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Abstract

In systems which serve many users there is a need to respect some fairness rules while looking
for the overall efficiency. This applies among others to networking where a central issue is how to
allocate bandwidth to flows efficiently and fairly. The so-called Max-Min Fairness is widely used to
meet these goals. Although, allocating the bandwidth to optimize the worst performances may cause
a large worsening of the overall throughput of the network. In this paper we show how the concepts of
multiple criteria equitable optimization can be effectively used to generate various fair and efficient
allocation schemes. We introduce a multiple criteria model equivalent to equitable optimization
and we develop a corresponding reference point procedure to generate fair and efficient bandwidth
allocations. Our analysis is focused on the nominal network design for elastic traffic which becomes
recently increasingly significant. The procedure is tested on a sample network dimensioning problem
for elastic traffic and its abilities to model various preferences are demonstrated.

Key words. Multiple Criteria Optimization, Efficiency, Fairness, Equity, Reference Point Method, Re-
source Allocation, Telecommunications, Network Design, Elastic Traffic Telecommunications,

1 Introduction

Resource allocation decisions are usually concerned with the allocation of limited resources so as to
achieve the best system performances. However, in networking there is a need to respect some fair-
ness rules while looking for the overall efficiency. A fair way of distribution of the bandwidth (or
other network resources) among competing demands becomes a key issue in computer networks [3]
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and telecommunications network design, in general [16, 20]. This paper deals with problems of band-
width allocation within telecommunication networks. Therefore, we focus on the approaches that, while
allocating resources, attempt to provide a fair (equal) treatment of all the activities (demands) [9, 13].

Expanding demand on the Internet services has led to an increased role of the traffic carried by the
IP protocol in telecommunication networks. The TCP protocol is the most frequently used transport
protocol in best-effort IP networks. The data traffic carried by the TCP protocol adapts its throughput
to the amount of available bandwidth. Such traffic, called elastic traffic, is capable to use the entire
available bandwidth, but it will also be able to reduce its throughput in the presence of contending traffic.
Nowadays, the network management often faces the problem of designing networks that carry elastic
traffic. These network design problems are, essentially, the network dimensioning problems as they can
be reduced to a decision about link capacities. Flow sizes are outcomes of the design problem, since the
flows adapt to given network resources on a chosen path.

Network management must stay within a budget constraint on link bandwidth to expand network
capacities. They want to achieve a high throughput of the IP network, to increase the multiplexing gains
(due to the use of packet switching by the IP protocol). This traffic is offered only a best-effort service,
and therefore network management is not concerned with offering guaranteed levels of bandwidth to the
traffic. A straightforward network dimensioning with elastic traffic could be thought of as a search for
such network flows that will maximize the aggregate network throughput while staying within a budget
constraint for the costs of link bandwidth. However, maximizing aggregate throughput can result in ex-
tremely unfair solutions allowing even for starvation of flows for certain services. On the other extreme,
while looking at the problem from the perspective of a network user, the network flows between different
nodes should be treated as fairly as possible [2]. The so-called Max-Min Fairness (MMF) [1, 4] is widely
considered as such ideal fairness criteria. Indeed, the lexicographic max-min optimization used in the
MMF approach generalizes equal sharing at a single link bandwidth to any network while maintaining
the Pareto optimality. Certainly, allocating the bandwidth to optimize the worst performances may cause
a large worsening of the overall throughput of the network. Therefore, network management must con-
sider two goals: increasing throughput and providing fairness. These two goals are clearly conflicting, if
the budget constraint has to be satisfied.

The search for compromise solutions that do not starve network flows, and give satisfying levels
of throughput has led to the development of methods depending on maximization of the sum of the
flows evaluated with some (concave) utility function. In particular, the so-called Proportional Fairness
approach [5] maximizes the sum of logarithms of the flows. The approach has been further extended to
a parametric class of concave utility functions [11]. However, every such approach requires to build (or
to guess) a utility function prior to the analysis and later it gives only one possible compromise solution.
It is very difficult to identify and formalize the preferences at the beginning of the decision process.
Therefore, a decision support process is usually needed which attempts to gain additional preference
information interactively, allowing simultaneously the decision-maker (DM) to learn the problem during
the process with possibly evolving preferences. This can be effectively achieved with the so-called quasi-
satisficing approach to multiple criteria decision problems [22]. The best formalization of the quasi-
satisficing approach to multiple criteria optimization was proposed and developed mainly by Wierzbicki
[21] as the reference point method. The reference point method (RPM) is an interactive technique where
the DM specifies preferences in terms of aspiration levels (reference point), i.e., by introducing desired
(acceptable) levels for several criteria. The purpose of this work is to show that there exists a multiple
criteria model that allows to represent consistently the overall efficiency and fairness goals and thereby
to apply effectively the reference point methodology to the bandwidth allocation problems.

The paper is organized as follows. In the next section we formalize the network dimensioning prob-
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lem, we consider. In Section 3, basic fair solution concepts for resource allocation are related to the
multiple criteria equitable optimization theory. In Section 4, the reference point methodology is applied
to the multiple criteria allowing us to model various fair and efficient allocation schemes with simple
control parameters. Finally, in Section 5, we present some results of our initial computational experience
with this new approach.

2 The bandwidth allocation problem

The problem of network dimensioning with elastic traffic can be formulated basically as a Linear Pro-
gramming (LP) based resource allocation model as follows (Pióro and Medhi, 2004). Given a network
topology G =< V,E >, consider a set of pairs of nodes as the set I = {1, 2, . . . ,m} of services repre-
senting the elastic flow from source vs

i to destination vd
i . For each service, we have given the set Pi of

possible routing paths in the network from the source to the destination. This information can be sum-
marized in the form of binary matrices ∆e = (δeip)i∈I;p∈Pi

assigned to each link e ∈ E, where δeip = 1
if link e belongs to the routing path p ∈ Pi (connecting vs

i with vd
i ) and δeip = 0 otherwise.

