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Abstract

While making location decisions, the distribution of distances (effects) among the service
recipients (clients) is an important issue. In order to comply with the minimization of
distances as well as with an equal consideration of the clients, the concept of equitable
efficiency should be used for the location model. The concept is based on extension of the
standard efficiency concept with the Pigou-Dalton equity theory and it is mathematically
equivalent to the stochastic dominance. Although rich with equitably efficient preference
models, these approaches do not offer simple solution generation tools. Therefore, rather
simplified mean-equity approaches are considered which quantify the problem in a lucid
form of only two criteria: the mean, representing the mean outcome, and the equity: a
scalar measure of the inequality of outcomes The mean-equity model is appealing to decision
makers and allows a simple trade-off analysis, analytical or geometrical. On the other hand,
for typical dispersion parameters used as inequality measures, the mean-equity approach may
lead to inferior conclusions. Several inequality measures, however, can be combined with the
mean itself into the optimization criteria generalizing the concept of the worst outcome
and generating equitably consistent underachievement measures. In this paper we introduce
general conditions for inequality measures sufficient to provide the equitable consistency of
the corresponding underachievement measures.

Key Words. Location, Multiple Criteria, Efficiency, Equity, Fairness, Inequality Measures.

1 Introduction

The spatial distribution of public goods and services is influenced by facility location decisions
and the issue of equity (or fairness) is important in many location decisions. Equity is usually
quantified with the so–called inequality measures to be minimized. Inequality measures were
primarily studied in economics (Atkinson, 1970; Sen, 1973; Young, 1994). The simplest inequal-
ity measures are based on the absolute measurement of the spread of outcomes. Variance is the
most commonly used inequality measure of this type and it was also widely analyzed within
various location models (Maimon, 1986; Berman, 1990; Carrizosa, 1999). However, Marsh and
Schilling (1994) describe twenty different measures proposed in the literature to gauge the level
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of equity in facility location alternatives. In economics one usually considers relative inequality
measures normalized by mean outcome. Among many inequality measures perhaps the most
commonly accepted by economists is the Gini index (Lorenz measure), which has been also ana-
lyzed in the location context (Berman and Kaplan, 1990; Erkut 1993; Mandell, 1971). One can
easily notice that a direct minimization of typical inequality measures (especially relative ones)
contradicts the minimization of individual outcomes. As noticed by Erkut (1993), it is rather
a common flaw of all the relative inequality measures that while moving away from the clients
to be serviced one gets better values of the measure as the relative distances become closer to
one–another. As an extreme, one may consider an unconstrained continuous (single–facility)
location problem and find that the facility located at (or near) infinity will provide (almost)
perfectly equal service (in fact, rather lack of service) to all the clients.

Although minimization of the inequality measures contradicts the minimization of individual
outcomes, the inequality minimization itself can be consistently incorporated into locational
models. The notion of equitable multiple criteria optimization (Kostreva and Ogryczak, 1999a)
introduces the preference structure that complies with both the outcomes minimization and with
the inequality minimization rules (Sen, 1973). The equitable efficient solutions represent a subset
of all efficient (Pareto-optimal) solutions which takes into account the inequality minimization
according to the Pigou-Dalton approach. The equitable optimization is well suited for the
locational analysis (Kostreva and Ogryczak, 1999; Ogryczak, 2000). It turns out that equitably
efficient solution concepts may be modeled with the standard multiple criteria optimization
applied to the cumulative ordered outcomes. The center solution concept represent only first
criterion and in order to guarantee the equitable efficiency of a selected location pattern one
needs to take into account all the ordered outcomes like in the lexicographic center (Ogryczak,
1997) which is a lexicographic refinement of the center solution concept. The entire multiple
criteria ordered model is rich with various equitably efficient solution concepts (Ogryczak and
Zawadzki, 2002; Kostreva, Ogryczak and Wierzbicki, 2004). Although the the cumulated ordered
outcomes can be expressed with linear programming models (Ogryczak and Tamir, 2003), these
approaches requires the disaggregation of location problem with the client weights which usually
dramatically increases the problem size.

For typical inequality measures a simplified bicriteria mean-equity model is computationally
very attractive since both the criteria are well defined directly for the weighted location prob-
lem without necessity of its disaggregation but it may result in solutions which are inefficient.
Therefore, we are interested in a proper use of the mean-equity models in a way to guarantee the
equitable efficiency of selected solutions. It turns out that, under the assumption of bounded
trade-offs, the bicriteria mean-equity approaches for selected absolute inequality measures (max-
imum upper deviation, mean semideviation or mean absolute difference) comply with the rules
of equitable multiple criteria optimization (Ogryczak, 2000). In other words, several inequality
measures can be combined with the mean itself into the optimization criteria generalizing the
concept of the worst outcome and generating equitably consistent underachievement measures.
We generalize those findings by introducing simple sufficient conditions for inequality measures
to keep this consistency property. It allows us to identify more inequality measures which can
be effectively used to incorporate equity factors into various location while preserving the con-
sistency with distance minimization. Among others the standard upper semideviation turns out
to be such a consistent inequality measure.

The paper is organized as follows. In the next section we introduce the problem and the
basic inequality measures. In Section 3 the equitable optimization with the preference structure
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that complies with both the efficiency (Pareto-optimality) principle and with the Pigou-Dalton
principle of transfers is discussed and the underachievement criteria are introduced. Further, in
Section 4, the equitable consistency of the underachievement criteria is analyzed and sufficient
conditions for the inequality measures to keep this consistency property are introduced. There
is shown that properties of convexity and positive homogeneity together with some boundedness
condition is sufficient for a typical inequality measure to guarantee the corresponding equitable
consistency.

