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Abstract The Reference Point Method (RPM) is an
interactive technique for multiple criteria optimization
problems. It is based on optimization of the scalariz-
ing achievement function built as the augmented max-
min aggregation of individual outcomes with respect
to the given reference levels. Actually, the worst indi-
vidual achievement is optimized, but regularized with
the term representing the average achievement. In or-
der to avoid inconsistencies caused by the regulariza-
tion, we apply the Ordered Weighted Averages (OWA)
with monotonic weights to combine all the individ-
ual achievements. Further, following the concept of the
Weighted OWA (WOWA), we incorporate the impor-
tance weighting of several achievements into the RPM.
We show that the resulting WOWA RPM can be quite
effectively implemented as an extension of the original
constraints and criteria with simple linear inequalities.

Keywords Multicriteria Decision Making · Aggre-
gation Methods · Reference Point Method · OWA ·
WOWA

1 Introduction

Consider a decision problem defined as an optimiza-
tion problem with m criteria (objective functions). In
this paper, without loss of generality, it is assumed that
all the criteria are maximized (that is, for each outcome
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‘more is better’). Hence, we consider the following Mul-
tiple Criteria Optimization (MCO) problem:

max { (f1(x), . . . , fm(x)) : x ∈ Q } (1)

where x denotes a vector of decision variables to be
selected from the feasible set Q ⊂ Rn, and f(x) =
(f1(x), f2(x), . . . , fm(x)) is a vector function that maps
the feasible set Q into the criterion space Rm. Note that
neither any specific form of the feasible set Q is assumed
nor any special form of criteria fi(x) is required. We re-
fer to the elements of the criterion space as outcome vec-
tors. An outcome vector y is attainable if it expresses
outcomes of a feasible solution, i.e., y = f(x) for some
x ∈ Q. The set of all attainable outcome vectors will
be denoted by Y .

The model (1) only specifies that we are interested
in maximization of all objective functions fi for i ∈ I =
{1, 2, . . . ,m}. Thus, it allows only to identify (to elim-
inate) obviously inefficient solutions leading to domi-
nated outcome vectors, while still leaving the entire effi-
cient set to look for a satisfactory compromise solution.
In order to make the multiple criteria model operational
for the decision support process, one needs assume some
solution concept well adjusted to the DM preferences.
This can be achieved with the so-called quasi-satisficing
approach to multiple criteria decision problems. The
best formalization of the quasi-satisficing approach to
multiple criteria optimization was proposed and devel-
oped mainly by Wierzbicki [25] as the Reference Point
Method (RPM). The reference point method was later
extended to permit additional information from the DM
and, eventually, led to efficient implementations of the
so-called Aspiration/Reservation Based Decision Sup-
port (ARBDS) approach with many successful applica-
tions [1,4,14,27].
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The RPM is an interactive technique. The basic con-
cept of the interactive scheme is as follows. The DM
specifies requirements in terms of reference levels, i.e.,
by introducing reference (target) values for several in-
dividual outcomes. Depending on the specified refer-
ence levels, a special scalarizing achievement function
is built, which may be directly interpreted as expressing
utility to be maximized. Maximization of the scalariz-
ing achievement function generates an efficient solution
to the multiple criteria problem. The computed effi-
cient solution is presented to the DM as the current
solution in a form that allows comparison with the pre-
vious solutions, and modification of the reference levels
if necessary.

The scalarizing achievement function can be viewed
as two-stage transformation of the original outcomes.
First, the strictly monotonic component achievement
functions are built to measure individual performance
with respect to given reference levels. Having all the
outcomes transformed into a uniform scale of individual
achievements, they are aggregated at the second stage
to form a unique scalarization. The RPM is based on
the so-called augmented (or regularized) max-min ag-
gregation. Thus, the worst individual achievement is
essentially maximized, but the optimization process is
additionally regularized with the term representing the
average achievement. The max-min aggregation guar-
antees fair treatment of all individual achievements by
implementing an approximation to the Rawlsian prin-
ciple of justice.

The max-min aggregation is crucial for allowing the
RPM to generate all efficient solutions even for non-
convex (and particularly discrete) problems. On the
other hand, the regularization is necessary to guar-
antee that only efficient solutions are generated. The
regularization by the average achievement is easily im-
plementable, but it may disturb the basic max-min
model. Actually, the only consequent regularization
of the max-min aggregation is the lex-min order or,
more practical, the OWA aggregation with monotonic
weights. The latter combines all the component achieve-
ments allocating the largest weight to the worst achieve-
ment, the second largest weight to the second worst
achievement, the third largest weight to the third worst
achievement, and so on. The recent progress in opti-
mization methods for ordered averages [17] allows one
to implement the OWA RPM quite effectively. Further,
following the concept of Weighted OWA [23,24], the
importance weighting of several achievements may be
incorporated into the RPM. Such a WOWA enhance-
ment of the RPM uses importance weights to affect
achievement importance by rescaling accordingly its
measure within the distribution of achievements rather

than straightforward rescaling of achievement values
[22]. The paper analyzes both the theoretical and im-
plementation issues of the WOWA enhanced RPM.

The paper is organized as follows. In the next sec-
tion the scalarizing achievement functions are discussed
and related to the fuzzy multicriteria optimization. In
Section 3 there is introduced and analyzed the OWA re-
finement of the RPM. The OWA RPM model is further
extended in Section 4 to accommodate the importance
weights following the WOWA methodology. Linear Pro-
gramming computational model for the WOWA RPM
method is introduced. In Section 5 an illustrative ex-
ample is discussed.

2 RPM and Fuzzy Targets

In the RPM method, depending on the specified refer-
ence levels, a special scalarizing achievement function
is built which, when optimized, generates an efficient
solution to the problem. While building the scalariz-
ing achievement function, some basic properties of the
preference model are assumed. First of all, the following
property is required:
P1: The preference model corresponding to the scalar-
izing achievement function optimization is consistent
with the Pareto order and therefore each solution gen-
erated by the scalarizing function optimization is an
efficient solution of the original MCO problem.
To meet this requirement the preference model corre-
sponding to the scalarizing achievement function opti-
mization is strictly monotonic in the sense that an in-
crease of any outcome yi leads to a preferred solution.
Actually, the function must be strictly increasing with
respect to each individual outcome.

Second, the scalarizing achievement function op-
timization must enforce reaching the reference levels
prior to further improving of criteria. Hence, the fol-
lowing property is required:
P2: The preference model corresponding to the scalar-
izing achievement function optimization guarantees
that a solution with all individual outcomes satisfying
the corresponding reference levels is preferred to any so-
lution with at least one individual outcome worse than
its reference level.
Thus, similar to the goal programming approaches, the
reference levels are treated as targets, but following
the quasi-satisficing approach, they are interpreted con-
sistently with basic concepts of efficiency in the sense
that the optimization is continued even when the target
point has been reached already [27].
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The generic scalarizing achievement function takes
the following form [25]:

S(a) = min
1≤i≤m

{ai}+
ε

m

m∑
i=1

ai (2)

where ε is an arbitrary small positive number and
ai = si(fi(x)) for i = 1, 2, . . . ,m are the component
achievements measuring actual performances of the in-
dividual outcomes with component achievement func-
tions si : R→ R for i = 1, 2, . . . ,m defined with respect
to the corresponding reference levels. Let ai denote
the component achievement for the ith outcome (ai =
si(yi) = si(fi(x))), and let a = (a1, a2, . . . , am) = s(y)
represent the entire achievement vector. During the in-
teractive analysis, the scalarizing achievement function
is maximized in order to generate an efficient solution
as a current solution, i.e.

max
x∈Q

S(s(f(x))) = max
a∈A

S(a) (3)

where

A = {a = s(y) : y ∈ Y } = {a = s(f(x)) : x ∈ Q}. (4)

Note that we will use simplified notation of optimiza-
tion over the achievement set A although still assuming
that according to (4) the optimal solution ā is generated
by an optimal decision vector x̄ such that ā = s(f(x̄)).