For each service i ∈ I , the elastic flow from source vs
i to destination vd

i is a variable representing
the model outcome and it will be denoted by xi. This flow may be realized along various paths p ∈ Pi.
The flow may be either split among several paths or a single path must be finally selected to serve the
entire flow. Actually, the latter case of nonbifurcated flows is more commonly required. Both bifurcated
or nonbifurcated flows may be modeled as xi =

∑

p∈Pi
xip where xip (for p ∈ Pi) are nonnegative

variables representing the elastic flow from source vs
i to destination vd

i along the routing p. Although,
the single-path model requires additional multiple choice constraints to enforce nonbifurcated flows.
This can be implemented with additional binary (flow assignment) variables uip equal 1 if path p ∈ Pi

is assigned to serve flow xi and 0 otherwise. Assuming existence of some constant M upper bounding
the largest possible total flows xi, the assignment variables uip can be easily used to limit the number of
positive flows xip with the following constraints:

0 ≤ xip ≤ Muip, uip ∈ {0, 1} ∀ i ∈ I; p ∈ Pi (1)
∑

p∈Pi

uip = 1 ∀ i ∈ I (2)

The network dimensioning problem depends on allocating the bandwidth to several links in order
to maximize flows of all the services (demands). Typically, the network is already operated and some
bandwidth is already allocated (installed) and decisions are rather related to the network expansion.
Therefore, we assume that each link e ∈ E has already capacity ae while decision variables ξe represent
the bandwidth newly allocated to link e ∈ E thus expanding the link capacity to ae + ξe. Certainly, all
the decision variables must be nonnegative: ξe ≥ 0 for all e ∈ E and there are usually some bounds
(upper limits) on possible expansion of the links capacities: ξe ≤ āe for all e ∈ E. Finally, the following
constraints must be fulfilled:

∑

i∈I

∑

p∈Pi

δeipxip ≤ ae + ξe ∀e ∈ E (3)

0 ≤ ξe ≤ āe ∀e ∈ E (4)
∑

p∈Pi

xip = xi ∀i ∈ I (5)
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where (5) define the total service flows, while (3) establish the relation between service flows and links
bandwidth. The quantity ye =

∑

i∈I

∑

p∈Pi
δeipxip is the load of link e and it cannot exceed the available

link capacity.
Further, for each link e ∈ E, the cost of allocated bandwidth is defined. In the basic model of

network dimensioning it is assumed that any real amount of bandwidth may be installed and marginal
costs ce of link bandwidth is given. Hence, the corresponding link dimensioning function expressing
amount of capacity (bandwidth) necessary to meet a required link load [16] is then a linear function.
While allocating the bandwidth to several links in the network dimensioning process the decisions must
keep the cost within available budget B for all link bandwidths. Hence the following constraint must be
satisfied:

∑

e∈E

ceξe ≤ B. (6)

The model constraints (3)–(6) together with respective nonnegativity requirements define a linear pro-
gramming (LP) feasible set. They turn into Mixed Integer LP (MILP), however, if nonbifurcated flows
are enforced with discrete constraints (1)–(2).

Link modularity (bandwidth granulation) is is a common feature in communications networks [16].
Therefore, in more realistic models, for each link e ∈ E, the minimum unit of bandwidth be is assumed to
be available for allocation (installation) and ce represents the corresponding unit cost. The corresponding
link dimensioning function is then a step wise function. In the case of modular links (discrete bandwidth
units be), the installed capacity ξe must satisfy additional equation:

ξe = beze ∀e ∈ E (7)

where ze is an integer decision variable representing the number of bandwidth units installed at link e.
The model constraints (3)–(6) extended with (7) turns then into MILP feasible set even if bifurcated
flows are allowed.

In the simplified problem with linear link dimensioning function (no modularities) and dimensioning
of a completely new network (ae = 0 for all links), the cost of the entire path p for service i can be
directly expressed by the formula:

κip =
∑

e∈E

ceδeip for i = 1, . . . ,m, p ∈ Pi. (8)

The cheapest path for each service can be then easily identified and preselected. Having preselected
routing path for each demand (|Pi| = 1) one may consider variable xi directly as flow along the cor-
responding path (xi = xi1). Constraints (6) and (3) may be then treated as equations and together
with formula (8) they allow one to eliminate variables ξe, thus formulating the problem as a simplified
resource allocation model with only one constraint:

m
∑

i=1

κixi = B where κi = κi1 ∀ i ∈ I, (9)

and variables xi representing directly the decisions. Note that one cannot define directly any cost κip of
the path p ∈ Pi (similar to (8)) when some capacity is already available (ae > 0 for some e ∈ E). In other
words in the problem, we consider, the cost of available link capacity is actually nonlinear (piecewise
linear) and this results in the lack of direct formula for the path cost since it depends on possible sharing
with other paths of the preinstalled bandwidth (free capacity ae). Such a simplification is, certainly, also
impossible for a modular case, due to additional discrete constraints (7).
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The network dimensioning model can be considered with various objective functions, depending on
the chosen goal. One may consider two extreme approaches. The first extreme is the maximization of the
total throughput (the sum of flows)

∑

i∈I xi. On the other extreme, the network flows between different
nodes should be treated as fairly as possible which leads to the maximization of the smallest flow or rather
to the lexicographically expanded max-min optimization (the so-called max-min ordering) allowing also
to maximize the second smallest flows provided that the smallest remain optimal, the third smallest, etc.
This approach is widely recognized in networking as the so-called Max-Min Fairness (MMF) [1, 4] and
it is consistent with the Rawlsian theory of justice [17].