2 Efficiency and inequality measures

The generic location problem that we consider may be stated as follows. There is given a set
I = {1, 2, . . . ,m} of m clients (service recipients). Each client is represented by a specific point
in the geographical space. There is also given a set Q of location patterns (location decisions).
For each client i (i ∈ I) a function fi(x) of the location pattern x has been defined. This
function, called the individual objective function, measures the outcome (effect) yi = fi(x) of
the location pattern for client i (Marsh and Schilling, 1994). In the simplest problems an outcome
usually expresses the distance. However, we emphasize to the reader that we do not restrict our
considerations to the case of outcomes measured as distances. They can be measured (modeled)
as travel time, travel costs as well as in a more subjective way as relative travel costs (e.g.,
travel costs by clients incomes) or ultimately as the levels of clients dissatisfaction (individual
disutility) of location decisions. In typical formulations of location problems related to desirable
facilities a smaller value of the outcome (distance) means a better effect (higher service quality
or client satisfaction). This remains valid for location of obnoxious facilities if the distances are
replaced with their complements to some large number or other (decreasing) disutility function
of distances. Therefore, without loss of generality, we can assume that each individual outcome
yi is to be minimized. This allows us to consider the generic location problem as the multiple
criteria minimization (Ogryczak, 1997, 1999):

min {f(x) : x ∈ Q} = min {y : y ∈ A}, (1)

where f = (f1, . . . , fm) is a vector-function that maps feasible decisions (locations) x ∈ Q into
the attainable outcome vectors y ∈ A = {y ∈ Rm : y = f(x), x ∈ Q}.

We do not assume any special form of the problem constraints allowing the feasible set
to be a general, possibly discrete (nonconvex), set. Similarly, we do not assume any special
form of the individual objective functions nor their special properties (like convexity) while
analyzing properties of the solution concepts. We have only assumed a finite set of clients for
the minimization of the individual outcomes. Therefore, the results of our analysis apply to
various classes of location problems covering continuous as well as discrete and special network
models (c.f., Love, Morris and Wesolowsky, 1988; Francis, McGinnis and White, 1992; Current,
Min and Schilling, 1990; Mirchandani and Francis, 1990; Labbé, Peeters and Thisse, 1996).

Model (1) only says that we are interested in the minimization of all outcome functions
fi for i ∈ I. In order to make it operational, one needs to assume some solution concept.
Typical solution concepts for locations problems are based on the minimization of some scalar
achievement function C(y) of outcome vectors y. Most classical location studies focus on the
minimization of the mean (or total) distance (the median concept) or the minimization of the
maximum distance (the center concept) to the service facilities (Morrill and Symons, 1977).
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Since for each outcome the smaller value is preferred, some outcome vectors are clearly
dominated by others. We say that outcome vector y′ (Pareto) dominates y′′ (y′ ≺ y′′), iff y′i ≤ y′′i
for all i ∈ I where at least one strict inequality holds. We say that a location pattern x ∈ Q is
an Pareto-efficient solution of the multiple criteria problem (1), iff y = f(x) is nondominated.
The latter refers to the commonly used definition of the efficient solutions as feasible solutions
for which one cannot improve any criterion without worsening another (e.g., Steuer, 1986).

Frequently, one may be interested in putting into location model some additional client
weights vi > 0. Typically the model of distribution weights is introduced to represent the
service demand thus defining distribution of outcomes yi = fi(x) according to measures defined
by the weights vi for i = 1, . . . ,m. Note that the such distribution weights allows us for a clear
interpretation of weights as the client repetitions at the same place. Splitting a client into two
clients sharing the demand at the same geographical point does not cause any change of the final
distribution of outcomes. For theoretical considerations one may assume that the problem is
transformed (disaggregated) to the unweighted one (that means all the client weights are equal
to 1). Note that such a disaggregation is possible for integer as well as rational client weights,
but it usually dramatically increases the problem size. Therefore, we are interested in solution
concepts which can be applied directly to the weighted problem.

Alternatively, scaling weights might be used as client importance factors thus defining out-
comes yi = vifi(x) uniformly distributed for i = 1, . . . ,m. Such an usage of weights represents
actually redefinition of outcome values. Recall that we consider the outcome values fi(x) as
distance dependent but allowing any specific form of this function thus any weighted scaling is
already taken into account within the outcomes definition. Actually, the distance scaling model
means the use of unweighted location problem with a very simple modification of distances.
Therefore, our analysis is focused on the model of distribution weights.

As mentioned, for some theoretical considerations it might be convenient to disaggregate the
weighted problem into the unweighted one. Therefore, to simplify the analysis we will assume
integer weights vi, although while discussing solution concepts we will use the normalized client
weights

v̄i = vi/
m

∑

i=1

vi for i = 1, 2, . . . ,m

rather than the original quantities vi. Note that, in the case of unweighted problem (all vi = 1),
all the normalized weights are given as v̄i = 1/m. Furthermore, to avoid possible misunder-
standings between weighted and the corresponding unweighted form of outcomes we will use
the following notation. Vector y = (yi)i∈I = (y1, y2, . . . , ym) denotes the unweighted outcomes
(possibly disaggregated if necessary) while the equivalent weighted outcomes of the aggregated
problem are denoted by vector (yvi

)i∈Iv
.

Note that the classical solution concepts of median and center are well defined for aggregated
location models using (distribution) demand weights vi > 0. Exactly, the median solution
concept is defined by minimization the mean outcome

µ(y) =
1

m

m
∑

i=1

yi =
∑

i∈Iv

v̄iyvi
, (2)

i.e., by the optimization problem

min {µ(f(x)) : x ∈ Q}. (3)
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In the above problem the objective function is defined as the mean (average) outcome but the
problem (3) itself is also equivalent to minimization of the total outcome

∑m
i=1 yi =

∑

i∈Iv
viyvi

.
The center solution concept is defined by minimization of the maximum (worst) outcome

M(y) = max
i∈I

yi = max
i∈Iv

yvi
, (4)

thus resulting in the optimization problem

min {M(f(x)) : x ∈ Q}. (5)

Note the maximum outcome M(y) is not affected by the distribution weights at all and the
same applies to center solution itself. The weighted center solution concepts considered in some
location models (Labbé, Peeters and Thisse, 1996) represent distance scaling weights rather than
the distribution weights. In our analysis such scaling weights are considered as included within
the outcome functions fi(x).

The individual outcomes in our multiple criteria location model express the same quantity
(usually the distance) for various clients. Thus the outcomes are uniform in the sense of the
scale used and their values are directly comparable. Moreover, especially when locating public
facilities, we want to consider all the clients impartially and equally. Thus the distribution of dis-
tances (outcomes) among the clients is more important than the assignment of several distances
(outcomes) to the specific clients. Both the center and the median solution concepts minimize
only simple scalar characteristics of the distribution: the maximum (the worst) outcome and
the mean outcome, respectively.