The scalarizing achievement function (2) is essen-
tially defined by the worst component achievement but
additionally regularized with the sum of all component
achievements. The regularization term is introduced in
order to guarantee the efficiency of the optimal solution
in the case when the maximization of the main term
(the worst component achievement) results in a non-
unique optimal solution. Due to combining two terms
with arbitrary small parameter ε, formula (2) is easily
implementable and it provides a direct interpretation of
the scalarizing achievement function as expressing util-
ity. When accepting the loss of a direct utility interpre-
tation, one may consider a limiting case with ε → 0+,
which results in lexicographic order applied to two sep-
arate terms of function (2). That means, the regular-
ization can be implemented with the second level lex-
icographic optimization [14]. Therefore, RPM may be
also considered as the following lexicographic problem
([12] and references therein):

lex max
a∈A

( min
1≤i≤m

ai ,

m∑
i=1

ai) (5)

Various functions si provide a wide modeling en-
vironment for measuring component achievements [26,
27,9,11]. The basic RPM model is based on the single
vector of the reference levels, the aspiration vector ra.
For the sake of computational simplicity, the piecewise

linear functions si are usually employed. In the simplest
models, they take a form of two segment piecewise lin-
ear functions:

si(yi) =
{
λ+
i (yi − rai ), for yi ≥ rai
λ−i (yi − rai ), for yi < rai

(6)

where λ+
i > λ−i are positive scaling factors correspond-

ing to underachievements and overachievements, re-
spectively, for the ith outcome. It is usually assumed
that λ+

i is much larger than λ−i . Figure 1 depicts how
differentiated scaling affects the isoline contours of the
scalarizing achievement function.
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Fig. 1 Isoline contours for the scalarizing achievement function

(2) with component achievements (6)

Real-life applications of the RPM methodology usu-
ally deal with more complex component achievement
functions defined with more than one reference point
[27] which enriches the preference models and simplifies
the interactive analysis. In particular, the models tak-
ing advantages of two reference vectors: vector of aspi-
ration levels ra and vector of reservation levels rr [4] are
used, thus allowing the DM to specify requirements by
introducing acceptable and required values for several
outcomes. The component achievement function si can
be interpreted then as a measure of the DM’s satisfac-
tion with the current outcome value of the ith criterion.
It is a strictly increasing function of outcome yi with
value ai = 1 if yi = rai , and ai = 0 for yi = rri . Thus the
component achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfaction.
Various functions can be built meeting those require-
ments. We use the piece-wise linear component achieve-
ment function introduced in an implementation of the
ARBDS system for the multiple criteria transshipment
problems with facility location [16]:

si(yi) =



γ
yi − rri
rai − rri

, yi ≤ rri
yi − rri
rai − rri

, rri < yi < rai

α
yi − rai
rai − rri

+ 1, yi ≥ rai

(7)
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where α and γ are arbitrary parameters satisfying
0 < α < 1 < γ. The parameter α represents additional
increase of the DM’s satisfaction over level 1 when a cri-
terion generates outcomes better than the correspond-
ing aspiration level. On the other hand, the parameter
γ > 1 represents dissatisfaction connected with out-
comes worse than the reservation level (Fig. 2).

-
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Fig. 2 Component achievement function (7)

The lexicographic RPM model (5) used with the
component achievement function (7) guarantees that
the crucial properties of the quasi-satisficing decision
model are fulfilled. Indeed, the following theorem is
valid [10].

Theorem 1 The preference model corresponding to
the lexicographic optimization (5) and (7) has the fol-
lowing properties:

1. It is strictly monotonic in the sense that an increase
of any outcome yi leads to a preferred solution;

2. It guarantees that for any given target value %,
the solution generating all component achievements
equal to % (ai = % ∀i) is preferred to any solu-
tion generating at least one component achievement
worse than %.

Note that following the property 1, every solution opti-
mal to the lexicographic optimization (5) with (7) is an
efficient solution to the MCO problem (the property
P1). Further, following the property 2, the solution
reaching all the reservation levels is preferred to any
solution failing achievement of at least one reservation
level (% = 0) as well as the solution reaching all the aspi-
ration levels is preferred to any solution failing achieve-
ment of at least one aspiration level (% = 1). Thus,
the property P2 is satisfied in terms of the ARBDS
methodology. Note that this property is only approx-
imated in the case of the analytic scalarizing achieve-
ment function (2) since the regularization term may
disturb those preferences.

For outcomes between the reservation and the as-
piration levels, the component achievement function si

can be interpreted as a membership function µi for a
fuzzy target.

µi(yi) =


0, yi ≤ rri
yi − rri
rai − rri

, rri < yi < rai

1, yi ≥ rai

(8)

However, such a membership function remains constant
with value 1 for all outcomes greater than the corre-
sponding aspiration level, and with value 0 for all out-
comes below the reservation level (Fig. 3). Hence, the
fuzzy membership function is neither strictly monotonic
nor concave thus not representing typical utility for a
maximized outcome. The component achievement func-
tion (7) can be viewed as an extension of the fuzzy
membership function to a strictly monotonic and con-
cave utility. One may also notice that the aggregation
scheme used to build the scalarizing achievement func-
tion (2) from the component functions may also be in-
terpreted as some fuzzy aggregation operator [27]. In
other words, maximization of the scalarizing achieve-
ment function (2) is consistent with the fuzzy method-
ology in the case of not attainable aspiration levels and
satisfiable all reservation levels while modeling a reason-
able utility for any values of aspiration and reservation
levels.

-

6
1

µi

yirr
i ra

i

Fig. 3 Fuzzy membership function (8)

Theorem 2 If outcome vector ȳ ∈ Y generates an op-
timal solution of the lexicographic RPM problem (5)
with the piecewise linear component achievement func-
tions (7), then ȳ is an optimal solution of the corre-
sponding fuzzy targets intersection optimization prob-
lem

max
y∈Y

[ min
1≤i≤m

µi(yi)] (9)

Proof Let ā = s(ȳ), with si defined according to (7),
be an optimal solution of the lexicographic RPM prob-
lem (5). Suppose that ȳ is not optimal to problem
(9). This means min1≤i≤m µi(ȳi) = µi0(ȳi0) = %̄ < 1
and there exists ỹ ∈ Y such that µi(ỹi) ≥ %̃ > %̄

for all i ∈ I. Note that %̄ < 1 and %̃ > 0. Hence,
si(ỹi) ≥ µi(ỹi) for all i ∈ I and µi0(ȳi0) ≥ si0(ȳi0).
Thus, si(ỹi) ≥ %̃ > %̄ ≥ si0(ȳi0) ≥ min1≤i≤m si(ȳi),
which contradicts optimality of ȳ with respect to the
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maxmin optimization maxy∈Y [min1≤i≤m si(yi)] and
also to the lexicographic RPM problem (5).

Under the assumption that the parameters α and
γ satisfy inequalities 0 < α < 1 < γ, the component
achievement function (7) is strictly increasing and con-
cave. Hence, it can be expressed in the form:

si(yi) = min
{
γ
yi − rri
rai − rri

,
yi − rri
rai − rri

, α
yi − rai
rai − rri

+ 1
}

which guarantees LP computability with respect to out-
comes yi. Finally, maximization of the entire scalarizing
achievement function (5) can be implemented by the
following auxiliary LP constraints:

lex max (a,
m∑
i=1

ai)

s.t. a ≤ ai ∀ i ∈ I

ai ≤ γ
yi − rri
rai − rri

∀ i ∈ I

ai ≤
yi − rri
rai − rri

∀ i ∈ I

ai ≤ α
yi − rai
rai − rri

+ 1 ∀ i ∈ I

where ai for i = 1, . . . ,m and a are unbounded vari-
ables introduced to represent values of several compo-
nent achievement functions and their minimum, respec-
tively.

On the other hand, the fuzzy model (9) requires the
use of some binary variables. In the simplest form it can
be formulated as follows

max a

s.t. a ≤ ai ∀ i ∈ I
ai ≤ 1− ui ∀ i ∈ I
ai ≤

yi − ri
ai − ri

+Mui ∀ i ∈ I

ui ≤
ri − yi

M(ai − ri)
+ 1 ∀ i ∈ I

where M is a large constant and ui are binary variables
satisfying yi > ri ⇒ ui = 0, due to the last inequal-
ity. Hence, the lexicographic RPM problem (5) with the
piecewise linear component achievement functions (7)
allow us to select efficient solutions among various al-
ternative optimal solutions of the corresponding fuzzy
targets intersection optimization problem (9). Simulta-
neously, the corresponding RPM problem is much more
simpler with respect to its computational complexity.