Note that in the simplified dimensioning model (with preselected paths and continuous bandwidth),
due to possible alternative formulation (9), the throughput maximization approach apparently would
choose one variable xio which has the smallest marginal cost κio = mini∈I κi and make that flow
maximal within the budget limit (xio = B/κio), while eliminating all other flows (lowering them to zero).
On the other hand, the MMF concept applied to the simplified dimensioning model (resulting in (9))
would lead us to a solution with equal values for all the flows: xi = B/

∑

i∈I κi for i ∈ I . Such allocating
the resources to optimize the worst performances may cause a large worsening of the overall (mean)
performances as the MMF throughput (mB/

∑

i∈I κi) might be considerably smaller than the maximal
throughput (B/mini∈I κi). In more realistic dimensioning models assuming bandwidth modularity or
other nonlinearities in link dimensioning function (like the existence of a free capacity ae of preinstalled
bandwidth) and nonbifurcation requirements a direct formula for a path cost is not available and the
corresponding solutions are not so clear. Nevertheless, the main weaknesses of the above solutions
remain valid. The throughput maximization can always result in extremely unfair solutions allowing even
for starvation of certain flows while the MMF solution may cause a large worsening of the throughput
of the network. In an example built on the backbone network of a Polish ISP, it turned out that the
throughput in a perfectly fair solution could be less than 50% of the maximal throughput [14].

Network management may be interested in seeking a compromise between the two extreme ap-
proaches discussed above. One of possible solutions depends on maximization of the sum of the flows
evaluated with some (concave) utility function

∑

i∈I Ui(xi). A parametric class of utility functions [11]:

Ui(xi, α) =

{

x1−α
i /(1 − α) if α 6= 1

log(xi) if α = 1

may be used for this purpose generating various solution concepts for α ≥ 0. In particular, for α = 0 one
gets the throughput maximization which is the only linear criterion within the entire class. For α = 1,
it represents the Proportional Fairness approach [5] that maximizes the sum of logarithms of the flows
while it converges to the MMF with α tending to the infinity. However, every such approach requires to
build (or to guess) a utility function prior to the analysis and later it gives only one possible compromise
solution. It is very difficult to identify and formalize the preferences at the beginning of the decision
process. Moreover, apart from the trivial case of throughput maximization all the utility functions that
really take into account any fairness preferences are nonlinear. Nonlinear objective functions applied to
the MILP models we consider results in computationally hard optimization problems. In the following,
we shall describe an approach that allows to search for such compromise solutions with multiple linear
criteria rather than the use nonlinear objective functions.
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3 Fair allocations and equitable efficiency

The bandwidth allocation problem, we consider, may be viewed as a special case of general resource
allocation problem where a set I of m services is considered and for each service i ∈ I , its measure of
realization xi is a function xi = fi(ξ) of the allocation pattern ξ ∈ A. This function, called the individual
objective function, represents the outcome (effect) of the allocation pattern for service i. In applications,
we consider, the measure expresses the service flow and a larger value of the outcome means a better
effect (higher service quality or client satisfaction). This leads us to a vector maximization problem:

max {(x1, x2, . . . , xm) : x ∈ Q} (10)

where Q = {(x1, . . . , xm) : xi = fi(ξ) for i ∈ I, ξ ∈ A} denotes the attainable set for outcome
vectors x. For the network dimensioning problems, we consider, the set Q is an MILP feasible set defined
by basic constraints (1)–(6) with additional discrete constraints (7) in the case of modular bandwidth.

Model (10) only specifies that we are interested in maximization of all outcomes xi for i ∈ I . In order
to make it operational, one needs to assume some solution concept specifying what it means to maximize
multiple outcomes. The solution concepts are defined by properties of the corresponding preference
model within the outcome space. The commonly used concept of the Pareto-optimal solutions, as feasible
solutions for which one cannot improve any criterion without worsening another, depends on the rational
dominance �r which may be expressed in terms of the vector inequality: x

′ �r x
′′ iff x′

i ≥ x′′
i for all

i ∈ I .
The concept of fairness has been studied in various areas beginning from political economics prob-

lems of fair allocation of consumption bundles to abstract mathematical formulation [18]. In order to
ensure fairness in a system, all system entities have to be equally well provided with the system’s ser-
vices. This leads to concepts of fairness expressed by the equitable rational preferences [12, 6]. First of
all, the fairness requires impartiality of evaluation, thus focusing on the distribution of outcome values
while ignoring their ordering. That means, in the multiple criteria problem (10) we are interested in
a set of outcome values without taking into account which outcome is taking a specific value. Hence,
we assume that the preference model is impartial (anonymous, symmetric). In terms of the preference
relation it may be written as the following axiom

(xτ(1), xτ(2), . . . , xτ(m)) ∼= (x1, x2, . . . , xm) (11)

for any permutation τ of I . Further, fairness requires equitability of outcomes which causes that the
preference model should satisfy the (Pigou–Dalton) principle of transfers. The principle of transfers
states that a transfer of any small amount from an outcome to any other relatively worse–off outcome
results in a more preferred outcome vector. As a property of the preference relation, the principle of
transfers takes the form of the following axiom

xi′ > xi′′ ⇒ x− εei′ + εei′′ � x for 0 < ε < xi′ − xi′′ (12)

The rational preference relations satisfying additionally axioms (11) and (12) are called hereafter fair
(equitable) rational preference relations. We say that outcome vector x

′ fairly dominates x
′′ (x′ �e x

′′),
iff x

′ � x
′′ for all fair rational preference relations �. An allocation pattern ξ ∈ A is called fairly

(equitably) efficient if x = f(ξ) is fairly nondominated. Note that each fairly efficient solution is also
Pareto-efficient, but not vice verse.