Equity is, essentially, an abstract socio–political concept that implies fairness and justice
(Young, 1994). Nevertheless, equity is usually quantified with the so–called inequality measures
to be minimized. Inequality measures were primarily studied in economics (Sen, 1973). However,
Marsh and Schilling (1994) described twenty different measures proposed in the literature to
gauge the level of equity in facility location alternatives. Typical inequality measures are some
deviation type dispersion characteristics. They are translation invariant

%(y + ae) = %(y) for any outcome vector y and real number a (6)

where e vector of units (1, . . . , 1), thus being not affected by any shift of the outcome scale.
Moreover, the inequality measures are also inequality relevant which means that they are equal
to 0 in the case of a perfectly equal outcomes while taking positive values for any unequal one.

The simplest inequality measures are based on the absolute measurement of the spread of
outcomes, like the mean (absolute) difference (also called the Gini’s mean difference)

D(y) =
1

2m2

m
∑

i=1

m
∑

j=1

|yi − yj| =
1

2

∑

i∈Iv

∑

j∈Iv

|yvi
− yvj

|v̄iv̄j (7)

or the maximum (absolute) difference

S(y) = max
i,j=1,...,m

|yi − yj| = max
i,j∈Iv

|yvi
− yvj

|. (8)

In the location framework better intuitive appeal may have inequality measures related to de-
viations from the mean outcome (Mulligan, 1991) like the mean (absolute) deviation

δ(y) =
1

m

m
∑

i=1

|yi − µ(y)| =
∑

i∈Iv

|yvi
− µ(y)|v̄i (9)
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or the maximum (absolute) deviation (López-de-los-Mozos and Mesa, 2001)

R(y) = max
i=1,...,m

|yi − µ(y)| = max
i∈Iv

|yvi
− µ(y)|. (10)

Note that the standard deviation σ (or the variance σ2) represents both the deviations and the
spread measurement as

σ(y) =

√

√

√

√

1

m

m
∑

i=1

(yi − µ(y))2 =

√

√

√

√

1

2m2

m
∑

i=1

m
∑

j=1

(yi − yj)2

=

√

∑

i∈Iv

(yvi
− µ(y))2v̄i =

√

√

√

√

1

2

∑

i∈Iv

∑

j∈Iv

(yvi
− yvj

)2v̄iv̄j .

(11)

Deviational measures may be focused on the upper semideviations as related to worsening of
outcome while ignoring downside semideviations related to improvement of outcome. One may
define the maximum (upper) semideviation

∆(y) = max
i=1,...,m

(yi − µ(y)) = max
i∈Iv

(yvi
− µ(y)), (12)

the mean absolute (upper) semideviation

δ̄(y) =
1

m

∑

yi≥µ(y)

(yi − µ(y)) =
∑

yvi
≥µ(y)

(yvi
− µ(y))v̄i, (13)

and the standard (upper) semideviation

σ̄(y) =

√

√

√

√

1

m

∑

yi≥µ(y)

(yi − µ(y))2 =
√

∑

yvi
≥µ(y)

(yvi
− µ(y))2v̄i. (14)

In income economics, relative inequality measures (normalized by mean outcome) are com-
monly used with the Gini coefficient as a typical example. The latter is a relative measure of
the mean absolute difference and has been also analyzed in the location context (Mandell, 1991;
Mulligan, 1991; Erkut, 1993). One can easily notice that direct minimization of relative inequal-
ity measures contradicts the minimization of individual outcomes (Erkut, 1993). Unfortunately,
the same applies to all dispersion type inequality measures, including the upper semideviations.

3 Equitable efficiency and underachievement criteria

As recalled in the previous section direct use of the inequality measure minimization may re-
sult in locations strictly worsening all the distances. In other words the inequality measures
minimizations may contradict the outcomes minimization. It does not mean, however, that
the inequality minimization itself cannot be consistently incorporated into the location mod-
els. There exist models of equitable optimization based on the majorization theory (Hardy,
Littlewood and Pólya, 1934; Marshall and Olkin, 1979) which are consistent both with the
Pareto-efficiency and theories of inequality measurement (in particular the Pigou–Dalton ap-
proach). Namely, the Pareto dominance relation is transitive and can be transitively extended
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with additional relations representing inequality minimization (Ogryczak, 1997a; Kostreva and
Ogryczak, 1999a). The resulting notion of equitable multiple criteria optimization is based on
the preference structure that complies with both the Pareto-efficiency and with the inequality
measurement rules, and it is well suited for the locational analysis (Kostreva and Ogryczak,
1999, Ogryczak, 2000).

First of all, the equity requires impartiality of evaluation, thus focusing on the distribution
of outcome values while ignoring their ordering (or individual assignment). That means, in the
multiple criteria problem (1) we are interested in a set of outcome values without taking into
account which outcome is taking a specific value. Hence, we assume that the dominance relation
is impartial (anonymous, symmetric). In terms of the unweighted outcomes (disaggregated if
necessary), it may be written as the following axiom

(yτ(1), yτ(2), . . . , yτ(m)) ∼= (y1, y2, . . . , ym) for any τ ∈ Π(I) (15)

where Π(I) is the set of all permutations of the set I.
Further, one needs equitability of outcomes which causes that the preference model should

satisfy the (Pigou–Dalton) principle of transfers. The principle of transfers states that a transfer
of any small amount from an outcome to any other relatively worse–off outcome results in a
more preferred outcome vector. Again, in terms of the problem with unweighted outcomes
(disaggregated if necessary), the principle of transfers takes the form of the following property
of the dominance relation

yi′ > yi′′ ⇒ y − εei′ + εei′′ ≺ y for 0 < ε < yi′ − yi′′ ; i′, i′′ ∈ I. (16)

Note that the requirements of impartiality (15) and equitability (expressed with the principle
of transfers (16)) themselves do not contradict to the Pareto dominance. Therefore, one may
unify them by the transitivity rule getting a consistent concept of the equitable dominance. The
relation of (weak) equitable dominance y′ �e y′′ denotes that there exists a finite sequence of
vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ + εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for

k = 1, 2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i for all i ∈ I. We say that

outcome vector y′ equitably dominates y′′ (the strict dominance relation y′ ≺e y′′) if and only if,
y′ �e y′′ but not y′′ �e y′. Note that according to equitable dominance a solution generating all
three outcomes equal to 2 is considered better than any solution generating individual outcomes:
4, 2 and 0 (due to principle of transfers), while it remains worse than a solution generating one
outcome 0 and two other equal to 2 (due to the Pareto dominance). We say that a location
pattern x ∈ Q is equitably efficient, if and only if there does not exist any x′ ∈ Q such that f(x′)
equitably dominates f(x).