3 OWA Refinement of the RPM

The crucial properties of the RPM are related to the
max-min aggregation of the component achievements.

The regularization is introduced in order to guaran-
tee the aggregation monotonicity. Unfortunately, the
distribution of achievements may make the max-min
criterion partially passive when one specific achieve-
ment is relatively very small for all the solutions. Max-
imization of the worst achievement may then leave all
other achievements unoptimized. The selection is then
made according to linear aggregation of the regulariza-
tion term instead of the max-min aggregation, thus de-
stroying the preference model of the RPM. This can be
illustrated with an example of a simple discrete prob-
lem of 7 alternative feasible solutions to be selected ac-
cording to 6 criteria. Table 1 presents six component
achievements for all the solutions, where the compo-
nent achievements have been defined according to the
aspiration/reservation model (7) thus allocating 1 to
outcomes reaching the corresponding aspiration level.
All the solutions are efficient. Solution S1 to S5 reach
aspiration levels (achievement values 1.0) for four of
the first five criteria while failing to reach one of them
and the aspiration level for the sixth criterion as well
(achievement values 0.1). Solution S6 is close to the as-
piration levels (achievement values 0.8) for the first five
criteria while failing to reach the aspiration level for
the sixth criterion (achievement values 0.1). All the so-
lutions generate the same worst achievement value 0.1
and the final selection of the RPM depends on the to-
tal achievement (regularization term). Actually, one of
solutions S1 to S5 will be selected as better than S6.

Table 1 Sample achievements with passive max-min criterion

Sol. a1 a2 a3 a4 a5 a6 min
P

S1 0.1 1.0 1.0 1.0 1.0 0.1 0.1 4.2

S2 1.0 0.1 1.0 1.0 1.0 0.1 0.1 4.2
S3 1.0 1.0 0.1 1.0 1.0 0.1 0.1 4.2

S4 1.0 1.0 1.0 0.1 1.0 0.1 0.1 4.2

S5 1.0 1.0 1.0 1.0 0.1 0.1 0.1 4.2
S6 0.8 0.8 0.8 0.8 0.8 0.1 0.1 4.1

S7 0.1 0.1 0.1 0.8 0.4 0.8 0.1 2.3

One may easily notice that eliminating from the
consideration alternative S7 we get the sixth component
achievement (and the corresponding criterion) constant
for the six alternatives under consideration. Hence, one
may expect the same solution selected while taking into
account this criterion or not. If focusing on five first
criteria, then the RPM (either lexicographic (5) or an-
alytic (2)) obviously selects solution S6 as reaching the
worst achievement value 0.8.

In order to avoid inconsistencies caused by the
regularization, the max-min solution may be regular-
ized according to the ordered averaging rules [28].
This is mathematically formalized as follows. Within
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the space of achievement vectors, we introduce map
Θ = (θ1, θ2, . . . , θm), which orders the coordinates of
achievements vectors in a nonincreasing order, i.e.,
Θ(a1, a2, . . . , am) = (θ1(a), θ2(a), . . . , θm(a)) iff there
exists a permutation τ such that θi(a) = aτ(i) for all i
and θ1(a) ≥ θ2(a) ≥ . . . ≥ θm(a). The standard max-
min aggregation depends on maximization of θm(a) and
it ignores values of θi(a) for i ≤ m − 1. In order to
take into account all the achievement values, one needs
to maximize the weighted combination of the ordered
achievements thus representing the so-called Ordered
Weighted Averaging (OWA) aggregation [28]. Note that
the weights are then assigned to the specific positions
within the ordered achievements rather than to the
component achievements themselves. With the OWA
aggregation one gets the following RPM model:

max
a∈A

m∑
i=1

wiθi(a) (10)

where w1 < w2 < . . . < wm are positive and strictly in-
creasing weights. Actually, they should be significantly
increasing to represent regularization of the max-min
order. When differences among weights tend to infinity,
the OWA aggregation approximates the leximin rank-
ing of the ordered outcome vectors [29]. Note that the
standard RPM model with the scalarizing achievement
function (2) can be expressed as the following OWA
model:

max
a∈A

(
(1 +

ε

m
)θm(a) +

ε

m

m−1∑
i=1

θi(a)

)

Hence, the standard RPM model exactly represents the
OWA aggregation (10) with strictly increasing weights
in the case of m = 2 (w1 = ε/2 < w2 = 1 + ε/2).
For m > 2 it abandons the differences in weighting
of the largest achievement, the second largest one, etc
(w1 = . . . = wm−1 = ε/m). The OWA RPM model (10)
allows one to distinguish all the weights by introducing
increasing series (e.g. geometric ones). One may notice
in Table 2 that application of increasing weights w =
(0.02, 0.03, 0.05, 0.15, 0.25, 0.5) within the OWA RPM
enables the selection of solution S6 from Table 1. On
the other hand, the OWA RPM model (10) similar to
that of (2) does not fulfill completely the preference
model of the reference vectors (property P2).

When accepting the loss of a direct utility interpre-
tation, one may consider more powerful lexicographic
preference modeling [11,12] based on the linear compo-
nent achievement function

ai = si(fi(x)) = (fi(x)− rri )/(rai − rri ) ∀ i ∈ I (11)

Table 2 Ordered achievements values

Sol. θ1 θ2 θ3 θ4 θ5 θ6 Aw

S1 1.0 1.0 1.0 1.0 0.1 0.1 0.505
S2 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S3 1.0 1.0 1.0 1.0 0.1 0.1 0.505
S4 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S5 1.0 1.0 1.0 1.0 0.1 0.1 0.505

S6 0.8 0.8 0.8 0.8 0.8 0.1 0.630
S7 0.8 0.8 0.4 0.1 0.1 0.1 0.285

w 0.02 0.03 0.05 0.15 0.25 0.5

Table 3 Sample aspiration underachievements

Sol. aa
1 aa

2 aa
3 aa

4 aa
5 aa

6

S1 0.9 0.0 0.0 0.0 0.0 0.9
S2 0.0 0.9 0.0 0.0 0.0 0.9

S3 0.0 0.0 0.9 0.0 0.0 0.9

S4 0.0 0.0 0.0 0.9 0.0 0.9
S5 0.0 0.0 0.0 0.0 0.9 0.9

S6 0.2 0.2 0.2 0.2 0.2 0.9
S7 0.9 0.9 0.9 0.2 0.6 0.2

but splitted into separate preemptive multilevel inter-
val achievement measures: the reservation level under-
achievement

ari = sri (fi(x)) =
(rri − fi(x))+

rai − rri
∀ i ∈ I,

the aspiration level underachievement

aai = sai (fi(x)) = min{ (rai − fi(x))+
rai − rri

, 1} ∀ i ∈ I

and the aspiration level overachievement

aoi = soi (fi(x)) =
(fi(x)− rai )+
rai − rri

∀ i ∈ I.

Taking into account (11), they can be rewritten as

ari = (−ai)+ ∀ i ∈ I
aai = min{(1− ai)+, 1} ∀ i ∈ I
aoi = (ai − 1)+ ∀ i ∈ I

(12)

For instance, sample achievements from Table 1 repre-
sent all the results between the reservation and aspi-
ration levels. Hence, the corresponding reservation un-
derachievements are equal zero (ar = 0) and similarly
all the aspiration overachievements (ao = 0) while the
aspiration underachievement are given in Table 3.