The theory of majorization [10] includes the results which allow us to express the relation of fair
(equitable) dominance as a vector inequality on the cumulative ordered outcomes [6]. This can be
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mathematically formalized as follows. First, introduce the ordering map Θ : Rm → Rm such that
Θ(x) = (θ1(x), θ2(x), . . . , θm(x)), where θ1(x) ≤ θ2(x) ≤ · · · ≤ θm(x) and there exists a permu-
tation τ of set I such that θi(x) = xτ(i) for i = 1, . . . ,m. Next, apply to ordered outcomes Θ(x), a
linear cumulative map thus resulting in the cumulative ordering map Θ̄(x) = (θ̄1(x), θ̄2(x), . . . , θ̄m(x))
defined as

θ̄i(x) =

i
∑

j=1

θj(x) for i = 1, . . . ,m (13)

The coefficients of vector Θ̄(x) express, respectively: the smallest outcome, the total of the two smallest
outcomes, the total of the three smallest outcomes, etc. The theory of majorization allow us to derive the
following theorem [6].

THEOREM 3.1 Outcome vector x
′ fairly dominates x

′′, if and only if θ̄i(x
′) ≥ θ̄i(x

′′) for all i ∈ I where
at least one strict inequality holds.

Note that Theorem 3.1 permits one to express fair solutions of problem (10) as Pareto-efficient solu-
tions to the multiple criteria problem with objectives Θ̄(x)

max {(η1, η2, . . . , ηm) : ηi = θ̄k(x) for k = 1, . . . ,m, x ∈ Q} (14)

For better understanding of the multiple criteria problem (14), one may consider normalized objective
functions µk(x) = θ̄k(x)/k thus representing for each k the mean of the k smallest outcomes, called the
worst conditional mean [13]. Note that the last (m–th) objective in problem (14) represents the sum of
outcomes thus corresponding to throughput maximization. Simple maximin optimization corresponds to
maximization of the first objective in (14). The complete MMF solution concept represents the lexico-
graphic approach to multiple criteria in (14):

lexmax {(η1, η2, . . . , ηm) : ηi = θ̄k(x) for k = 1, . . . ,m, x ∈ Q}

While the MMF is only a specific (extreme) solution concept, the entire multiple criteria problem (14)
may serve as a source of various fairly efficient allocation schemes. Moreover, although the definitions
of quantities θ̄k(x) are very complicated, they can be modeled with simple auxiliary constraints. Let us
notice that for any given vector x, the quantity θ̄k(x) is defined by the following LP problem:

θ̄k(x) = min
m

∑

i=1

xiuki

s.t.
m

∑

i=1

uki = k, 0 ≤ uki ≤ 1 for i = 1, . . . ,m.

(15)

Exactly, the above problem is an LP for a given outcome vector x while it begins nonlinear for a variable
x. This difficulty can be overcome by taking advantages of the LP dual to (15):

θ̄k(x) = max kt −

m
∑

i=1

di

s.t. t − xi ≤ di, di ≥ 0 for i = 1, . . . ,m

(16)

where t is an unrestricted variable while nonnegative variables di represent, for several outcome values
xi, their downside deviations from the value of t [15].
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Formula (16) allows us to formulate problem (14) as follows:

max (η1, η2, . . . , ηm) (17)

subject to x ∈ Q

ηk = ktk −

m
∑

i=1

dik for k = 1, . . . ,m (18)

tk − dik ≤ xi, dik ≥ 0 for i, k = 1, . . . ,m (19)

Note that problem (17)–(19) adds only linear constraints to the original attainable set Q. Hence, for
the basic network dimensioning problems with the set Q defined by constraints (1)–(6), the resulting
formulation (17)–(19) remains in the class of (multiple criteria) MILP. The same applies to the modular
dimensioning model with additional constraints (7). For the simplified LP model (3)–(6) with flows
bifurcation allowed and continuous bandwidth the multiple criteria formulation (17)–(19) remains in the
class of (multiple criteria) LP.

Although defined with simple linear constraints, the expanded model (17)–(19) introduces m2 addi-
tional variables and inequalities. This may cause a serious computational burden for real-life network
dimensioning problems. Note that the number of services (traffic demands) corresponds to the number
of ordered pairs of network nodes which is already square of the number of nodes |V |. Thus, finally
the expanded multiple criteria model introduces |V |4 variables and constraints which means polynomial
but fast growth and can be not acceptable for larger networks. For instance, rather small backbone net-
work of Polish ISP [14], we analyze in Section 5, consists of 12 nodes which leads to 132 elastic flows
(m = 132) resulting in 17 424 constraints (19) and the same number of deviational variables dik. In
order to reduce the problem size one may attempt the restrict the number of criteria in the problem (14).

Let us consider a sequence of indices K = {k1, k2, . . . , kq}, where 1 = k1 < k2 < . . . < kq−1 <
kq = m, and the corresponding restricted form of the multiple criteria model (14):

max {(ηk1
, ηk2

, . . . , ηkq
) : ηk = θ̄k(x) for k ∈ K, x ∈ Q} (20)

with only q < m criteria. Following Theorem 3.1, multiple criteria model (14) allows us to generate any
fairly efficient solution of problem (10). Reducing the number of criteria we restrict these opportunities.
Nevertheless, one may still generate reasonable compromise solutions. First of all the following assertion
is valid.

THEOREM 3.2 If xo is an efficient solution of the restricted problem (20), then it is an efficient (Pareto-
optimal) solution of the multiple criteria problem (10) and it can be fairly dominated only by another
efficient solution x

′ of (20) with exactly the same values of criteria: θ̄k(x
′) = θ̄k(x

o) for all k ∈ K .

Proof. Suppose, there exists x
′ ∈ Q which dominates x

o. This means, x′
i ≥ xo

i for all i ∈ I with at least
one inequality strict. Hence, θ̄k(x

′) ≥ θ̄k(x
o) for all k ∈ K and θ̄kq

(x′) > θ̄kq
(xo) which contradicts

efficiency of x
o within the restricted problem (20).