The relation of equitable dominance �e can be expressed as a vector inequality on the
cumulative ordered outcomes. For the unweighted problem this can be mathematically for-
malized as follows. First, we introduce the ordering map Θ : Rm → Rm such that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists a permutation
τ of set I such that θi(y) = yτ(i) for i = 1, 2, . . . ,m. This allows us to focus on distributions
of outcomes impartially. Next, we apply cumulation to the ordered outcome vectors to get
quantities

θ̄i(y) =
i

∑

j=1

θj(y) for i = 1, 2, . . . ,m. (17)
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expressing, respectively, the largest outcome, the total of the two largest outcomes, the total of
the three largest outcomes, etc. Pointwise comparison of the cumulated ordered outcomes Θ̄(y)
was extensively analyzed within the theory of majorization (Marshall and Olkin, 1979), where
it is called the relation of weak submajorization. The theory of majorization includes the results
which allows one to derive the following theorem (Kostreva and Ogryczak, 1999a).

Theorem 1 Outcome vector y′ ∈ Y equitably dominates y′′ ∈ Y , if and only if θ̄i(y
′) ≤ θ̄i(y

′′)
for all i ∈ I where at least one strict inequality holds.

The equitable optimization for general weighted problems can be mathematically formalized
as follows. First, we introduce the left-continuous right tail cumulative distribution function
(cdf):

Fy(d) =
∑

i∈Iv

v̄iδi(d) where δi(d) =

{

1 if yvi
≥ d

0 otherwise
(18)

which for any real (outcome) value d provides the measure of outcomes greater or equal to d.
Note that the requirement of impartiality means that two outcome vectors y ′ and y′′ resulting

in identical cdf are indifferent. Next, we introduce the quantile function F
(−1)
y as the right-

continuous inverse of the cumulative distribution function Fy:

F (−1)
y

(β) = sup {η : Fy(η) ≥ β} for 0 < β ≤ 1.

By integrating F
(−1)
y one gets:

F (−2)
y

(0) = 0 and F (−2)
y

(β) =

∫ β

0
F (−1)

y
(α)dα for 0 < β ≤ 1, (19)

where F
(−2)
y (1) = µ(y). Graphs of functions F

(−2)
y (v) (with respect to v) take the form of

concave curves, the (upper) absolute Lorenz curves. The absolute Lorenz curves defines the
relation (partial order) equivalent to the equitable dominance. Exactly, outcome vector y ′

equitably dominates y′′, if and only if F
(−2)
y′ (β) ≤ F

(−2)
y′′ (β) for all β ∈ (0; 1] where at least

one strict inequality holds. Note that for the expanded form to the unweighted outcomes, the
absolute Lorenz curve is completely defined by the values of the (cumulated) ordered outcomes.

Hence, θ̄i(y) = mF
(−2)
y (i/m) for i = 1, 2, . . . ,m, and pointwise comparison of cumulated ordered

outcomes is enough to justify equitable dominance.
Alternatively, the equitable dominance can be expressed on the cumulative distribution

functions. Having introduced the left-continuous right tail cumulative distribution function
(18), one may further integrate it to get the second order cumulative distribution function

F
(2)
y (η) =

∫ ∞

η Fy(ξ)dξ for η ∈ R, representing average exceed over any real target τ . Graphs

of functions F
(2)
y (η) (with respect to η) take the form of convex decreasing curves (Ogryczak,

1997a). By the theory of convex conjugent functions, the pointwise comparison of the second
order cumulative distribution functions provides an alternative characterization of the equitable
dominance relation (Ogryczak and Ruszczyński, 2002). Exactly, y ′ equitably dominates y′′, if

and only if F
(2)
y′ (η) ≤ F

(2)
y′′ (η) for all η where at least one strict inequality holds.

8
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Furthermore, the classical results of Hardy, Littlewood and Pólya (1934) allow us to refer
the equitable dominance to the mean utility. For any strictly convex, increasing utility function
u : R → R, if outcome vector y′ equitably dominates y′′, then

1

m

m
∑

i=1

u(y′i) =
∑

i∈Iv

v̄iu(y′vi
) ≤ 1

m

m
∑

i=1

u(y′′i ) =
∑

i∈Iv

v̄iu(y′′vi
).

Finally, there are three alternative analytical characterizations of the relation of equitable domi-
nance as specified in the following theorem. Note that according to condition (iii), the equitable
dominance is actually the so-called increasing convex order which is more commonly known as
the second degree stochastic dominance (SSD) or stop loss order (Mueller and Stoyan, 2002).

Theorem 2 For any outcome vectors y′,y′′ ∈ A each of the three following conditions is equiv-
alent to the (weak) equitable dominance y′ �e y′′:

(i) F
(−2)
y′ (β) ≤ F

(−2)
y′′ (β) for all β ∈ (0; 1];

(ii) F
(2)
y′ (η) ≤ F

(2)
y′′ (η) for all real η;

(iii)
∑

i∈Iv
v̄iu(y′i) ≤

∑

i∈Iv
v̄iu(y′′i ) for any convex, increasing function u.

We say that a solution concept (achievement function) C(y) is equitably consistent if

y′ �e y′′ ⇒ C(y′) ≤ C(y′′). (20)

The relation of equitable consistency is called strong if, in addition, the following holds y ′ ≺e

y′′ ⇒ C(y′) < C(y′′).
According to condition (iii) of Theorem 2, for any strictly convex, increasing function u :

R → R, the solution concept defined by achievement function C(y) =
∑m

i=1 u(yi) is equitably
consistent. Various convex functions u can be used to define such equitable solution concepts.
In the case of the outcomes restricted to positive values, any p-power yp is a strictly positive
and convex function for p > 1. This justifies the Lp norms as a source of equitable solution
concepts, since the minimization of any such norm ‖y‖p is then equivalent to the minimization
of ‖y‖p

p =
∑m

i=1 yp
i .