Maximization of the scalarizing achievement func-
tion (10) is replaced with the lexicographic minimiza-
tion of the multilevel aggregations:

lex min
a∈A
{ (Aw(ar), Aw(aa), Aw(−ao)) :

Eq. (11)–(12)}
(13)

with positive and strictly decreasing weights w1 >

w2 > . . . > wm > 0. One may notice in Ta-
ble 4 that application of decreasing weights w =
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Table 4 Ordered aspiration underachievements with passive
min-max criterion

Sol. θ1 θ2 θ3 θ4 θ5 θ6 Aw(aa)

S1 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S2 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S3 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S4 0.9 0.9 0.0 0.0 0.0 0.0 0.675

S5 0.9 0.9 0.0 0.0 0.0 0.0 0.675
S6 0.9 0.2 0.2 0.2 0.2 0.2 0.550

S7 0.9 0.9 0.9 0.6 0.2 0.2 0.895

w 0.5 0.25 0.15 0.05 0.03 0.02

(0.5, 0.25, 0.15, 0.05, 0.03, 0.02) within the OWA RPM
(13) enables the selection of solution S6 from Table 3.

Problem (13) always generates an efficient solution
to the original MCO problem complying simultaneously
with the ARBDS preference model assumptions.

Theorem 3 For any reference levels rai > rri , any pos-
itive weights w, if (ār, āa, āo) is an optimal solution
of the problem (13), then any decision vector x̄ ∈ Q

generating this solution is an efficient solution of the
corresponding MCO problem (1).

Proof Let x̄ be a feasible vector generating (ār, āa, āo)
optimal to the problem (13) with some positive weight
vector w. Suppose that x̄ is not efficient to the MCO
problem (1). This means, there exists a decision vec-
tor x ∈ Q such that fi(x) ≥ fi(x̄) for all i ∈ I and
fio(x) > fio(x̄) for some outcome index io ∈ I. Let
us define ari , a

a
i and aoi according to formula (12). The

triple (ar,aa,ao) is then a feasible solution of the prob-
lem (13). Moreover, ari ≤ āri , a

a
i ≤ āai and aoi ≥ āoi

for all i ∈ I, where at least one of strict inequalities
ari0 < āri0 or aai0 < āai0 or aoi0 > āoi0 holds. Hence, due
to strict monotonicity of the OWA aggregation with
positive weighting vectors, one gets Aw(ar) ≤ Aw(ār),
Aw(aa) ≤ Aw(āa) and Aw(−ao) ≤ Aw(−āo) with at
least one inequality strict. The latest assertion con-
tradicts the lexicographic optimality of (ār, āa, āo) for
problem (13), which completes the proof.

Theorem 4 For any reference levels rai > rri , any pos-
itive weights w, if (ār, āa, āo) is an optimal solution
of the problem (13), then all the reservation level un-
derachievements āri are equal 0 whenever there exists
a feasible solution x ∈ Q such that fi(x) ≥ rri for all
i ∈ I.

Proof Let (ār, āa, āo) be an optimal solution of the
problem (13) with some positive weight vector w. Sup-
pose that āri0 < 0 for some i0 ∈ I and there exists a fea-
sible solution x ∈ Q such that fi(x) ≥ rri for all i ∈ I.
Let us define ari , a

a
i and aoi according to formula (12)

and note that ari = 0 for all i ∈ I. The triple (ar,aa,ao)

is then a feasible solution of problem (26) and, due to
positive weights, Aw(ar) = 0 < Aw(ār) thus contra-
dicting the lexicographic optimality of (ār, āa, āo).

Theorem 5 For any reference levels rai > rri , any pos-
itive weights w, if (ār, āa, āo) is an optimal solution
of the problem (13), then all the aspiration level un-
derachievements āai are equal 0 whenever there exists
a feasible solution x ∈ Q such that fi(x) ≥ rai for all
i ∈ I.

Proof Let (ār, āa, āo) be an optimal solution of the
problem (13) with some positive weight vector w. Sup-
pose that āai0 < 0 for some i0 ∈ I and there ex-
ists a feasible solution x ∈ Q such that fi(x) ≥ rai
for all i ∈ I. Let us define ari , a

a
i and aoi accord-

ing to formula (12) and note that aai = ari = 0 for
all i ∈ I. The triple (ar,aa,ao) is then a feasible so-
lution of problem (26) and, due to positive weights,
Aw(aa) = 0 < Aw(āa) thus contradicting the lexico-
graphic optimality of (ār, āa, āo).

Note that following Theorem 3, every solution op-
timal to the OWA RPM problem (13) is an efficient
solution to the MCO problem (property P1). Further,
following Theorem 4, a solution reaching all the reser-
vation levels is preferred to any solution failing achieve-
ment of at least one reservation level. Similarly, accord-
ing to Theorem 5, a solution reaching all the aspiration
levels is preferred to any solution failing achievement
of at least one aspiration level. Thus, the property P2
is satisfied in terms of the ARBDS methodology. The
following theorem shows that for each efficient solution
x̄ there exist aspiration and reservation vectors such
that x̄ with the corresponding values of the multilevel
achievements is an optimal solution of the problem (13)
thus justifying the complete controllability of the inter-
active process by the aspiration levels.

Theorem 6 If x̄ is an efficient solution of the MCO
problem (1), then there exist aspirations levels rai such
that the corresponding triple (ār, āa, āo) is an optimal
solution of problem (13), for any reservation levels rri <
rai and any positive weight vector w.

Proof Let us set the aspiration levels as rai = fi(x̄)
for i ∈ I. For any reservation levels rri < rai , all the
corresponding multilevel achievements defined accord-
ing to the formula (12) take the zero values: ār = 0,
āa = 0 and āo = 0. Suppose that for some weights the
triple (0, 0, 0) is not an optimal solution of the corre-
sponding problem (13). This means there exists a vec-
tor x ∈ Q such that ar = 0, aa = 0, ao ≥ 0 and
Aw(−ao) < Aw(−āo). Hence, fi(x) ≥ fi(x̄) ∀ i ∈ I

and fio(x) > fio(x̄) for some index io ∈ I. The latest
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assertion contradicts the efficiency of x̄ to the MCO
problem (1), which completes the proof.

Note that instead of (12), the interval achievements
may be defined with the goal programming modeling
techniques [14]:

ai = (fi(x)− rri )/(rai − rri ), ∀ i ∈ I
ai − aoi + aai + ari = 1, ∀ i ∈ I
aoi ≥ 0, 0 ≤ aai ≤ 1, ari ≥ 0 ∀ i ∈ I

(14)

Indeed, due to strict monotonicity of the OWA aggrega-
tion with positive weights [2,6], the following assertion
may be applied to justify the OWA RPM model given
as

lex min
a∈A
{(Aw(ar), Aw(aa), Aw(−ao)) : Eq. (14)}. (15)

Lemma 1 For any strictly increasing scalarizing func-
tion g, if (x̄, ār, āa, āo) is an optimal solution of the
problem

lex min
a∈A
{(g(ar), g(aa), g(−ao)) : Eq. (14)}, (16)

then it is an optimal solution of the problem

lex min
a∈A
{(g(ar), g(aa), g(−ao)) : Eq. (11)–(12)}. (17)

Proof Let (x̄, ār, āa, āo) be an optimal solution of the
problem (16). If āri , ā

a
i and āoi fulfill the formula (12)

for x̄, then the quadruple (x̄, ār, āa, āo) is an optimal
solution of the corresponding problem (17). In order to
prove that the formula (12) is satisfied, it is enough to
show that āoi ā

a
i = 0 and (1 − āai )āri = 0 for all i ∈ I

while obviously āoi ā
a
i ≥ 0 and (1 − āai )āri ≥ 0 for all

i ∈ I.
Suppose that āoi0 ā

a
i0
> 0 for some index i0 ∈ I.

One may decrease then the values of both variables
āoi0 and āai0 by the same small positive number. This
means, for sufficiently small positive number δ, the
quadruple (x̄, āo − δei0 , ā

a − δei0 , ā
r), where ei0 de-

notes the unit vector corresponding to index i0, is fea-
sible to problem (16). Due to the strictly increasing
function g, one gets (g(ār), g(āa− δei0), g(−āo + δei0))
<lex (g(ār), g(āa), g(−āo)), which contradicts optimal-
ity of (x̄, ār, āa, āo) to the problem (16).

Further, suppose that (1−āai0)āri0 > 0 for some index
i0 ∈ I. One may decrease then the value of variable āri0
and simultaneously increase āai0 by the same small pos-
itive number. This means, for sufficiently small positive
number δ, the quadruple (x̄, ā−, āa + δei0 , ā

r − δei0) is
feasible to problem (16). Hence, (g(ār − δei0), g(āa +
δei0), g(−āo)) <lex (g(ār), g(āa), g(−āo)), which con-
tradicts optimality of (x̄, ār, āa, āo) to the problem (16).