Suppose now that x′ ∈ Q fairly dominates x
o. Due to Theorem 3.1, this means that θ̄i(x

′) ≥ θ̄i(x
o)

for all i ∈ I with at least one inequality strict. Hence, θ̄k(x
′) ≥ θ̄k(x

o) for all k ∈ K and any strict
inequality would contradict efficiency of x

o within the restricted problem (20). Thus, θ̄k(x
′) = θ̄k(x

o)
for all k ∈ K which completes the proof. 2

It follows from Theorem 3.2 that while restricting the number of criteria in the multiple criteria
model (14) we can essentially still expect reasonably fair efficient solution and only unfairness may be

8



Institute of Control & Computation Engineering Report 05-02

related to the distribution of flows within classes of skipped criteria. In other words we have guaranteed
some rough fairness while it can be possibly improved by redistribution of flows within the intervals
(θkj

(x), θkj+1
(x)] for j = 1, 2, . . . , q − 1. Since the fairness preferences are usually very sensitive for

the smallest flows, one may introduce a grid of criteria 1 = k1 < k2 < . . . < kq−1 < kq = m which
is dense for smaller indices while sparser for lager indices and expect solution offering some reasonable
compromise between fairness and throughput maximization. In our computational analysis on the net-
work with 132 elastic flows (Section 5) we have preselected 24 criteria including 12 the smallest flows.
Note that any restricted model contains criteria θ̄1(x) = mini∈I xi and θ̄m(x) =

∑

i∈I xi among others.
Therefore, it is more detailed than any bicriteria combination of max-min and throughput maximization.

4 Multiple criteria analysis

Following the equitable optimizations results discussed in the previous section, we may generate various
fairly efficient bandwidth allocation patterns as efficient solutions of the multiple criteria problem:

max (ηk)k∈K (21)

subject to x ∈ Q

ηk = ktk −
∑

i∈I

dik for k ∈ K (22)

tk − dik ≤ xi, dik ≥ 0 for i ∈ I, k ∈ K (23)

where K ⊆ I and the attainable set Q is defined by constraints (1)–(6) and possibly (7) in the case of
bandwidth modularity. Exactly, in the case of the complete multiple criteria model (K = I), according
to Theorem 3.1, all fairly efficient allocations can be found as efficient solutions to (21)–(23) while in the
case of restricted set of criteria K ⊂ I some minor unfairness related to the distribution of flows within
classes of skipped criteria may occur (Theorem 3.2).

The simplest way to model a large gamut of fairly efficient allocations may depend on the use some
combinations of criteria (ηk)k∈K . In particular, for the weighted sum with weights wk > 0

∑

k∈K

wkηk =
∑

k∈K

wkθ̄k(x) =
∑

i∈I

viθi(x)

one apparently gets the so–called Ordered Weighted Averaging (OWA) [23] with weights vi =
∑

k∈K:k≥i wk (i ∈ I). If the weights vi are strictly decreasing, i.e. in the case of full model (K = I),
each optimal solution corresponding to the OWA maximization is a fair (fairly efficient) solution of (10)
while the fairness among flows within classes of equal weights vi (of skipped criteria) may be some-
times improved. Moreover, in the case of LP models, as the simplified network dimensioning (3)–(6),
every fairly efficient allocation scheme can be identified as an OWA optimal solution with appropriate
strictly monotonic weights [6]. Several decreasing sequences of weights provide us with various aggre-
gations. Indeed, our earlier experience with application of the OWA criterion to the simplified problem
of network dimensioning with elastic traffic [14] showed that we were able to generate easily alloca-
tions representing the classical fairness models. On the other hand, in order to find a larger variety of
new compromise solutions we needed to incorporate some scaling techniques originating from the ref-
erence point methodology. Better controllability and the complete parameterization of nondominated
solutions even for non-convex, discrete problems can be achieved with the direct use of the reference
point methodology.
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The reference point method was introduced by Wierzbicki [21] and later extended leading to efficient
implementations of the so-called aspiration/reservation based decision support (ARBDS) approach with
many successful applications [8, 22]. The ARBDS approach is an interactive technique allowing the DM
to specify the requirements in terms of aspiration and reservation levels, i.e., by introducing acceptable
and required values for several criteria. Depending on the specified aspiration and reservation levels, a
special scalarizing achievement function is built which may be directly interpreted as expressing utility
to be maximized. Maximization of the scalarizing achievement function generates an efficient solution
to the multiple criteria problem. The solution is accepted by the DM or some modifications of the
aspiration and reservation levels are introduced to continue the search for a better solution. The ARBDS
approach provides a complete parameterization of the efficient set to multi-criteria optimization. Hence,
when applying the ARBDS methodology to the ordered cumulated criteria in (14), one may generate all
(fairly) equitably efficient solutions of the original resource allocation problem (10).

While building the scalarizing achievement function the following properties of the preference model
are assumed. First of all, for any individual outcome ηk more is preferred to less (maximization). To
meet this requirement the function must be strictly increasing with respect to each outcome. Second,
a solution with all individual outcomes ηk satisfying the corresponding reservation levels is preferred
to any solution with at least one individual outcome worse (smaller) than its reservation level. Next,
provided that all the reservation levels are satisfied, a solution with all individual outcomes ηk equal
to the corresponding aspiration levels is preferred to any solution with at least one individual outcome
worse (smaller) than its aspiration level. That means, the scalarizing achievement function maximization
must enforce reaching the reservation levels prior to further improving of criteria. In other words, the
reservation levels represent some soft lower bounds on the maximized criteria. When all these lower
bounds are satisfied, then the optimization process attempts to reach the aspiration levels.