Condition (i) of Theorem 2 (or directly Theorem 1) permits one to seek equitably efficient
location patterns as efficient solutions of the multiple criteria problem with objectives Θ̄(f(x))
(c.f. Kostreva and Ogryczak, 1999):

min {(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}. (21)

The worst outcome (4) and the mean outcome (2) correspond, respectively, to the first and to the
last (m–th) criterion in problem (21). Thus both the center and the median concepts use only
single objective from the multiple criteria problem (21). It means that both the concepts are
equitably consistent in the sense of (20). They are not strongly consistent and the solutions can
be equitably dominated by some alternative center or median solutions, respectively. In order
to guarantee the equitable efficiency of a selected location pattern one need to take into account
all the criteria of (21) like in the lexicographic center (Ogryczak, 1997). The lexicographic center
is a refinement of the center solution concept which corresponds to the lexicographic approach
to multicriteria optimization in (21) (Kostreva and Ogryczak, 1999). Although the cumulated
ordered outcomes (17) can be expressed with linear programming models (Ogryczak and Tamir,
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2003), the multicriteria ordered model (21) is, in general, rather hard to implement as it requires
the disaggregation of a location problem with the client weights vi which usually dramatically
increases the problem size.

As a simplified approach one may consider a bicriteria mean-equity model (Mandell, 1991):

min {(µ(f(x)), %(f(x))) : x ∈ Q} (22)

taking into account both the efficiency with minimization of the mean outcome µ(y) and the eq-
uity with minimization of an inequality measure %(y). For typical inequality measures bicriteria
model (22) is computationally very attractive since both the criteria are well defined directly
for the weighted location problem without necessity of its disaggregation. We have pointed out
that direct minimization of any dispersion type inequality measures may contradict the effi-
ciency in the sense of outcomes minimization. Unfortunately, the same applies to the bicriteria
mean-equity models. This can be illustrated by a trivial example of two alternative locations
generating outcome vectors (say in kilometers) y′ = (0, 1) and y′′ = (5, 5), respectively. Note
that the perfectly equal outcome vector y′′ with both the distances 5 is obviously worse than
the unequal vector y′ giving the distances 0 and 1, respectively. Actually, y′ Pareto dominates
y′′. Nevertheless, %(y′′) = 0 for any dispersion type inequality measure % while %(y′) > 0 for
each such a measure. Hence, one must accept that y′′ is efficient in the corresponding bicriteria
mean-equity model.

Note that the lack of consistency with the equitable dominance applies also to the maximum
semideviation ∆(y) (12) whereas adding this measure to the mean µ(y)+∆(y) = M(y) = θ̄1(y)
results in the worst outcome and thereby the first criterion of the ordered multicriteria model
(21). In other words, although a direct use of the maximum semideviation contradicts the ef-
ficiency, the measure can be used complementary to the mean leading to the worst outcome
criterion which is equitably consistent. This construction can be generalized for various (disper-
sion type) inequality measures. For any inequality measure % we introduce the corresponding
underachievement function defined as the sum of the mean outcome and the inequality measure
itself, i.e.

M%(y) = µ(y) + %(y). (23)

In the case of maximum semideviation the corresponding underachievement M∆(y) function
represents the worst outcome M(y). Similarly, in the case of mean semideviation one gets the
underachievement function

Mδ̄(y) = µ(y) + δ̄(y) =
1

m

m
∑

i=1

max{yi, µ(y)} =
∑

i∈Iv

v̄i max{yvi
, µ(y)}

representing the mean underachievement, and in the case of mean absolute difference the corre-
sponding underachievement function

MD(y) = µ(y) + D(y) =
1

m2

m
∑

i=1

m
∑

j=1

max{yi, yj} =
∑

i∈Iv

∑

j∈Iv

v̄iv̄j max{yvi
, yvj

}

represents the mean pairwise worse outcome. Both the above underachievement measures are eq-
uitably consistent (Ogryczak, 2000). This leads to us a very important problem of identification
some clear conditions for inequality measures % sufficient to guarantee that the corresponding
underachievement measures are equitably consistent.

10
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4 Consistency results

Inequality measures in mean-equity models are translation invariant (6) and inequality relevant
deviation type measures (dispersion parameters). Thus, they are not affected by any shift of
the outcome scale and they are equal to 0 in the case of a perfectly equal outcomes while taking
positive values for any unequal one. Moreover, they depend only on the distribution of outcomes
thus in terms of the unweighted location model they are impartial, i.e., %(yτ(1), yτ(2), . . . , yτ(m)) =
%(y1, y2, . . . , ym) for any permutation τ . Unfortunately, as discussed earlier, such inequality
measures are not consistent with the equitable optimization or axiomatic models of equitable
preferences (Marshall and Olkin, 1979; Kostreva and Ogryczak, 1999). Indeed, in the bicriteria
mean-equity model its efficient set may contain equitably inferior locations characterized by a
small inequality but also very high distances.

This flaw can be overcome by replacing the original mean-equity bicriteria optimization (22)
with the following bicriteria problem:

min {(µ(f(x)),M%(f(x))) : x ∈ Q} (24)

where the second objective represents the corresponding underachievement measure (23). Note
that for any inequality measure %(y) ≥ 0 one gets M%(y) ≥ µ(y) thus really expressing under-
achievements (comparing to mean) from the perspective of outcomes being minimized.

The equitable consistency of inequality measures may be formalized as follows. We say
that inequality measure %(y) is mean-complementary equitably consistent if the corresponding
underachievement measure M%(y) is equitably consistent, i.e.,

y′ �e y′′ ⇒ µ(y′) + %(y′) ≤ µ(y′′) + %(y′′). (25)

The relation of equitable (mean-complementary) consistency is called strong if, in addition to
(25), the following holds

y′ ≺e y′′ ⇒ µ(y′) + %(y′) < µ(y′′) + %(y′′). (26)

Theorem 3 If the inequality measure %(y) is mean-complementary equitably consistent (25),
then except for outcomes with identical values of µ(y) and %(y), every efficient solution of the
bicriteria problem (24) is an equitably efficient location. In the case of strong consistency (26),
every location pattern x ∈ Q efficient to (24) is, unconditionally, equitably efficient.