Thus (x̄, āo, āa, ār) fulfills formula (12) and there-
fore it is an optimal solution of the corresponding prob-
lem (17).

An important advantage of the RPM depends on
its easy implementation as an expansion of the origi-
nal multiple criteria model. Actually, even complicated
component achievement functions of the form (7) are
strictly increasing and concave, thus allowing for im-
plementation of the entire RPM model (2) by an LP
expansion [16].

The OWA aggregation is obviously a piecewise lin-
ear function since it remains linear within every area of
the fixed order of arguments. The ordered achievements
used in the OWA aggregation are, in general, difficult
to implement due to the pointwise ordering. Its opti-
mization can be implemented using the cumulated or-
dered achievements θ̄k(a) =

∑k
i=1 θi(a) expressing re-

spectively: the worst achievement, the total of the two
worst achievements, the total of the three worst achieve-
ments, etc. Indeed,
m∑
i=1

wiθi(a) =
m∑
i=1

w′iθ̄i(a) (18)

where w′k = wk − wk+1 for k = 1, . . . ,m − 1 and
w′m = wm. This simplifies dramatically the optimiza-
tion problem since quantities θ̄k(a) can be optimized
without use of any integer variables [17]. First, let us
notice that for any given vector a, the cumulated or-
dered value θ̄k(a) can be found as the optimal value of
the following LP problem:

θ̄k(a) = max
uik

{
m∑
i=1

aiuik :

m∑
i=1

uik = k, 0 ≤ uik ≤ 1 ∀i }
(19)

The above problem is an LP for a given outcome vec-
tor a while it becomes nonlinear for a being a vector of
variables. This difficulty can be overcome by taking ad-
vantage of the LP dual to (19). Introducing a dual vari-
able tk corresponding to the equation

∑m
i=1 uik = k,

and variables dik corresponding to the upper bounds on
uik, one gets the following LP dual of problem (19):

θ̄k(a) = min
tk,dik

{ ktk +
m∑
i=1

dik :

ai ≤ tk + dik, dik ≥ 0 ∀ i }
(20)

Due to the duality theory, for any given vector a, the
cumulated ordered coefficient θ̄k(a) can be found as the
optimal value of the above LP problem. It follows from
(20) that θ̄k(a) = max {ktk +

∑m
i=1 (ai − tk)+}, where

(.)+ denotes the nonnegative part of a number and tk
is an auxiliary (unbounded) variable. The latter, with
the necessary adaptation to the location problems, is
equivalent to the computational formulation of the k-
centrum model introduced by [21]. Hence, formula (20)
provides an alternative proof of that formulation.
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Taking advantages of the LP expression (20) for θ̄k,
the entire OWA aggregation of the component achieve-
ment functions (10) can be expressed in terms of LP.
This leads us to the following formulation of the OWA
RPM problem (15):

lex min[
m∑
k=1

w′kz
r
k,

m∑
k=1

w′kz
a
k ,

m∑
k=1

w′kz
o
k]

s.t. x ∈ Q
ai = (fi(x)− rri )/(rai − rri ), ∀ i ∈ I
ai − aoi + aai + ari = 1, ∀ i ∈ I
aoi ≥ 0, 0 ≤ aai ≤ 1, ari ≥ 0 ∀ i ∈ I

zrk = ktrk +
m∑
i=1

drik, ∀ k ∈ I

ari ≤ trk + drik, d
r
ik ≥ 0 ∀ i, k ∈ I

zak = ktak +
m∑
i=1

daik, ∀ k ∈ I

aai ≤ tak + daik, d
a
ik ≥ 0 ∀ i, k ∈ I

zok = ktok +
m∑
i=1

doik, ∀ k ∈ I

− aoi ≤ tok + doik, d
o
ik ≥ 0 ∀ i, k ∈ I

(21)

Note that the resulting formulation extends the original
constraints and criteria with linear inequalities.

Theorem 7 For any reference levels rai > rri , any pos-
itive strictly decreasing weights wi, if (x̄, ār, āa, āo) is
an optimal solution of the problem (21), then it is an
optimal solution of the corresponding problem (13).

Proof Let (x̄, ār, āa, āo) be an optimal solution of the
problem (21) with weight vector w. Following the OWA
formulas (18) and (20), one may notice that, due to pos-
itive and strictly decreasing weights wi, the problem
(21) is equivalent to the following lexicographic opti-
mization:

lex min
a∈A

(Aw(ar), Aw(aa), Aw(−ao))}

Further, following Lemma 1, due to strict monotonic-
ity of the OWA aggregations with positive weights, the
quadruple (x̄, ār, āa, āo) is also an optimal solution of
the corresponding problem (13).

Corollary 1 For any reference levels rai > rri , any pos-
itive strictly decreasing weights wi, if (ār, āa, āo) is an
optimal solution of the problem (21), then any decision
vector x̄ ∈ Q generating this solution is an efficient
solution of the corresponding MCO problem (1).

Corollary 2 If x̄ is an efficient solution of the MCO
problem (1), then there exist aspiration levels rai =
fi(x) such that the corresponding triple (ār, āa, āo) is
an optimal solution of the corresponding problem (21),
for any reservation levels rri < rai and any positive
strictly decreasing weights wi.

4 WOWA Enhancement

Typical RPM model allows weighting of several achieve-
ments only by straightforward rescaling of the achieve-
ment values [22]. The OWA RPM model enables one
to introduce importance weights to affect achievement
importance by rescaling accordingly its measure within
the distribution of achievements as defined in the so-
called Weighted OWA (WOWA) aggregation [23,5]. Let
w = (w1, . . . , wm) and p = (p1, . . . , pm) be weighting
vectors of dimension m such that wi ≥ 0 and pi ≥ 0 for
i = 1, 2, . . . ,m as well as

∑m
i=1 pi = 1 (typically it is

also assumed
∑m
i=1 wi = 1, but it is not necessary in

our applications). The corresponding Weighted OWA
aggregation of outcomes a = (a1, . . . , am) is defined as
follows [23]:

Aw,p(a) =
m∑
i=1

ωiθi(a) (22)

where the weights ωi are defined as

ωi = w∗(
∑
k≤i

pτ(k))− w∗(
∑
k<i

pτ(k)) (23)

with w∗ a monotone increasing function that interpo-
lates points ( im ,

∑
k≤i wk) together with the point (0.0)

and τ representing the ordering permutation for a (i.e.
aτ(i) = θi(a)). Moreover, function w∗ is required to be a
straight line when the point can be interpolated in this
way, thus allowing the WOWA to cover the standard
weighted mean with weights pi as a special case of equal
preference weights (wi = 1/m for i = 1, 2, . . . ,m). Ac-
tually, for our purpose we use linear interpolation which
obviously satisfies that requirement.

Example 1 Consider achievements vectors a′ = (1, 2)
and a′′ = (2, 1). While introducing preferential weights
w = (0.9, 0.1), one may calculate the OWA averages:
Aw(y′) = Aw(y′′) = 0.9 · 2 + 0.1 · 1 = 1.9. Further,
let us introduce importance weights p = (0.75, 0.25),
which means that results under the first achievement
are 3 times more important then those related to the
second criterion. To take into account the importance
weights in the WOWA aggregation (22) we introduce
piecewise linear function

w∗(ξ) =
{

0.9ξ/0.5 for 0 ≤ ξ ≤ 0.5
0.9 + 0.1(ξ − 0.5)/0.5 for 0.5 < ξ ≤ 1.0

and calculate weights ωi according to the formula (23)
as w∗ increments corresponding to importance weights
of the ordered outcomes, as illustrated in Fig. 4. In
particular, one get ω1 = w∗(p2) = 0.45 and ω2 =
1−w∗(p2) = 0.55 for vector a′ while ω1 = w∗(p1) = 0.95
and ω2 = 1 − w∗(p1) = 0.05 for vector a′′. Finally,
Aw,p(a′) = 0.45 · 2 + 0.55 · 1 = 1.45 and Aw,p(a′′) =
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Fig. 4 Definition of weights ωi for Example 1: (a) vector a′ = (1, 2), (b) vector a′′ = (2, 1)
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Fig. 5 Formula (24) applied to calculations in Example 1: (a) vector a′ = (1, 2), (b) vector a′′ = (2, 1)

0.95 · 2 + 0.05 · 1 = 1.95. Note that one may alterna-
tively compute the WOWA values by using the impor-
tance weights to replicate corresponding achievements
and calculate then OWA aggregations. In the case of
our importance weights p = (0.75, 0.25) we need to
consider three copies of achievement a1 and one copy of
achievement a2 thus generating vectors ã′ = (1, 1, 1, 2)
and ã′′ = (2, 2, 2, 1) of four equally important achieve-
ments. Original preferential weights must be then ap-
plied respectively to the average of the two smallest
outcomes and to the average of two largest outcomes.
Indeed, we get Aw,p(a′) = 0.9 · 1.5 + 0.1 · 1 = 1.45 and
Aw,p(a′′) = 0.9 ·2+0.1 ·1.5 = 1.95. We will further for-
malize this approach and take its advantages to build
LP computational models.