The generic scalarizing achievement function takes the following form [21]:

σ(η) = min
k∈K

{σk(ηk)} + ε
∑

k∈K

σk(ηk) (24)

where ε is an arbitrary small positive number and σk, for k ∈ K , are the partial achievement functions
measuring actual achievement of the individual outcome ηk with respect to the corresponding aspiration
and reservation levels (ηa

k and ηr
k, respectively). Thus the scalarizing achievement function is, essentially,

defined by the worst partial (individual) achievement but additionally regularized with the sum of all
partial achievements. The regularization term is introduced only to guarantee the solution efficiency in
the case when the maximization of the main term (the worst partial achievement) results in a non-unique
optimal solution.

The partial achievement function σk can be interpreted as a measure of the DM’s satisfaction with the
current value (outcome) of the k-th criterion. It is a strictly increasing function of outcome ηk with value
σk = 1 if ηk = ηa

k , and σk = 0 for ηk = ηr
k. Thus the partial achievement functions map the outcomes

values onto a normalized scale of the DM’s satisfaction. Various functions can be built meeting those
requirements [22]. We use the piece wise linear partial achievement function introduced in [12]. It is
given by

σk(ηk) =







γ(ηk − ηr
k)/(η

a
k − ηr

k), for ηk ≤ ηr
k

(ηk − ηr
k)/(η

a
k − ηr

k), for ηr
k < ηk < ηa

k

β(ηk − ηa
k)/(ηa

k − ηr
k) + 1, for ηk ≥ ηa

k

(25)

where β and γ are arbitrarily defined parameters satisfying 0 < β < 1 < γ. This partial achieve-
ment function is strictly increasing and concave which guarantees its LP computability with respect to
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outcomes ηk.
Recall that in our model outcomes ηk represent cumulative ordered flows xi, i.e. ηk =

∑k
i=1 θi(x).

Hence, the reference vectors (aspiration and reservation) represent, in fact, some reference distributions
of outcomes (flows). Moreover, due to the cumulation of outcomes, while considering equal flows φ as
the reference (aspiration or reservation) distribution, one needs to set the corresponding levels as ηk =
kφ. Certainly, one may specify any desired reference distribution in terms of the ordered values of the
flows (quantiles in the probability language) φ1 ≤ φ2 ≤ . . . ≤ φm and cumulating them automatically
get the reference values for the outcomes ηk representing the cumulated ordered flows. However, such
rich modeling technique may be too complicated to control effectively the search for a compromise
solution. Therefore, we rather consider to begin the search with a simplified approaches based on the
reference flow distribution given as a linear sequence φk = φ1(1 + (k − 1)r) with the (relative) slope
coefficient r thus leading to the cumulated reference levels increasing quadratically θ̄k(φ) = φ1k(2 +
(k − 1)r)/2. Although, special meaning of the the last (throughput) criterion should be rather operated
independently from the others. Such an approach to control the the search for a compromise fair and
efficient bandwidth allocation has been confirmed by the computational experiments as described in the
following section.

5 Computational examples

The reference distribution approach described in preceding sections have been tested on a sample net-
work dimensioning problem with elastic traffic. Recall that in the case of elastic traffic, the outcome of
the network dimensioning procedure are the capacities of links in a given network, and that the flows will
adapt to the bandwidth available on the links in the designed network. The input to a network dimen-
sioning problem with elastic traffic consists of a network topology, of pairs of nodes that specify sources
and destinations of flows, of sets of network paths that could be used for each flow, and of optional con-
straints on the capacities of links or on flow sizes. The user must also specify a budget for purchasing
link capacity (B in (6)), prices of a unit of link capacity (possibly different for each link, ce in (6)), and
may specify module sizes and prices for a link. The given network topology may contain information
about preinstalled link capacities (ae in (3)): the budget is then spent on additional link capacities that
extend the present capacity of a link.

Figure 1: Sample network topology patterned after the backbone network of Polish ISP.
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The network topology of the presented problem (Fig. 1) is patterned after the backbone network of
a Polish ISP [14]. The network consists of 12 nodes and 18 links. Flows between any pair of different
nodes have been considered (i.e., 144 − 12 = 132 flows). For each flow, two alternative paths have
been specified that could be used for transport. All information of a flow had to travel along one of the
paths (nonbifurcation formulation (1)–(2)). All links have unit costs equal to one, and the budget for link
bandwidth is B = 1000. Since all links have equal costs of one, path cost are equal to the path length (1,
2, 3 or 4 for the shortest paths in the example topology). All flows are unbounded. However, it is clear
that due to the budget constraint no flow can exceed B.

In [14], a simplified LP model has been studied without additional constraints on link capacity, with a
limitation that flows could only use the shortest path, and with equal link costs, since in such a case it was
simple to understand the best choices with respect to fairness and overall throughput. However, for such a
problem it is also simple to calculate the solution obtained by the two other methods used in literature for
allocation problems with fairness objectives: max-min fairness and proportional fairness. Indeed, in [14]
we have calculated these solutions and have shown the appropriate OWA aggregations allows us to obtain
similar results. Additionally, using the OWA criterion, it was possible to obtain a spectrum of alternative
solutions and to control the results using intuitive parameters. Here, we focus on two extensions of the
problem studied in [14] that are too complex for a simple application of proportional fairness or max-min
fairness. To apply either of these methods to the discussed problem extensions, it would be necessary to
solve a nonlinear optimization problem or a sequence of MILP problems with changing constraints. The
proposed problem modifications also make the studied models more practical and realistic.
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Figure 2: Flows distributions for varying throughput reservation with r = 0.02.

