.82 25.34 24.59 29.64 50.35 45.76 31.25 31.31 31.58
CVaR(0.5) 100.55 52.22 21.84 14.37 21.21 24.32 22.18 26.19 48.16 43.48 29.07 29.93 31.95
CVaR(0.75) 145.52 78.16 40.21 21.44 27.98 30.95 28.78 29.84 54.46 48.23 31.59 35.63 33.35
GMD 127.84 65.51 30.75 15.54 23.25 30.90 27.84 28.93 50.90 46.31 32.10 33.31 31.39
WCVaR(AGD) 184.78 143.24 65.70 43.49 50.95 56.21 49.09 47.81 70.77 62.37 45.22 45.12 42.03
WCVaR(AGS) 170.49 132.87 61.94 41.25 49.33 55.95 48.38 47.31 70.22 61.44 43.65 44.75 41.88
WCVaR(AGT) 173.36 134.87 62.66 41.11 50.59 57.68 50.35 47.60 70.96 63.37 45.44 45.06 42.74
WCVaR(TG2) 50.35 27.01 11.46 7.99 19.78 21.44 22.39 27.64 48.06 39.58 27.75 26.23 32.16
WCVaR(TG3) 81.68 39.85 18.18 11.49 22.31 25.41 24.83 27.97 49.05 44.30 29.50 29.52 32.04

Table 14: Out-of-sample computational results: cumulative returns over the latest 21 months (7 periods).
Without diversification With diversification

periods 7 7-8 7-9 7-10 7-11 7-12 7-13 7 7-8 7-9 7-10 7-11 7-12 7-13
models

Minimax 39.77 60.99 115.24 71.91 28.23 23.22 22.83 39.77 60.99 115.24 71.91 27.35 19.96 16.79
CVaR(0.05) 39.77 60.99 115.24 71.91 34.59 27.47 24.74 39.77 60.99 115.24 71.91 32.02 25.42 22.49
CVaR(0.1) 39.23 57.50 112.92 69.81 33.93 25.93 27.84 39.23 57.50 112.92 69.81 33.34 25.42 25.48
CVaR(0.25) 20.16 43.44 106.15 8.28 38.32 37.24 36.90 20.16 43.44 106.15 8.28 38.70 37.55 37.17
CVaR(0.5) 10.14 32.00 100.87 77.91 35.02 35.79 38.88 10.14 32.00 100.87 77.91 35.02 35.79 38.88
CVaR(0.75) 11.85 24.04 102.30 76.72 32.56 40.44 34.65 16.47 26.58 104.88 78.51 32.37 40.48 35.43
GMD 9.75 22.53 91.36 72.42 32.90 35.21 31.34 10.92 23.18 92.00 72.88 33.55 35.76 31.81
WCVaR(AGD) 12.80 25.27 95.24 72.10 33.08 34.84 29.74 12.68 25.20 95.17 72.05 33.05 34.81 30.91
WCVaR(AGS) 7.30 22.59 92.48 68.97 29.23 33.56 29.98 10.06 24.15 94.01 70.04 30.16 34.36 30.84
WCVaR(AGT) 12.76 20.93 92.24 72.19 31.94 33.39 31.03 13.00 21.06 92.37 72.28 32.00 33.44 31.07
WCVaR(TG2) 28.27 48.21 109.51 71.99 35.84 31.28 43.17 28.27 48.21 109.51 71.99 35.76 31.21 42.10
WCVaR(TG3) 21.41 35.97 100.98 78.10 36.20 35.12 39.19 21.41 35.97 100.98 78.10 34.59 33.78 38.00

over the different periods may change, we have reported, as an example, Table 16 which provides the
portfolios composition changes from one period to the other for the portfolios selected by the different
models in the case without diversification enforcement. For instance, the second line of Table 16 refers
to model CVaR(0.05) and can be interpreted as follows. The first column gives the number of securities
selected by this model in the first period (in this case 14 securities). The second column says that, with
respect to the previous portfolio, the one selected in the second period contains 2 new securities and no
securities have been eliminated from those already selected. Similarly for the other models.