The WOWA aggregation may be expressed with an
alternative formula using directly preferential weights
wi as applied to the averages of corresponding portions
of the ordered achievements (quantile intervals) accord-
ing to the distribution defined by importance weights
pi [18–20]:

Aw,p(a) =
m∑
i=1

wim

∫ i
m

i−1
m

F
(−1)

a (ξ) dξ (24)

where F
(−1)

y is the stepwise function F
(−1)

y (ξ) = θi(y)
for βi−1 < ξ ≤ βi. It can also be mathematically formal-
ized as follows. First, we introduce the left-continuous
right tail cumulative distribution function (cdf) defined
as:

Fy(d) =
∑
i∈I

piδi(d) where δi(d) =
{

1 if yi ≥ d
0 otherwise

(25)

which for any real (outcome) value d provides the mea-
sure of outcomes greater or equal to d. Next, we intro-
duce the quantile function F

(−1)

y as the right-continuous
inverse of the cumulative distribution function Fy:

F
(−1)

y (ξ) = sup {η : Fy(η) ≥ ξ} for 0 < ξ ≤ 1.

Fig. 5 illustrates application of formula (24) to com-
putations of the WOWA aggregations in Example 1.
Note that m = 2, therefore the area below F

(−1)

a (ξ)
within interval [0, 0.5] is multiplied by 2w1 and added
to the area below F

(−1)

a (ξ) within interval [0.5, 1] mul-
tiplied by 2w2.

The formula (24) enables an easy proof of the strict
monotonicity for the WOWA aggregation defined by
positive weights. Indeed the following assertion is valid.
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Lemma 2 For any positive weights w and p the
WOWA aggregation Aw,p(a) is strictly increasing with
respect to any component ai.

Proof Let a′ = a + εei0 for some i0 ∈ I and ε > 0.
Then [15] F

(−1)

a′ (ξ) ≥ F
(−1)

a (ξ) for any 0 ≤ ξ ≤ 1
and simultaneously

∫ 1

0
F

(−1)

a′ (ξ) dξ =
∑m
i=1 pia

′
i >∑m

i=1 piai =
∫ 1

0
F

(−1)

a (ξ) dξ. Hence, following the for-
mula (24), Aw,p(a′) > Aw,p(a), which completes the
proof.

Table 5 WOWA RPM selection with importance weights p =

( 4
12
, 3
12
, 2
12
, 1
12
, 1
12
, 1
12

)

w S1 S2 S3 S4 S5 S6 S7

0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.2 0.9

0.25 0.9 0.9 0.9 0.0 0.0 0.2 0.9

0.9 0.9 0.9 0.0 0.0 0.2 0.9

0.15 0.0 0.0 0.0 0.0 0.0 0.2 0.9
0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.05 0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.03 0.0 0.0 0.0 0.0 0.0 0.2 0.9

0.0 0.0 0.0 0.0 0.0 0.2 0.6

0.02 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

Aw,p(aa) 0.74 0.68 0.56 0.45 0.45 0.38 0.88

Table 6 WOWA RPM selection with importance weights p =

( 1
12
, 1
12
, 1
12
, 1
12
, 1
12
, 7
12

)

w S1 S2 S3 S4 S5 S6 S7

0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.25 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.9 0.9 0.9 0.9 0.9 0.9 0.6

0.15 0.9 0.9 0.9 0.9 0.9 0.9 0.2
0.9 0.9 0.9 0.9 0.9 0.9 0.2

0.05 0.9 0.9 0.9 0.9 0.9 0.9 0.2

0.9 0.9 0.9 0.9 0.9 0.2 0.2

0.03 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.02 0.0 0.0 0.0 0.0 0.0 0.2 0.2

0.0 0.0 0.0 0.0 0.0 0.2 0.2

Aw,p(aa) 0.86 0.86 0.86 0.86 0.86 0.85 0.69

The WOWA enhanced RPM can be based on the
following lexicographic optimization problem [13]:

lex min
a∈A

(Aw,p(ar), Aw,p(aa), Aw,p(−ao)) (26)

used to generate current solutions according to the
specified preferences. For instance, applying impor-
tance weighting p = ( 4

12 ,
3
12 ,

2
12 ,

1
12 ,

1
12 ,

1
12 ) to com-

ponent achievements together with the OWA weights

w from Table 4, one gets the WOWA aggregations
from Table 5. The corresponding RPM method selects
then solution S6, similarly to the case of equal im-
portance weights. On the other hand, when increas-
ing the importance of the last achievement with p =
( 1
12 ,

1
12 ,

1
12 ,

1
12 ,

1
12 ,

7
12 ), one gets the WOWA values from

Table 6 suggesting the selection of solution S7.
The following assertions show that the WOWA

RPM problem (26) always generates an efficient solu-
tion to the original MCO problem (Theorem 8) thus
satisfying the property P1. Further, following Theo-
rem 9, a solution reaching all the reservation levels is
preferred to any solution failing to achieve at least one
reservation level and according to Theorem 10, a so-
lution reaching all the aspiration levels is preferred to
any solution failing to achieve at least one aspiration
level. Thus, the property P2 is satisfied in terms of the
ARBDS methodology.

Theorem 8 For any reference levels rai > rri , any pos-
itive weights w and p, if (ār, āa, āo) is an optimal solu-
tion of the problem (26), then any decision vector x̄ ∈ Q
generating this solution is an efficient solution of the
corresponding MCO problem (1).

Proof Let x̄ be a feasible vector generating (ār, āa, āo)
optimal to the problem (26) with some positive weight-
ing vectors w and p. Suppose that x̄ is not efficient
to the MCO problem (1). This means, there exists a
decision vector x ∈ Q such that fi(x) ≥ fi(x̄) for
all i ∈ I and fio(x) > fio(x̄) for some outcome in-
dex io ∈ I. Let us define ari , a

a
i and aoi according to

the formula (12). The triple (ar,aa,ao) is then a feasi-
ble solution of the problem (26). Moreover, ari ≤ āri ,
aai ≤ āai and aoi ≥ āoi for all i ∈ I where at least
one of strict inequalities ari0 < āri0 or aai0 < āai0 or
aoi0 > āoi0 holds. Hence, due to strict monotonicity of the
WOWA aggregation with positive weighting vectors,
one gets Aw,p(ar) ≤ Aw,p(ār), Aw,p(aa) ≤ Aw,p(āa)
and Aw,p(−ao) ≤ Aw,p(−āo) with at least one inequal-
ity strict. The latest assertion contradicts the lexico-
graphic optimality of (ār, āa, āo) for the problem (26),
which completes the proof.

Theorem 9 For any reference levels rai > rri , any pos-
itive weights w and p, if (ār, āa, āo) is an optimal so-
lution of the problem (26), then all the reservation level
underachievements āri are equal 0 whenever there exists
a feasible solution x ∈ Q such that fi(x) ≥ rri for all
i ∈ I.