Proof. Let x0 ∈ Q be an efficient solution of (24). Suppose that x0 is not equitably efficient.
This means, there exists x ∈ Q such that y = f(x) ≺e y0 = f(x0). Then, it follows µ(y) ≤
µ(y0), and simultaneously µ(y) + %(y) ≤ µ(y0) + %(y0), by virtue of the mean-complementary
equitable consistency (25). Since x0 is efficient to (24) no inequality can be strict, which implies
µ(y) = µ(y0) and %(y) = %(y0).

In the case of the strong mean-complementary equitable consistency (26), the supposition
y = f(x) ≺e y0 = f(x0) implies µ(y) ≤ µ(y0) and µ(y)+%(y) < µ(y0)+%(y0) which contradicts
the efficiency of x0 with respect to (24). Hence, x0 is equitably efficient.

An important advantage of mean-equity approaches is the possibility of a pictorial trade-
off analysis. Having assumed a trade-off coefficient λ between the inequality measure %(y)
and the mean outcome, one may directly compare real values of µ(y) + λ%(y). Note that
(1 − λ)µ(y) + λ(µ(y) + %(y)) = µ(y) + λ%(y). Hence, the complete weighting parameterization

11
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of the mean-underachievement model (24) with 0 < λ < 1 is equivalent to the bounded trade-off
analysis of the bicriteria mean-equity model (22). This allows us to use Theorem 3 to derive the
consistency results for the trade-off approach defined by solving the optimization problem

min{µ(f(x)) + λ%(f(x)) : x ∈ Q}. (27)

Corollary 1 If the inequality measure %(y) is mean-complementary equitably consistent (25),
then except for location patterns with identical values of µ(y) and %(y), every optimal solution of
problem (27) with 0 < λ < 1 is an equitably efficient solution. In the case of strong consistency
(26), every location pattern x ∈ Q optimal to (27) with 0 < λ < 1 is, unconditionally, equitably
efficient.

Typical dispersion type risk measures are convex, i.e.

%(λy′ + (1 − λ)y′′) ≤ λ%(y′) + (1 − λ)%(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1.

Actually, convexity of an inequality measure on equally distributed outcomes is necessary for its
mean-complementary equitable consistency. Note, that for any two vectors y ′ and y′′ represent-
ing the same distribution of outcomes as y (i.e., y′ = (yτ ′(1), . . . , yτ ′(m)) for some permutation τ ′

and y′′ = (yτ ′′(1), . . . , yτ ′′(m)) for some permutation τ ′′) one gets θ̄i(λy′ + (1 − λ)y′′) ≤ θ̄i(y) for
all i ∈ I and any 0 ≤ λ ≤ 1. Hence, λy′ + (1 − λ)y′′ �e y and M%(λy′ + (1 − λ)y′′) ≤ M%(y) is
necessary for the equitable consistency. Thus, due to equal means µ(λy ′ +(1−λ)y′′) = µ(y′) =
µ(y′′) = µ(y), the inequality measure depending only on distribution %(y ′) = %(y′′) = %(y) must
satisfy %(λy′ + (1 − λ)y′′) ≤ %(y) = λ%(y′) + (1 − λ)%(y′′) which represents the convexity of
%(y). Certainly, the underachievement function M%(y) must be also monotonic for the equitable
consistency which enforces more restrictions on the inequality measures. We will show further
that convexity together with positive homogeneity and some boundedness of an inequality mea-
sure is sufficient to guarantee monotonicity of the corresponding underachievement measure and
thereby to guarantee the mean-complementary equitable consistency of inequality measure itself.

We say that (dispersion type) inequality measure %(y) ≥ 0 is ∆-bounded if it upper bounded
by the maximum upper deviation, i.e.,

%(y) ≤ ∆(y) ∀y. (28)

Moreover, we say that %(y) ≥ 0 is strictly ∆-bounded if inequality (28) a strict bound, except
from the case of perfectly equal outcomes, i.e.,

%(y) < ∆(y) for any y such that ∆(y) > 0. (29)

Theorem 4 Let %(y) ≥ 0 be a convex, positively homogeneous and translation invariant (dis-
persion type) inequality measure. If the measure is additionally ∆-bounded (28), then the corre-
sponding underachievement function M%(y) = µ(y) + %(y) is:

(i) monotonous: y′ ≤ y′′ implies M%(y
′) ≤ M%(y

′′),
(ii) convex: M%(λy′ + (1 − λ)y′′) ≤ λM%(y

′) + (1 − λ)M%(y
′′) for any 0 ≤ λ ≤ 1,

(iii) positively homogeneous: M%(hy) = hM%(y) for positive real number h,
(iv) translation equivariant: M%(y + ae) = M%(y) + a, for any real number a.

If the inequality measure %(y) is strictly ∆-bounded (29), then the corresponding underachieve-
ment function M%(y) is:

(i′) strictly monotonous: y′ ≤ y′′ and y′ 6= y′′ implies M%(y
′) < M%(y

′′).

12
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Proof. If %(y) ≥ 0 is a convex, positively homogeneous and translation invariant (dispersion
type) inequality measure, then the underachievement function M%(y) = µ(y)+%(y) does satisfy
the requirements of translation equivariance, positive homogeneity, and convexity. Further, if
y′ ≤ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≤ 0. Hence, due to convexity and positive
homogeneity, M%(y

′) ≤ M%(y
′′)+M%(y

′−y′′). Moreover, due to the bound (28), M%(y
′−y′′) ≤

µ(y′ − y′′) + ∆(y′ − y′′) ≤ µ(y′ − y′′) + 0 − µ(y′ − y′′) = 0. Thus, M%(y) satisfies also the
requirement of monotonicity.
Note that strict upper bound (29) causes that M%(y

′ − y′′) < 0 for y′ 6= y′′, thus showing strict
monotonicity of M%(y).

Monotonicity and convexity of the underachievement function turns out to be sufficient for
its equitable consistency. Therefore, the following assertion is valid.