4.4 Models behavior in a strong downward trend period: the years 2000-2002

The Markowitz type models, used without any additional forecasting procedure applied prior to portfolio
selection process itself, do not recognize any market trends and therefore they are generally not appro-
priate tools for investment situations with a long lasting market trend. Nevertheless, due to commonly
observed negative trends during recent years, both researchers and practitioners become more interested
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Table 15: Cumulative return statistics in subperiods of length 4: case without diversification.
7-10 8-11 9-12 10-13

models rcmin rcav rcmax rcmin rcav rcmax rcmin rcav rcmax rcmin rcav rcmax

Minimax 39.77 71.98 115.24 24.42 93.88 188.38 3.55 110.99 348.50 -46.32 -33.69 -24.86
CVaR(0.05) 39.77 71.98 115.24 30.15 95.31 188.38 10.70 114.35 348.50 -41.26 -29.46 -22.76
CVaR(0.1) 39.23 69.87 112.92 31.90 92.20 183.96 11.93 116.40 352.58 -38.73 -27.90 -18.73
CVaR(0.25) 8.28 44.51 106.15 43.77 101.49 190.28 33.07 148.21 392.11 -28.79 -8.21 10.28
CVaR(0.5) 10.14 55.23 100.87 42.07 97.63 190.87 34.39 161.67 434.77 -30.61 -8.27 7.51
CVaR(0.75) 16.47 56.61 104.88 36.67 90.73 191.93 33.75 188.27 519.56 -36.02 -11.41 2.30
GMD 10.92 49.75 92.00 36.80 84.56 169.64 37.94 163.64 431.47 -27.42 -7.01 10.76
WCVaR(AGD) 12.68 51.28 95.17 38.69 85.57 174.63 35.75 163.56 442.15 -29.96 -10.83 3.11
WCVaR(AGS) 10.06 49.57 94.01 35.73 84.87 175.25 31.87 161.36 440.93 -33.07 -12.24 0.26
WCVaR(AGT) 13.00 49.68 92.37 29.69 81.21 167.96 36.93 168.97 453.65 -29.73 -9.19 8.57
WCVaR(TG2) 28.27 64.50 109.51 37.70 94.87 188.31 23.46 133.65 385.45 -34.24 -17.60 2.35
WCVaR(TG3) 21.41 59.12 100.98 38.10 90.32 177.28 31.27 150.53 404.90 -31.22 -9.27 7.78

Table 16: Out-of-sample computational results: changes in portfolios composition.
Without diversification enforcement

models 3 m. 6 m. 9 m. 12 m. 15 m. 18 m. 21 m. 24 m. 27 m. 30 m. 33 m. 36 m. 39 m.

Minimax 14 3, -1 14,-11 9,-7 10, -5 7, -6 11, -11 9, -7 13, -13 3, -6 3, -23 8, -1 3, -8
CVaR(0.05) 14 2, 0 12,-9 9,-7 10, -5 7, -6 11, -11 9, -7 13, -13 3, -6 10, -19 8, -11 7, -5
CVaR(0.1) 18 9, -9 12,-7 5,-4 8, -6 13, -12 8, -8 15, -13 2, -7 0, -24 11, -16 12, -13 8, -9
CVaR(0.25) 11 2, -1 10,-4 10,-6 8, -8 6, -6 10, -6 8, -8 12, -9 6, -5 2, -15 9, -6 6, -6
CVaR(0.5) 17 2, -3 14,-14 17,-14 9, -4 7, -5 8, -12 8, -9 10, -4 10, -10 5, -12 6, -6 4, -5
CVaR(0.75) 17 3, -5 4,-5 4,-3 7, -2 7, -6 1, -10 8, -2 6, -2 8, -10 6, -11 7, -8 3, -4
GMD 17 1, -6 7,-5 4,-3 10, -3 5, -7 4, -8 10, -4 6, -2 8, -11 5, -9 6, -5 3, -7
WCVaR(AGD) 1 0,0 0,0 0,0 0,0 0,0 14, 0 6, -4 7, -3 6, -6 4, -9 5, -4 3, -6
WCVaR(AGS) 1 0,0 0,0 0,0 0,0 0,0 15, 0 9, -4 8, -6 8, -9 5, -10 6, -5 2, -6
WCVaR(AGT) 1 0,0 0,0 0,0 0,0 0,0 16, 0 8, -5 9, -4 5, -9 5, -10 6, -2 2, -6
WCVaR(TG2) 16 7,-9 9,-9 7,-6 10,-3 7,-6 12, -9 7, -9 12, -13 1, -1 7, -13 12, -15 7, -10
WCVaR(TG3) 15 5,-2 5,-5 9,-6 9,-5 6,-5 8, -5 7, -8 7, -8 6, -5 2, -9 9, -7 4, -6