Proof Let (ār, āa, āo) be an optimal solution of the
problem (26) with some positive weighting vectors w
and p. Suppose that āri0 < 0 for some i0 ∈ I and there
exists a feasible solution x ∈ Q such that fi(x) ≥ rri
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for all i ∈ I. Let us define ari , a
a
i and aoi accord-

ing to the formula (12) and note that ari = 0 for all
i ∈ I. The triple (ar,aa,ao) is then a feasible solu-
tion of the problem (26) and, due to positive weights,
Aw,p(ar) = 0 < Aw,p(ār) thus contradicting the lexi-
cographic optimality of (ār, āa, āo).

Theorem 10 For any reference levels rai > rri , any
positive weights w and p, if (ār, āa, āo) is an optimal
solution of the problem (26), then all the aspiration level
underachievements āai are equal 0 whenever there exists
a feasible solution x ∈ Q such that fi(x) ≥ rai for all
i ∈ I.

Proof Let (ār, āa, āo) be an optimal solution of the
problem (26) with some positive weighting vectors w
and p. Suppose that āai0 < 0 for some i0 ∈ I and there
exists a feasible solution x ∈ Q such that fi(x) ≥ rai
for all i ∈ I. Let us define ari , a

a
i and aoi according to

the formula (12) and note that aai = ari = 0 for all
i ∈ I. The triple (ar,aa,ao) is then a feasible solu-
tion of the problem (26) and, due to positive weights,
Aw,p(aa) = 0 < Aw,p(āa) thus contradicting the lexi-
cographic optimality of (ār, āa, āo).

In order to show that the WOWA RPM model (26)
provides us with a complete parameterization of the ef-
ficient set, we will prove in the following theorem that
for each efficient solution x̄ there exist aspiration and
reservation vectors for which x̄ with the correspond-
ing values of the multilevel achievements is an optimal
solution of the problem (26).

Theorem 11 If x̄ is an efficient solution of the MCO
problem (1), then there exist aspirations levels rai such
that the corresponding triple (ār, āa, āo) is an optimal
solution of the problem (26), for any reservation levels
rri < rai and positive weighting vectors w and p.

Proof Let us set the aspiration levels as rai = fi(x̄)
for i ∈ I. For any reservation levels rri < rai , all the
corresponding multilevel achievements defined accord-
ing to the formula (12) take the zero values: ār = 0,
āa = 0 and āo = 0. Suppose that for some weights the
triple (0, 0, 0) is not an optimal solution of the corre-
sponding problem (26). This means there exists a vec-
tor x ∈ Q such that ar = 0, aa = 0, ao ≥ 0 and
Aw,p(−ao) < Aw,p(−āo). Hence, fi(x) ≥ fi(x̄) ∀ i ∈ I
and fio(x) > fio(x̄) for some index io ∈ I. The latest
assertion contradicts the efficiency of x̄ to (1), which
completes the proof.

In the proof of Theorem 11 we have used one set of
preferential parameters leading to the given efficient so-
lution. Obviously, there are many alternative settings of

the parameters allowing to reach this goal. For instance,
one may set the reservation levels as rri = fi(x̄) for i ∈ I
while taking any aspiration levels rai > rri .

According to the original definition, the WOWA
operator is a quite complicated function of the ag-
gregated outcomes. Nevertheless, similar to the OWA
RPM model (21), the WOWA RPM optimization can
be simply implemented as an LP expansion of the origi-
nal MCO problem. Recall that the formula (24) defines
the WOWA operator applying the preferential weights
wi to importance weighted averages within quantile in-
tervals. It may be reformulated using the tail averages
[18–20]:

Aw,p(a) =
m∑
k=1

w′kmL(a,p,
k

m
) (27)

where weights w′k = wk − wk+1 for k = 1, . . . ,m − 1
and w′m = wm, and L(y,p, ξ) is defined by left-tail
integrating of F

(−1)

y , i.e.

L(y,p, ξ) =
∫ ξ

0

F
(−1)

y (α)dα (28)

Values L(a,p, ξ) for any 0 ≤ ξ ≤ 1 can be given by
optimization:

L(a,p, ξ) = max
πi

{
m∑
i=1

aiπi :
m∑
i=1

πi = ξ,

0 ≤ πi ≤ pi ∀ i ∈ I}
(29)

Introducing a dual variable t corresponding to the equa-
tion

∑m
i=1 πi = ξ, and variables di corresponding to

the upper bounds on πi, one gets the following LP dual
expression for L(a,p, ξ)

L(a,p, ξ) = min
t,di

{ ξt+
m∑
i=1

pidi :

t+ di ≥ ai, di ≥ 0 ∀ i ∈ I}
(30)

According to (27) and (30) one gets finally the fol-
lowing model for the WOWA RPM:

lex min[
m∑
k=1

w′kz
r
k,

m∑
k=1

w′kz
a
k ,

m∑
k=1

w′kz
o
k]

s.t. x ∈ Q
ai = (fi(x)− rri )/(rai − rri ), ∀ i ∈ I
ai − aoi + aai + ari = 1, ∀ i ∈ I
aoi ≥ 0, 0 ≤ aai ≤ 1, ari ≥ 0 ∀ i ∈ I

zrk = ktrk +m

m∑
i=1

pid
r
ik, ∀ k ∈ I

ari ≤ trk + drik, d
r
ik ≥ 0 ∀ i, k ∈ I

zak = ktak +m

m∑
i=1

pid
a
ik, ∀ k ∈ I

aai ≤ tak + daik, d
a
ik ≥ 0 ∀ i, k ∈ I

zok = ktok +m

m∑
i=1

pid
o
ik, ∀ k ∈ I

− aoi ≤ tok + doik, d
o
ik ≥ 0 ∀ i, k ∈ I

(31)



13

Table 7 Criteria and their attributes for the sample billing system selection

f1 f2 f3 f4 f5 f6
Relia- Effi- Invest. Install. Oprnl. Warranty

bility ciency cost time cost period

Units 1–10 CAPS mln. EUR months mln. EUR years

Optimization max max min min min max

Reservation 8 50 2 12 1.25 0.5
Aspiration 10 200 0 6 0.5 2

Importance
weights 3 3 1 1 1 3

Table 8 Criteria values yi and individual achievements ai for five billing systems

System A System B System C System D System E

i yi ai yi ai yi ai yi ai yi ai

1 10 1.00 9 0.50 10 1.00 9 0.50 10 1.00
2 200 1.00 100 0.33 170 0.80 90 0.27 150 0.67

3 1 0.50 0.3 0.85 0.8 0.60 0.2 0.90 0.5 0.75
4 8 0.67 3 1.50 8 0.67 8 0.67 5 1.20

5 1 0.33 1 0.33 0.6 0.87 0.2 1.40 1 0.33

6 2 1.00 2 1.00 1 0.33 2 1.00 1.5 0.67

thus allowing for implementation as an LP expan-
sion of the original problem. The following theorem
justifies the model (31) as an implementation of the
WOWA RPM approach (26) thus preserving its prefer-
ence model properties.

Theorem 12 For any reference levels rai > rri , any
positive importance weights pi and positive strictly de-
creasing weights wi, if (x̄, ār, āa, āo) is an optimal solu-
tion of the problem (31), then it is an optimal solution
of the corresponding problem (26).

Proof Let (x̄, ār, āa, āo) be an optimal solution of the
problem (31) with some positive weighting vectors w
and p. Following the WOWA formulas (27) and (30)
one may notice that the problem (31) is equivalent to
the following lexicographic optimization:

lex min
a∈A

(Aw,p(ar), Aw,p(aa), Aw,p(−ao))}

Further, following Lemmas 1 and 2, the quadruple
(x̄, ār, āa, āo) is also an optimal solution of the corre-
sponding problem (26).

Corollary 3 For any reference levels rai > rri , any pos-
itive importance weights pi and positive strictly decreas-
ing preferential weights wi, if (ār, āa, āo) is an optimal
solution of the problem (31), then any decision vector
x̄ ∈ Q generating this solution is an efficient solution
of the corresponding MCO problem (1).

Corollary 4 If x̄ is an efficient solution of the MCO
problem (1), then there exist aspirations levels rai =
fi(x) such that the corresponding triple (ār, āa, āo) is
an optimal solution of the corresponding problem (31),

for any reservation levels rri < rai , any positive impor-
tance weights pi and positive strictly decreasing prefer-
ential weights wi.