Theorem 5 Let %(y) ≥ 0 be a convex and ∆-bounded positively homogeneous inequality mea-
sure. Then %(y) is mean-complementary equitably consistent in the sense that of (25).

Proof. The relation of equitable dominance y′ �e y′′ denotes that there exists a finite sequence
of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ + εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for

k = 1, 2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i for all i ∈ I. Note

that the underachievement function M%(y), similar as %(y) depends only on the distribution
of outcomes and, due to Theorem 4, is monotonous. Hence, M%(y

′) ≤ M%(y
t). Further, let

us notice that yk = λȳk−1 + (1 − λ)yk−1 where ȳk−1 = yk−1 − (yi′ − yi′′)ei′ + (yi′ − yi′′)ei′′

and λ = ε/(yi′ − yi′′). Vector ȳk−1 has the same distribution of coefficients as yk−1 (actually
it represents results of swapping yi′ and yi′′). Hence, due to convexity of M%(y), one gets
M%(y

k) ≤ λM%(ȳ
k−1) + (1 − λ)M%(y

k−1) = M%(y
k−1). Thus, M%(y

′) ≤ M%(y
′′) which justifies

the mean-complementary equitable consistency of the inequality measure %(y).
For strict equitable consistency some strict monotonicity and convexity properties of the

achievement function are needed. Obviously, there does not exist any inequality measure which
is positively homogeneous and simultaneously strictly convex. However, one may notice from
the proof of Theorem 5 that only convexity properties on equally distributed outcome vectors
are important for monotonous achievement functions. We say that function C(y) is strictly
convex on equally distributed outcome vectors, if

C(λy′ + (1 − λ)y′′) < λC(y′) + (1 − λ)C(y′′) for 0 < λ < 1

for any two vectors y′ 6= y′′ but representing the same outcomes distribution as some y, i.e., y ′ =
(yτ ′(1), . . . , yτ ′(m)) for some permutation τ ′ and y′′ = (yτ ′′(1), . . . , yτ ′′(m)) for some permutation
τ ′′.

Theorem 6 Let %(y) ≥ 0 be a convex and strictly ∆-bounded positively homogeneous inequal-
ity measure. If %(y) is also strictly convex on equally distributed outcomes, then it is mean-
complementary equitably strongly consistent in the sense that of (26).

Proof. The relation of weak equitable dominance y′ �e y′′ denotes that there exists a finite
sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1−εkei′ +εkei′′ , 0 ≤ εk ≤ yk−1

i′ −yk−1
i′′

for k = 1, 2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i for all i ∈ I. The strict

equitable dominance y′ ≺e y′′ means that y′τ(i) < yt
i for some i ∈ I or at least one εk is strictly

13
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positive. Note that the underachievement function M%(y) is strictly monotonous and strictly
convex on equally distributed outcome vectors. Hence, M%(y

′) < M%(y
′′) which justifies the

mean-complementary equitable strong consistency of the inequality measure %(y).

Corollary 2 Let %(y) ≥ 0 be a convex, positively homogeneous and ∆-bounded (dispersion type)
inequality measure, Then except for location patterns with identical mean µ(y) and inequality
measure %(y), every efficient solution to the bicriteria problem (24) is an equitably efficient so-
lution of the location problem (1). If the measure also strictly ∆-bounded and strictly convex on
equally distributed outcome vectors, then every location x ∈ Q efficient to (24) is, uncondition-
ally, equitably efficient.

As mentioned, typical inequality measures are convex and many of them are positively
homogeneous. Moreover, the measures such as the mean absolute (upper) semideviation δ̄(y)
(13), the standard upper semideviation σ̄(y) (14), and the mean absolute difference D(y) (7) are
∆-bounded. Obviously, ∆-bounded is also the maximum absolute upper deviation ∆(y) itself.
The same applies to the quantile generalizations of the maximum upper deviations, i.e., to the
worst conditional k-semideviations defined by the formula (Ogryczak and Zawadzki, 2002):

∆k(y) =
1

m

k
∑

i=1

(θi(y) − µ(y)). (30)

Thus, the following assertion is valid.

Corollary 3 The following inequality measures %(y) ≥ 0 are mean-complementary equitably
consistent in the sense of (25):

1. the maximum upper deviation ∆(y) (12),

2. the mean absolute (upper) semideviation δ̄(y) (13),

3. the standard upper semideviation σ̄(y) (14),

4. the mean absolute difference D(y) (7),

5. the worst conditional k-semideviation ∆k(y) (30).

Corollary 3 enumerates only the simplest inequality measures studied in the locational con-
text which satisfy the assumptions of Theorem 5 and thereby they are mean-complementary
equitably consistent. Theorem 5 allows one to show this property for many other measures. In
particular, one may easily find out that any convex combination of mean-complementary equi-
tably efficient inequality measures remains also consistent. On the other hand, among typical
inequality measures the mean absolute difference seems to be the only one meeting the stronger
assumptions of Theorem 6 and thereby maintaining the strong consistency.

Corollary 4 The mean absolute difference D(y) (7) is mean-complementary equitably strongly
consistent in the sense of (26).
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The mean absolute deviation being a mean-complementary equitably strongly consistent may
be used to regularize other consistent but not strongly consistent inequality measures, Namely,
if %(y) is a mean-complementary equitably consistent inequality measure, then for any 0 < ε < 1
the convex combination (1 − ε)%(y) + εD(y) satisfies strict forms of both ∆-boundedness and
convexity requirements and therefore it is mean-complementary equitably strongly consistent.
By using arbitrary small positive ε, this approach allows one to build strongly consistent forms
(actually regularizations) of maximum semideviation (1−ε)∆(y)+εD(y), of the mean absolute
semideviation (1 − ε)δ̄(y) + εD(y), or other equitably consistent inequality measures.

We emphasize that, despite the standard semideviation is mean-complementary equitably
consistent inequality measure, the consistency is not valid for variance, semivariance and even for
the standard deviation. These measures, in general, do not satisfy all assumptions of Theorem 5.
In particular, the standard deviation although convex and positively homogeneous is not ∆-
bounded which may result in the lack of consistency. This can be illustrated with a simple
example of two outcome vectors: y′ consisted of one outcome 0 (say y′

1 = 0) and 9 outcomes 10
(say y′i = 10 for i = 2, . . . , 10); y′′ consisted of all 10 outcomes 10 (y′′

i = 10 for i = 1, . . . , 10). Note
that y′ ≤ y′′ and therefore y′ �e y′′ (actually the relation of dominance is strict). Nevertheless,
µ(y′) + σ(y′) = 9 + 3 > µ(y′′) + σ(y′′) = 10, which contradicts the consistency (25).