in the models behavior under such circumstances. Therefore, in order to provide a better analysis and
comparison of the proposed models when the market trend is negative and thus the risk control may be
relevant, we have decided to add some computational results on the period (2000-2002). During this
period the Italian market has shown an impressive and continuous down-turn (see Figure 3) with the
MIB30 index reaching its highest level 50467 on 10.03.2000 and its lowest level 21546 on 4.10.2002.

The following tables provide the relevant results on the analysis of the Maximum Safety Portfolios
(MSPs) selected by the different models with and without diversification enforcement using the years
2000-2001 (104 weekly returns) as in-sample period and the year 2002 as out-of-sample. As for previous
results, historical data are stock prices from Milan Stock Exchange. The new data set consists of 178
securities quoted with continuity from 2000 to 2002. The meaning of tables entries is identical to those
described in the former sections. Due to low weekly values, the mean return z has been converted on a
yearly basis.

Notice that all the models but CVaR(0.75), GMD and the Wide WCVaR models have a mean return
equal to zero. Thus, as for previous experiments, the Wide WCVaR models are still among those models
with larger mean returns. The use of constraints that force diversification improves, on average, the
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Figure 3: The Milan Stock Exchange Index (MIB30) in the years 2000–2002 (weekly quotations).

portfolios performance in terms of mean return: CVaR(0.75) shows an increase from 1.83% to 3.27%,
while some models as CVaR(0.5) and CVaR(0.25) move from null to positive values. The same effect
was not evident in the previous experiments.

Table 17 shows that with respect to portfolio diversification, the introduction of enforcement
constraints produces an evident effect only for the Minimax model and the extremal CVaR models
(CVaR(0.05) and CVaR(0.1)). As before (see Tables 4-6), the Minimax model generates some low
diversified portfolios (7 securities). In contrast to previous results the basic CVaR models are not the
most diversified: the CVaR(0.05) model has selected only 6 securities, while the CVaR(0.1) portfolio has
8 securities. Moreover, note that the Wide WCVaR models have selected rather diversified portfolios if
we compare these results with those shown in Tables 4-6. During the period 2000-2002 no security has
shown realizations with dramatically high returns, thus justifying this diversification. Finally, in only
one case, i.e. for the WCVaR(TG3) model, the diversification without enforcement is larger than that
obtained with additional forcing constraints. In the first part of Table 17 it is worth noticing that all the
selected portfolios have a maximum share exceeding 40% (but for the model WCVaR(AGD) with 38%)
and that, in two cases, namely for the models Minimax and CVaR(0.05), the maximum share is larger
than 80% and 55%, respectively. For all such models we may recommend to apply the enforcement
constraints (22) giving as result portfolios always containing at least 11 securities.

For the out-of-sample analysis the behavior of all the MSPs is examined in the 52 weeks following
the date of each portfolio selection. The nine parameters reported in Tables 18 and 19 have the same
meaning defined for previous similar tables. Again, rmin, rav , rmed and rmax are expressed on a yearly
basis and as per cent returns. Due to general market downward trend, all the portfolios show ex-post
negative average returns: the model CVaR(0.75) has the worst performance.