The first studied extension allowed flows to choose one of two paths for transport (1)–(2), added
constraints that limited the capacity of certain links from above and added free link capacity for certain
links (3). The intention behind the modification has been to model a situation when the network operator
wishes to extend the capacity of an existing network. In this network, certain links cannot be upgraded
beyond a certain values to the use of legacy technologies, due to prohibitive costs or administrative
reasons (for instance, it may be cheap to use already installed fiber that has not been in use before, but it
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may be prohibitively expensive to install additional fiber). The existence of free link capacity and of link
capacity constraints may be the reason for choosing alternative paths for certain flows.

Additionally, a modular version of the original problem has been considered. In the second problem
modification, flows were still limited to shortest paths, and no constraints on link capacities have been
added. The size of a link capacity module was set to 5. For each link, an integer variable has been
introduced (thus there are 18 integer variables in the modular version of the model). Modular link
capacities are frequently encountered in networks, when it is simple to upgrade a link by installing an
equipment module (like a new ATM card).
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Figure 3: Flows distributions for varying throughput reservation with r = 0.03.

In [14], we have used all criteria ηk in the model, with the result that the linear program had to contain
a large number of constraints (1322). Here, we have limited the number of criteria ηk to 24, by choosing
only the indices 1, 2, 3, . . . , 9, 10, 11, 12, 18, 24, 30, 36, 48, 60, 72, . . . , 120, 132 from the full set of all
indices. As a result, the computation time has dropped from around one hour for each problem to the
order of seconds. At the same time, the ability to control the outcomes using the reservation levels has
not deteriorated; we were able to obtain similar results with the reduced set of criteria as with the full set.

For all model versions, the final input to the model consisted of the reservation and aspiration levels
for the sums of ordered criteria. For simplicity, all aspiration levels were set close to the optimum values
of the criteria, and only reservation levels were used to control the outcome flows. One of the most
significant parameters was the reservation level for the sum of all criteria (the network throughput). This
value denoted by ηr

m was selected (varying) separately from the other reservation levels. All the other
reservation levels were formed following the linearly increasing sequence of the ordered values with
slope (step) r and where the reservation level for minimal flow was taken φ1 = 1. Hence, for the final
criteria ηk = θ̄k(x) representing the sums of ordered outcomes in model (17)–(19), the sequence of
reservation levels increased quadratically (except from the last one). Thus, the three parameters have
been used to define the reference distribution but we have managed to identify various fair and efficient
allocation patterns by varying only two parameters: the reservation level ηr

m for the total throughput and
the slope r for the linearly increasing sequence.

13



Institute of Control & Computation Engineering Report 05-02

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

S
um

 o
f k

 s
m

al
le

st
 fl

ow
s

k

1
2
3
4
5
6
7

throughput reservation 500 (1)
throughput reservation 600 (2)
throughput reservation 700 (3)
throughput reservation 800 (4)
throughput reservation 900 (5)
throughput reservation 1000 (6)
throughput reservation 1100 (7)

Figure 4: Flows distributions for varying throughput reservation with r = 0.04.

In the first experiment, we have used the first model extension that introduced alternative paths for
flows, free link capacity and upper limits on capacity for certain links. For certain links, free link capacity
was set to values from 5 to 20, and the upper limit on the capacity of certain links was set to 20. Due to the
presence of free link capacity and upper limits on link capacity, the MILP solver found solutions where
certain flows had to use alternative paths rather than shortest paths. These flows were more expensive
than other flows that were allowed to use their shortest paths. Recall that we have used a single-path
formulation, meaning that the entire flow had to be switched to the alternative path. Flows could not be
split, which is consistent with several traffic engineering technologies used today.

In the experiment, the reservation level ηr
m and the slope r have been used to search for compromise

solutions that traded off fairness against efficiency. The throughput reservation has been varied from 500
to 1100. As ηr

m increases, the cheaper flows receive more throughput at the expense of more expensive
(longer) flows. For values of ηr

m above 1100, some flows were starved, and therefore these outcomes
were not considered further.

The linear increase of the other reservation levels was varied as well. The parameter r could have
values of: 0.02, 0.03 and 0.04. The results of the experiment are shown in Fig. 2–4 with the corre-
sponding absolute Lorenz curves [7]. The figures present plots of cumulated ordered flows θ̄k(x) versus
number k (rank of a flow in ordering according to flow throughput) which means that the normalizing
factor 1/m = 1/132 has been ignored (for both the axes). The total network throughput is represented
in the figures by the altitude of the right end of the curve (θ̄132(x)). A perfectly equal distributions of
flows would be graphically represented by an ascending line of constant slope.

Note that under moderate throughput requirements, as r increases, the medium flows gain at the
expense of the larger ones thus enforcing more equal distribution of flows (one may observe flattening
of the curves). On the other hand, with higher throughput reservations the larger flows are protected by
this requirement and increase of r causes that the medium flows gain at the expense of the smallest flows
(one may observe convexification of the curves). For values of r higher that 0.04, the increase of the
throughput reservation resulted in flow starvation.
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Observe from Fig. 4 that for ηr
m = 1100 (and for some other values of ηr

m), the boundary between
the largest flows (part of the Lorenz curve with the highest slope) and the second-largest flows is not
sharp. The change of slope is gradual, resembling a round knee. The reason for this is the presence
of three flows that should receive the same amount of throughput as the largest flows, since they are
all transported on paths of the length of 1, but cannot due to the presence of upper constraints on link
capacities. These flows receive as much as they can, but some capacity is left for other flows that must
travel on the same constrained link. Here the model violates fairness in the attempt to get a higher total
network throughput.

Also, note on the same figure that the boundary between the smallest flows for ηr
m = 500 and for

ηr
m = 1100 is not in the same position. The reason for this is once again the upper constraint on link

capacities. For ηr
m = 500, there are 8 flows that should be in the middle group of flows but cannot,

since flows in the middle group receive so much throughput that the constraints on link capacity would
be violated. Therefore, these flows are downgraded to the group of smallest flows and receive the same
amount of throughput as the smallest flows – here the model preserves fairness.
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Figure 5: Varying throughput reservation with r = 0.02 for the model with bandwidth modularity.