5 Illustrative Example

In order to illustrate the WOWA RPM performances let
us analyze a simplified multicriteria problem of infor-
mation system selection. We consider a billing system
selection for a telecommunication company. The deci-
sion is based on 6 criteria related to the system reliabil-
ity, processing efficiency, investment costs, installation
time, operational costs, and warranty period. All these
attributes may be viewed as criteria, either maximized
or minimized. Table 7 presents all the criteria with their
measurement units and optimization directions. There
are also specified the aspiration and reservation levels
for each criterion as well as the importance factors (not
normalized to weights pi) for several achievements. The
importance factors emphasize achievements related to
the quality of the system. Five candidate billing systems
have been accepted for the final selection procedure.
All they meet the minimal requirements defined by the
reservation levels. Table 8 presents for all the systems
(columns) their criteria values yi and the correspond-
ing linear achievement values ai computed according to
the formula (11). Exactly, the formula (11) is directly
applied to the maximized outcomes while its symmetric
adaptation is applied to the minimized ones.

Table 9 presents for all the systems (columns) their
aspiration underachievements values aa ordered from
the worst to the best taking into account replications
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Table 9 WOWA RPM selection with criteria importance factors
(3, 3, 1, 1, 1, 3)

w A B C D E

0.6 0.67 0.67 0.67 0.73 0.67
0.50 0.67 0.67 0.73 0.33

0.2 0.33 0.67 0.67 0.73 0.33

0.00 0.67 0.40 0.50 0.33

0.1 0.00 0.50 0.33 0.50 0.33
0.00 0.50 0.30 0.50 0.33

0.05 0.00 0.50 0.30 0.33 0.33
0.00 0.15 0.30 0.10 0.25

0.03 0.00 0.00 0.13 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.414 0.602 0.556 0.622 0.455

according to the importance weights allowing for easy
WOWA aggregation computations following the for-
mula (24). One may notice that except of system D
all the other systems have the same worst achieve-
ment value maxi aai = 0.67. Selection among systems
A, B, C and E depends only on the regularization of
achievements aggregation used in the RPM approach.
The WOWA RPM method taking into account the im-
portance weights together with the preferential weights
w = (0.6, 0.2, 0.1, 0.05, 0.03, 0.02) points out system A
as the best one.

Table 10 WOWA RPM selection with criteria importance fac-

tors (3, 3, 1, 1, 1, 3) and modified reference levels

w A B C D E

0.6 1.00 1.00 0.67 0.73 1.00
0.50 0.67 0.67 0.73 0.33

0.2 0.33 0.67 0.67 0.73 0.33
0.00 0.67 0.50 0.50 0.33

0.1 0.00 0.50 0.40 0.50 0.33
0.00 0.50 0.33 0.50 0.33

0.05 0.00 0.50 0.30 0.33 0.33

0.00 0.15 0.30 0.10 0.25

0.03 0.00 0.00 0.30 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.483 0.612 0.630 0.622 0.465

System A, similar to B and D, is characterized by
the highest operational cost. In order to improve the
operational cost one may try to strengthen the re-
quirements given by the corresponding reference lev-
els. Let us put ra5 = 0.2 and rr5 = 1.0. Still there are
no positive reservation underachievements and the se-
lection is based on the aspiration underachievements.
Table 10 presents for all the systems their aspiration
underachievements values ordered from the worst to

the best with replications according to the importance
weights of the WOWA formula (24). One may notice
that now system E is pointed out as the best meeting
requirements, actually not much better than system A.
Both these systems have the worst value of the oper-
ational cost. Systems C and D characterized by lower
(better) values of the operational cost are evaluated as
much worse. Indeed, to increase importance of the op-
erational cost criterion we should rather increase its im-
portance weight. For instance, when instead of chang-
ing the reference levels we increase the importance of
criterion f5 to 3 and simultaneously decrease impor-
tance of criterion f6 to 1, we get the results presented
in Table 11. System C with relatively low (but not the
lowest) operational cost is then pointed out as the best
one.

Table 11 WOWA RPM selection with criteria importance fac-

tors (3, 3, 1, 1, 3, 1)

w A B C D E

0.6 0.67 0.67 0.67 0.73 0.67
0.67 0.67 0.40 0.73 0.67

0.2 0.67 0.67 0.33 0.73 0.67

0.50 0.67 0.20 0.50 0.33

0.1 0.33 0.67 0.20 0.50 0.33

0.00 0.67 0.20 0.50 0.33

0.05 0.00 0.50 0.13 0.33 0.33

0.00 0.50 0.13 0.10 0.25

0.03 0.00 0.50 0.13 0.00 0.00
0.00 0.15 0.00 0.00 0.00

0.02 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.536 0.636 0.401 0.622 0.550

On the other hand, when we increase strongly the
importance of criterion f5 to 5 and simultaneously de-
crease importance of criteria f1 and f2 to 1 while leaving
the importance of f6 on the level 3 we get the results
presented in Table 12. System D with the lowest oper-
ational cost is then selected indeed.

In order to provide a lucid illustration we have con-
sidered an example of discrete choice problem with
a few explicitly given alternatives where any compli-
cated aggregation method can be applied. However, the
WOWA RPM model is enable to solve MCO problems
with infinite number of decision alternatives implicitly
given by constraints of the feasible set.

Conclusions

The reference point method is a very convenient tech-
nique for interactive analysis of the multiple criteria op-
timization problems. It provides the DM with a tool for
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Table 12 WOWA RPM selection with criteria importance fac-
tors (1, 1, 1, 1, 5, 3)

w A B C D E

0.6 0.67 0.67 0.67 0.73 0.67
0.67 0.67 0.67 0.50 0.67

0.2 0.67 0.67 0.67 0.33 0.67

0.67 0.67 0.40 0.10 0.67

0.1 0.67 0.67 0.33 0.00 0.67
0.50 0.67 0.20 0.00 0.33

0.05 0.33 0.50 0.13 0.00 0.33
0.00 0.15 0.13 0.00 0.33

0.03 0.00 0.00 0.13 0.00 0.33

0.00 0.00 0.13 0.00 0.25

0.02 0.00 0.00 0.13 0.00 0.00

0.00 0.00 0.00 0.00 0.00

Aw,p(aa) 0.603 0.619 0.546 0.412 0.611

an open analysis of the efficient frontier. The interac-
tive analysis is navigated with the commonly accepted
control parameters expressing reference levels for the
individual objective functions. The component achieve-
ment functions quantify the DM satisfaction from the
individual outcomes with respect to the given refer-
ence levels. The final scalarizing function is built as the
augmented max-min aggregation of component achieve-
ments, which means that the worst individual achieve-
ment is essentially maximized, but the optimization
process is additionally regularized with the term repre-
senting the average achievement. The regularization by
the average achievement is easily implementable but it
may disturb the basic max-min aggregation. In order to
avoid inconsistencies caused by the regularization, the
max-min solution may be regularized by taking into
account also the second worst achievement, the third
worse and so on, thus resulting in much better model-
ing of the reference levels concept [3].

The OWA aggregation with monotonic weights com-
bines all the component achievements allocating the
largest weight to the worst achievement, the second
largest weight to the second worst achievement, the
third largest weight to the third worst achievement, and
so on. Further, following the concept of Weighted OWA
[23], the importance weighting of several achievements
may be incorporated into the RPM. Such a WOWA
enhancement of the RPM uses importance weights to
affect achievement importance by rescaling accordingly
its measure within the distribution of achievements
rather than straightforward rescaling of achievement
values [22]. The ordered regularizations are more com-
plicated in implementation due to the requirement of
pointwise ordering of component achievements. How-
ever, the recent progress in optimization methods for
ordered averages [17] allows one to implement the OWA
RPM quite effectively by taking advantages of piece-

wise linear expression of the cumulated ordered achieve-
ments. A similar computational model can be achieved
for the WOWA RPM. Actually, the resulting formula-
tion extends the original constraints and criteria with
simple linear inequalities thus allowing for a quite effi-
cient implementation.
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