By comparing Table 18 with Table 19 one may notice that, on average, the introduction of diver-
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Table 17: In-sample MSPs characteristics: strong downward trend period.
without diversification with diversification

models obj. z div. shares obj. z div. shares
10−2 % # min max 10−2 % # min max

Minimax -0.212 0.00 7 2.06 10−4 0.813 -0.281 0.00 14 6.01 10−4 0.2
CVaR(0.05) -0.189 0.00 6 2.17 10−3 0.563 -0.231 0.00 11 8.83 10−4 0.2
CVaR(0.1) -0.158 0.00 8 2.38 10−4 0.450 -0.193 0.00 16 7.62 10−5 0.2
CVaR(0.25) -0.107 0.00 13 1.61 10−4 0.469 -0.129 0.11 15 2.47 10−4 0.2
CVaR(0.5) -0.065 0.00 13 1.69 10−4 0.459 -0.079 0.16 13 5.48 10−5 0.2
CVaR(0.75) -0.031 1.83 15 1.70 10−3 0.463 -0.033 3.27 19 1.83 10−3 0.2
GMD -0.050 0.10 13 2.97 10−4 0.464 -0.058 0.60 15 1.48 10−3 0.2
WCVaR(AGD) -0.039 0.50 15 2.15 10−4 0.384 -0.044 1.16 17 7.25 10−5 0.2
WCVaR(AGS) -0.044 0.25 15 1.46 10−4 0.432 -0.050 0.81 16 1.24 10−3 0.2
WCVaR(AGT) -0.043 0.34 15 1.10 10−5 0.495 -0.049 1.08 15 1.42 10−3 0.2
WCVaR(TG2) -0.131 0.00 12 7.28 10−5 0.429 -0.158 0.00 15 1.15 10−4 0.2
WCVaR(TG3) -0.093 0.00 14 1.59 10−4 0.444 -0.112 0.06 12 3.50 10−3 0.2

Table 18: Out-of-sample results for MSPs: strong downward trend period.
Max. safety Without diversification enforcement
model rmin rav rmed rmax std s-std MAD s-MAD D-DEV
Minimax -14.18 -0.93 -0.68 14.01 0.0009 0.0007 0.0006 0.0004 0.0029
CVaR(0.05) -12.81 -0.73 -0.79 13.66 0.0009 0.0006 0.0007 0.0004 0.0026
CVaR(0.1) -7.81 -0.58 -1.19 10.70 0.0008 0.0006 0.0006 0.0004 0.0016
CVaR(0.25) -10.16 -0.88 -1.11 12.93 0.0008 0.0006 0.0006 0.0004 0.0021
CVaR(0.5) -8.75 -0.68 -0.96 13.25 0.0008 0.0006 0.0006 0.0004 0.0018
CVaR(0.75) -48.42 -1.49 0.67 42.82 0.0031 0.0026 0.0021 0.0012 0.0126
GMD -9.97 -0.76 -0.61 13.21 0.0009 0.0007 0.0007 0.0004 0.0020
WCVaR(AGD) -15.44 -1.01 -0.76 14.91 0.0011 0.0009 0.0008 0.0005 0.0032
WCVaR(AGS) -12.77 -0.80 -0.33 12.44 0.0010 0.0008 0.0008 0.0005 0.0026
WCVaR(AGT) -17.13 -0.94 -0.42 14.57 0.0012 0.0010 0.0009 0.0005 0.0036
WCVaR(TG2) -7.61 -0.63 -0.59 11.56 0.0008 0.0006 0.0006 0.0004 0.0015
WCVaR(TG3) -8.98 -0.77 -1.18 12.42 0.0008 0.0006 0.0006 0.0004 0.0018

sification enforcement may result in portfolios with larger ex-post dispersion. This is especially true
for those models whose dispersion was already high without enforcement (see, for instance, the models
CVaR(0.75) and CVaR(0.5) in Table 18). When we consider the models with diversification enforcement
(Table 19), the model WCVaR(TG3) has the highest average return. As for previous computational re-
sults, the GMD model (which is the computationally most complex) is outperformed in terms of average
returns and dispersion by the Tail WCVaR models.