Note that the throughput reservation was effectively used to find outcomes with the desired network
throughput. On the other hand, especially for large throughput reservations, the optimization procedure
automatically found outcomes that divided flows into four categories according to their path costs. This
shows that the presented methodology is cost-aware, and that it is possible to guarantee fairness to all
flows with the same path cost (if link capacity constraints do not interfere). For the lowest throughput
reservation of ηr

m = 500 and r = 0.04, the outcome was close to a perfectly fair distribution. Using the
methodology described in this paper, the user can choose from a large number of different outcomes and
control the trade-off between fairness and efficiency.

For the second experiment we used a slightly different dimensioning problem specification. Namely,
we included the modular link capacities (7) into the model while eliminating the routing decisions by
restriction of all service flows to the corresponding shortest paths. Thus, the model was still in the
class of MILP but with different discrete structure. We have repeated a search for compromise solutions
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using similar preference parameter configurations as in the first experiment, although taking into account
the constraints on modular bandwidth, the throughput reservation has been varied from 450 to 800.
The resulting flows distributions for the reservation slope parameter r = 0.02 are presented in Fig. 5.
Predictably, the introduction of modular link capacities makes it more difficult to find fair solutions.
The outcome for ηr

m = 450 is close to a perfectly even (fair) distribution, although the right end of
the curve turns slightly upward. This indicates that the excess capacities of modules were used by the
cheapest flows, leading to a higher network throughput than in the case of a problem without modular
link capacities. On the other hand the flows with the cheapest paths were not equal for some outcomes.

Overall, the two experiments on the sample network topology demonstrated the versatility of the
described methodology for equitable optimization. The use of reservation levels, controlled by a small
number of simple parameters, allowed us to search for solutions best fitted to various possible preferences
of a network designer. Using appropriate reference point based procedure, one should be able easily find
a satisfactory fair and efficient allocation pattern in a few interactive steps.

6 Concluding remarks

A central issue in networking is how to allocate bandwidth to flows efficiently and fairly. The so-called
Max-Min Fairness is widely used to meet these goals. Allocating the resources to optimize the worst per-
formances may cause a large worsening of the overall (mean) performances. Therefore, several other fair
allocation schemes are searched and analyzed. Our earlier computational experiments with application
of the OWA criterion to the (simplified) LP problem of network dimensioning with elastic traffic [14]
showed that we were able to generate easily allocations representing the classical fairness models. On
the other hand, in order to find a larger variety of new compromise solutions we needed to incorporate
some scaling techniques originated from the reference point methodology. Actually it is a common flaw
of the weighting approaches that they provide poor controllability of the preference modeling process
and in the case of multiple criteria problems with discrete (or more general nonconvex) feasible sets, they
may fail to identify several compromise efficient solutions [19].

In standard multiple criteria optimization, good controllability and the complete parameterization of
nondominated solutions can be achieved with the direct use of the reference point methodology. While
looking for fairly efficient bandwidth allocation the reference point methodology can be applied to the
cumulated ordered outcomes. Our initial experiments with such an approach to the problem of network
dimensioning with elastic traffic have confirmed the theoretical advantages of the method. We were able
able to generate easily various (compromise) fair solutions for both continuous and modular problems
despite the search for fairly efficient compromise solutions was controlled by only two parameters. One
of these parameters was a reservation level for the network throughput. The second parameter allowed
the network designer to control the difference in throughputs of cheaper and more expensive flows. Still,
flows with the same cost were always treated fairly. Moreover, the obtained solutions divided flows
into categories determined by flow cost. For modular solutions, the cheapest flows consumed the excess
link capacity. These characteristics demonstrate that the model is cost-aware and fulfills the axioms of
equitable optimization.
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Appendix

We have also tested an alternative scheme of the preference modeling within our reference point method
implementation. Namely, we analyzed the initial scheme (see Section 4) based on the reference flow
distribution given as a linear sequence φk = φ1(1 + (k − 1)r) with the (relative) slope coefficient r
thus leading to the cumulated reference levels increasing quadratically θ̄k(φ) = φ1k(2 + (k − 1)r)/2 is
strictly implemented. The sequence was applied to construct all the reservation levels including η r

1 for
the minimum flow and ηr

m for the network throughput. Although the value of ηr
m, due to the represented

throughput criterion, had to be selected (varying) directly. Therefore, all the other reservation levels were
formed according to the linearly increasing sequence of the ordered values with slope (step) r where the
reservation level for the minimal flow φ1 had allocated a value guaranteeing that ηr

m = φ1m(2 + (m −
1)r)/2. Thus, the two parameters have been used to define the reference distribution: the reservation
level ηr

m for the total throughput and the slope r for the linearly increasing sequence but (opposite to the
scheme from Section 5) φ1 has not been fixed.
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Figure 6: Results for varying throughput reservation with r = 0.02 defining all other reservations.

We have applied this preference model to the first bandwidth allocation problem consisted of the
single paths requirements, free link capacity and upper limits on capacity for certain links. The results of
the experiment with r = 0.02 and varying ηr

m are shown in Fig. 6 with the corresponding absolute Lorenz
curves. As ηr

m increases, the cheaper flows receive more throughput at the expense of more expensive
(longer) flows. It turned out that except from relatively minor throughput requirements (values 500 to
700), increasing values of ηr

m introduced significant inequity among flows and numerous flows were
starved. Similar solutions appeared for for various values of r. Therefore, we have abandon such a two
parameter control scheme and we have decided that the throughput criterion should be rather operated
independently from the others. Such an approach to control the search for a compromise fair and efficient
bandwidth allocation has been confirmed by the computational experiments as described in Section 5.
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