One may notice that the mean absolute semideviations are symmetric in the sense that the
upper semideviation is always equal to the downside one. In other words, δ̄(y) = 1

2δ(y) and
thereby Theorem 3 justifies also equitable robust consistency of the half mean absolute deviation.
In general, one may just consider %α(X) = α%(X) as a basic risk measure, like the mean absolute
semideviation equal to the half of the mean absolute deviation itself. In order to avoid creation
of new inequality measures by simple scaling we rather parameterize the equitable consistency
concept. We will say that an inequality measure % is equitably α-consistent if

y′ �e y′′ ⇒ µ(y′) + α%(y′) ≤ µ(y′′) + α%(y′′) (31)

The relation of equitable α-consistency will be called strong if, in addition to (31), the following
holds

y′ ≺e y′′ ⇒ µ(y′) + α%(y′) < µ(y′′) + α%(y′′). (32)

Note that the equitable 1-consistency represent our basic relation of the mean-complementary
equitable consistency. On the other hand, the equitable α-consistency of measure %(y) is equiv-
alent to the mean-complementary equitable consistency of measure α%(y). Hence, the equitable
α-consistency of measure %(y) guarantees that then except for outcomes with identical values
of µ(y) and %(y), every efficient solution of the bicriteria problem min {(µ(f(x)), µ(f(x)) +
α%(f(x))) : x ∈ Q} is an equitably efficient location and in the case of strong α-consistency
every efficient location pattern is, unconditionally, equitably efficient. In terms of the trade-off
approach it leads to the following statement.

Corollary 5 If the inequality measure %(y) is equitably α-consistent (31), then except for lo-
cation patterns with identical values of µ(y) and %(y), every optimal solution of problem (27)
with 0 < λ < α is an equitably efficient solution. In the case of strong α-consistency (32), every
location pattern x ∈ Q optimal to (27) with 0 < λ < α is, unconditionally, equitably efficient.

Theorem 7 Let %(y) ≥ 0 be a convex, positively homogeneous and translation invariant (dis-
persion type) inequality measure. If α%(y) is ∆-bounded, then %(y) is equitably α-consistent in
the sense that of (31).

15



Institute of Control & Computation Engineering Report 05-03

Theorem 8 Let %(y) ≥ 0 be a convex and positively homogeneous inequality measure. If %(y) is
also strictly convex on equally distributed outcomes and α%(y) is strictly ∆-bounded, then %(y)
is equitably strongly α-consistent in the sense that of (32).

As mentioned, the mean absolute semideviation is twice the mean absolute upper semide-
viation which means that αδ(y) is ∆-bounded for any 0 < α ≤ 0.5. One may also find
out that (for m-dimensional outcome vectors), the maximum absolute deviation satisfies the
inequality 1/(m − 1)R(y) ≤ ∆(y), while the maximum absolute difference fulfills the in-
equality 1/mS(y) ≤ ∆(y). For the standard deviation, ασ(y) is strictly ∆-bounded for any
0 < α ≤ 1/

√
m. These leads us to the following corollary.

Corollary 6 The following inequality measures %(y) ≥ 0 are equitably α-consistent within the
specified intervals of α:

1. the mean absolute semideviation with 0 < α ≤ 0.5,

2. the maximum absolute deviation with 0 < α ≤ 1/(m − 1),

3. the maximum absolute difference with 0 < α ≤ 1/m,

4. the standard deviation with 0 < α ≤ 1/
√

m.

Moreover, the α-consistency of the standard deviation is strong.

Following Corollary 6, the standard deviation maintains strong mean-complementary eq-
uitable consistency provided that it is used with a very small coefficient. Note that this al-
lows us to consider the standard deviation as a regularization term transforming any mean-
complementary equitably consistent inequality measure %(y) into a strongly consistent measure
(1 − ε)%(y) + εσ(y). Although usage of the mean absolute difference for this purpose seems to
be simpler, due to its linear programming computability.

5 Concluding remarks

While making location decisions, the distribution of distances among the service recipients
(clients) is an important issue. In order to comply with the minimization of distances as well as
with an equal consideration of the clients, the concept of equitable efficiency must be used for the
multiple criteria model. Equitably efficient solution concepts may be modeled with the standard
multiple criteria optimization applied to the cumulative ordered outcomes. Although rich with
equitably efficient solutions, these approaches, in general, are hard to implement since the or-
dering of outcomes requires the disaggregation of location problem with the client weights which
usually dramatically increases the problem size. Therefore, rather simplified mean-equity ap-
proaches are applied. Unfortunately, for typical inequality measures, the mean-equity approach
may lead to inferior conclusions.

It turns out, however, that several inequality measures can be combined with the mean
itself into the optimization criteria generalizing the concept of the worst outcome and generat-
ing equitably consistent underachievement measures. In this paper we have introduced general
conditions for inequality measures sufficient to provide the equitable consistency of the corre-
sponding underachievement measures. We have shown that properties of convexity and positive
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homogeneity together with boundedness by the maximum upper semideviation are sufficient for
a typical inequality measure to guarantee the corresponding equitable consistency. It allows us
to identify various inequality measures which can be effectively used to incorporate equity fac-
tors into various location while preserving the consistency with outcomes minimization. Among
others the standard upper semideviation turns out to be such a consistent inequality measure
while the mean absolute difference is strongly consistent.

Our analysis is related to the properties of location models. It has been shown how equity
factors can be consistently included into the location models. We do not analyze algorithmic
issues of the models. Many of the inequality measures, we analyzed, can be implemented with
auxiliary linear programming constraints. Nevertheless, further research on efficient computa-
tional algorithms for solving the corresponding equitable location models is necessary.

This paper is focused on location problems. However, the location decisions are analyzed
from the perspective of their effects for individual clients. Therefore, the general concept of the
proposed approaches can be used for optimization of various systems which serve many users.
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