Tables 20 and 21 show the ex-post cumulative portfolio returns for the case without and with the
diversification enforcement, respectively. Additionally, the cumulative performances of the index MIB30
has been introduced in both tables. The weighted CVaR models show a very stable ex-post performance
always outperforming GMD model. Moreover, the Wide WCVaR models also outperform extremal
CVaR models when diversification enforcement is introduced (see Table 21). Actually, except for a short
period of strong increase of the MIB30 index, all the models outperform the index. When comparing
Table 20 to Table 21 it is evident how diversification enforcement has, on average, positively contributed
to improve all the portfolios performance with the only exception of extremal CVaR portfolios whose
performances are worsen with respect to the case without diversification.
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Table 19: Out-of-sample results for MSPs: strong downward trend period.
Max. safety With diversification enforcement
model rmin rav rmed rmax std s-std MAD s-MAD D-DEV
Minimax -22.28 -0.96 -0.50 20.97 0.0013 0.0010 0.0009 0.0005 0.0048
CVaR(0.05) -12.44 -1.23 -1.27 9.63 0.0008 0.0007 0.0006 0.0004 0.0025
CVaR(0.1) -9.78 -0.97 -1.29 9.13 0.0008 0.0006 0.0006 0.0004 0.0020
CVaR(0.25) -9.40 -0.61 -0.46 7.70 0.0008 0.0006 0.0006 0.0004 0.0019
CVaR(0.5) -12.04 -0.75 -0.59 7.89 0.0008 0.0007 0.0006 0.0004 0.0025
CVaR(0.75) -62.78 -1.96 -0.07 68.23 0.0044 0.0036 0.0030 0.0017 0.0188
GMD -13.35 -0.89 -0.32 13.77 0.0011 0.0009 0.0008 0.0005 0.0027
WCVaR(AGD) -24.45 -1.31 -0.57 22.34 0.0016 0.0013 0.0012 0.0007 0.0054
WCVaR(AGS) -15.93 -0.95 -0.31 16.85 0.0013 0.0010 0.0009 0.0006 0.0033
WCVaR(AGT) -23.55 -1.22 -0.19 21.53 0.0016 0.0013 0.0011 0.0007 0.0051
WCVaR(TG2) -10.16 -0.77 -0.55 7.96 0.0008 0.0006 0.0006 0.0004 0.0021
WCVaR(TG3) -9.82 -0.57 -0.61 8.30 0.0007 0.0006 0.0006 0.0003 0.0020

Table 20: Cumulative out-of-sample results: strong downward trend period.
Without diversification enforcement

models 4 w. 8 w. 12 w. 16 w. 20 w. 24 w. 28 w. 32 w. 36 m. 40 w. 44 w. 48 w. 52 w.

Minimax 3.35 -3.41 4.23 1.55 0.74 -3.25 -7.25 -7.97 -7.81 -10.04 -5.94 -2.94 -0.93
CVaR(0.05) 2.51 -2.99 5.89 2.72 2.21 -0.70 -4.58 -6.96 -6.81 -9.18 -5.22 -2.12 -0.73
CVaR(0.1) 0.43 -4.33 5.44 2.86 2.63 -0.18 -4.44 -6.40 -6.42 -8.71 -5.17 -1.88 -0.58
CVaR(0.25) -2.68 -8.19 -3.22 -3.62 -4.73 -5.08 -8.33 -9.31 -9.43 -13.40 -8.57 -3.29 -0.88
CVaR(0.5) -2.13 -4.90 0.22 0.22 -1.60 -2.78 -5.85 -7.69 -7.74 -12.29 -7.66 -2.79 -0.68
CVaR(0.75) 17.33 15.44 45.49 41.16 59.95 38.90 24.21 10.89 4.31 -15.59 -5.71 -1.24 -1.51
GMD -0.66 -5.09 2.02 0.76 0.76 -0.26 -4.38 -6.71 -7.36 -11.91 -7.14 -2.48 -0.76
WCVaR(AGD) 1.27 -4.44 4.99 4.13 6.31 2.31 -2.74 -5.48 -6.84 -14.40 -8.10 -3.13 -1.01
WCVaR(AGS) 1.08 -3.04 5.50 4.14 4.98 2.20 -2.73 -5.46 -6.43 -12.11 -6.90 -2.40 -0.80
WCVaR(AGT) 0.47 -3.79 4.66 3.65 5.22 3.65 -2.24 -5.68 -7.03 -13.90 -7.90 -2.69 -0.94
WCVaR(TG2) -0.36 -5.68 1.84 -0.16 -0.22 -1.59 -4.64 -6.43 -6.91 -9.72 -5.92 -2.09 -0.63
WCVaR(TG3) -2.21 -7.20 -1.09 -2.04 -2.94 -3.48 -6.82 -8.46 -8.57 -12.29 -7.67 -2.84 -0.78

MIB30 -26.71 -95.69 174.00 181.75 -45.95 -98.92 -99.43 -99.17 -98.68 -99.47 -94.31 -64.90 -26.45

The additional experimental analysis over the period 2000-2002 has allowed us to draw the following
main conclusions. First, during strongly negative market trend the weighted CVaR models have, on
average, performed better than the GMD, the Minimax and the extremal CVaR models. Actually, in
terms of cumulative returns all the models have beaten the MIB30 index performance. Second, during
strongly negative market trend the Wide WCVaR models show a more stable behavior than in positive
trend period. In the latter case they may need diversification enforcement. Generally, the diversification
enforcement turns out to be necessary and effective for all the models rather during unstable market trends
(typically characterized by quick changes of market directions, as for previous experiments) than during
strong downward periods where for some models, as for the extremal CVaR models, diversification
enforcement has made performances poorer.
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Table 21: Cumulative out-of-sample results: strong downward trend period.
With diversification enforcement

models 4 w. 8 w. 12 w. 16 w. 20 w. 24 w. 28 w. 32 w. 36 m. 40 w. 44 w. 48 w. 52 w.

Minimax -0.75 -4.82 12.72 11.80 10.55 1.85 -4.21 -7.25 -6.69 -11.67 -5.87 -2.31 -0.96
CVaR(0.05) -4.84 -9.82 -1.42 -0.97 -4.50 -8.01 -11.31 -12.39 -11.18 -16.41 -11.07 -5.25 -1.23
CVaR(0.1) -5.40 -10.72 0.10 0.42 -2.35 -8.70 -10.86 -11.93 -10.62 -15.59 -9.66 -4.33 -0.97
CVaR(0.25) -1.62 -6.07 2.01 4.28 1.91 -3.73 -6.71 -7.62 -7.01 -12.35 -6.88 -2.79 -0.61
CVaR(0.5) -2.31 -5.92 0.14 2.34 -0.97 -3.33 -6.26 -7.56 -7.33 -13.61 -8.25 -3.54 -0.75
CVaR(0.75) 29.69 22.69 82.34 78.72 117.34 63.31 43.86 23.26 11.48 -16.54 -4.62 -0.52 -2.01
GMD 0.80 -2.78 6.71 7.48 7.35 2.54 -1.51 -4.45 -5.77 -13.97 -7.52 -3.08 -0.89
WCVaR(AGD) 4.66 0.53 12.61 12.57 15.39 7.67 2.73 -2.26 -4.96 -16.82 -8.60 -3.70 -1.31
WCVaR(AGS) 2.80 -0.74 11.03 11.14 11.93 5.67 0.88 -2.62 -4.92 -14.34 -7.47 -2.93 -0.95
WCVaR(AGT) 4.61 0.71 13.05 13.34 17.08 9.66 3.25 -2.18 -4.68 -16.98 -8.45 -3.41 -1.23
WCVaR(TG2) -3.09 -7.69 1.66 3.54 -0.08 -5.82 -8.53 -9.56 -8.50 -14.06 -8.42 -3.61 -0.78
WCVaR(TG3) -1.93 -5.78 1.83 3.83 0.72 -1.63 -4.97 -6.59 -6.44 -11.68 -6.82 -2.69 -0.57

MIB30 -26.71 -95.69 174.00 181.75 -45.95 -98.92 -99.43 -99.17 -98.68 -99.47 -94.31 -64.90 -26.45

5 Concluding remarks

In this paper we have studied LP solvable portfolio optimization models based on extensions of the
Conditional Value at Risk (CVaR) measure. The models use multiple CVaR measures thus allowing for
more detailed risk aversion modeling. All the studied models are SSD consistent and may be considered
some approximations to the Gini’s mean difference with the advantage of being computationally much
simpler than the GMD model itself. Our analysis has been focused on the weighted CVaR measures
defined as simple combinations of a very few CVaR measures. We have introduced two specific types
of weights settings which relate the WCVaR measure to the Gini’s mean difference (the Wide WCVaR)
and its tail version (the Tail WCVaR). This allows us to use a few tolerance levels as only parameters
specifying the entire WCVaR measures while the corresponding weights are automatically predefined by
the requirements of the corresponding Gini’s measures.

Our experimental analysis of the models performance on the real-life data from the Milan Stock
Exchange has confirmed their attractiveness. The weighted CVaR models have usually performed better
than the GMD itself, the Minimax or the extremal CVaR models. These promising results show a need
for further comprehensive experimental studies analyzing practical performances of the weighted CVaR
models within specific areas of financial applications. It is important to notice that although the quantile
risk measures (VaR and CVaR) were introduced in banking as extreme risk measures for very small
tolerance levels (like β = 0.05), for the portfolio optimization good results have been provided by
rather larger tolerance levels. Additional experimental analysis over the period 2000-2002 with strongly
negative market trend has confirmed good achievements of the weighted CVaR models They have, on
average, performed better than the GMD, the Minimax and the extremal CVaR models. In terms of
cumulative returns all the models have outperformed the MIB30 index.

While the Tail WCVaR models have always generated well diversified portfolios, the Wide WCVaR
models require some diversification enforcement to avoid too small portfolios. Our experiments have also
confirmed effectiveness of our CVaR based technique for a direct diversification enforcement. Although,
the diversification enforcement turns out to be necessary and effective rather during unstable market
trends (typically characterized by quick changes of market directions, as for previous experiments) than
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during strong downward periods.

Appendix

The spectral risk measures have been shown to be coherent in the sense of Artzner et al. (1999). These
coherence axioms are based on the standard ‘monotonicity’ (X ≥ Y a.s. ⇒ ρ(X) ≤ ρ(Y )). Since the
measures represent the dual theory of choice (Yaari (1987)), they should also satisfy stronger monotonic-
ity related to the SSD dominance. Indeed, the following SSD consistency results can be shown.

Theorem 3 If a nonnegative real function φ on the interval [0, 1] is weakly decreasing (i.e., 0 ≤ α1 <

α2 ≤ 1 implies φ(α1) ≥ φ(α2)), then the spectral measure Mφ(x) =
1
∫

0

φ(α)F
(−1)
x (α)dα is SSD

consistent, i.e.,
R

x
′ �

SSD
R

x
′′ ⇒ Mφ(x′) ≥ Mφ(x′′).

Proof. Note that

Mφ(x′) − Mφ(x′′) =

1
∫

0

φ(α)(F
(−1)
x
′ (α) − F

(−1)
x
′′ (α))dα

and integrating by parts one gets

Mφ(x′) − Mφ(x′′) = φ(1)(F
(−2)
x
′ (1) − F

(−2)
x
′′ (1)) −

1
∫

0

(F
(−2)
x
′ (α) − F

(−2)
x
′′ (α))dφ(α) (23)

If R
x
′ �

SSD
R

x
′′ , then F

(−2)
x
′ (α) ≥ F

(−2)
x
′′ (α) for all α ∈ [0, 1] and, in particular, F

(−2)
x
′ (1)−F

(−2)
x
′′ (1) =

µ(x′) − µ(x′′) ≥ 0. Hence, due to assumed properties of function φ, one gets Mφ(x′) − Mφ(x′′) ≥ 0,
which completes the proof.

Theorem 4 If a nonnegative real function φ on the interval [0, 1] is strictly decreasing (i.e., 0 ≤ α1 <

α2 ≤ 1 implies φ(α1) > φ(α2)), then the spectral measure Mφ(x) =
1
∫

0

φ(α)F
(−1)
x (α)dα is strictly SSD

consistent, i.e.,
R

x
′ �

SSD
R

x
′′ ⇒ Mφ(x′) > Mφ(x′′).

Proof. If R
x
′ �

SSD
R

x
′′ , then F

(−2)
x
′ (α) ≥ F

(−2)
x
′′ (α) for all α ∈ [0, 1] with at least one strict inequality

for some α0 ∈ (0, 1]. Moreover, F
(−2)
x are continuous functions (Ogryczak and Ruszczyński (2002a)).

Therefore, there exist ε > 0 such that F
(−2)
x
′ (α) > F

(−2)
x
′′ (α) for all α ∈ (α0 − ε, α0]. Hence, due

to assumed properties of function φ, using (23) one gets Mφ(x′) − Mφ(x′′) > 0, which completes the
proof.
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