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Abstract

The paper presents a spreadsheet implementation of the aspiration/reservation
based decision support. This multi—criteria interactive technique, originating from
the reference point method, brings together strict optimization rules with an inter-
active process based on commonly accepted goal programming control parameters
(aspiration levels). Moreover, the interactive process is completely open, like typ-
ical what—if analysis, thus making the method very well suited for a spreadsheet
implementation. The purpose of this paper is twofold. First, we show how eas-
ily the method can be implemented as an additional analysis mode in a standard
spreadsheet with an optimization capability. Second, we conduct computational
experiments to compare the implemented technique with the standard goal pro-
gramming approaches.

1 on leave from Warsaw University, Mathematics and Informatics, Warsaw, Poland
thanks to the grant of the Brussels-Capital Region.



During the past decade electronic spreadsheet software, introduced originally to simplify
accounting work, has become a standard analysis tool for business decision makers. Con-
temporary spreadsheets provide tools for easy implementation of most of the functions of
decision support systems (DeSanctis and Gallupe, 1987). First of all, they support data
storage functions in a tabular form as well as in the relational database model (e.g., Lotus,
1990). For business decision making, the former is very important as most data has a nat-
ural form of rectangular tables and its storage in a relational database is usually inefficient
(Choobineh, 1991). On the other hand, the relational database functions are very useful
in the process of translation of selected solution (decisions) into implementable business
procedures. There is no doubt that contemporary spreadsheets armed with a variety of
graphical presentation tools provide the complete user interface for decision support.

The standard spreadsheet analysis tool is what—if analysis. With this approach the user
tries various values for the cells representing the decision variables (in a hunt—and—peck
manner) and then analyzes the updated spreadsheet display in the quest for the most
satisfactory choices. Simulation type what—if analysis is not efficient enough to tackle
more complicated quantitative models. Therefore, some spreadsheets offer the so—called
goal-seeking analysis (e.g., Gray, 1988). With this capability the user may designate a
preferred target value for some outcome cell of the spreadsheet model and invoke the
command to find the appropriate value of the specified input cell (decision variable).
Thus, goal-seeking may be considered as equation solving or a straightforward inverse
simulation. Hence, the natural next step is the use of optimization tools to look for
the best values of decision variables which correspond to optimal value of the specified
outcome cell. Beginning from the pioneering implementations in the mid 1980s (c.f.,
Sharda, 1985) linear programming, or more generally optimization, has become available
in spreadsheets as add-in software (Frontline Systems, 1991; Lindo Systems, 1992) or
even built—in functions (Borland International, 1991). However, to meet expectations of
the decision makers, optimization techniques should not be restricted to single—objective
analysis. Since spreadsheet models allow the user to observe many outcomes with what—if
analysis, one would expect a capability of the multi—criteria optimization.

Multi—criteria optimization, unlike the single-objective case, cannot offer a unique
answer and therefore it cannot be implemented as a simple solver. It requires usually
an interactive process to identify the most preferred efficient (Pareto—optimal) solution.
Spreadsheets provide an ideal environment for an interactive analysis (Troutt et al., 1991).
Certainly, not all multi—criteria techniques match a specific style of the spreadsheet in-
teractive analysis. However, many techniques originated from goal programming or other
reference point approaches are well suited for interaction using a spreadsheet.

In this paper we present a spreadsheet implementation of the aspiration/reservation
based decision support (ARBDS). This multi-criteria interactive technique, originating
from the reference point method (Wierzbicki, 1982), joins the strict optimization rules
with an interactive process based on commonly accepted goal programming control pa-
rameters (aspiration levels). Moreover, the interactive process is completely open, as in
typical what—if analysis, thus making the method very well suited for a spreadsheet imple-
mentation. The purpose of this paper is twofold. First, we show how easily the ARBDS
method can be implemented as an additional analysis mode in a standard spreadsheet
with an optimization capability. Second, we make computational experiments to compare



(1992). The paper is organized as follows. The methodology used in our implementation
is discussed in Section 2. Next, in Section 3, more technical aspects of the implementation
are described. In Section 4, a hypothetical ARBDS interactive session on a sample multi—
criteria decision problem is presented. Finally, in Section 5, we compare performances of
the ARBDS technique and goal programming approaches on the sample problem and on
randomly generated test problems.

2 Methodology

Consider a decision problem defined as an optimization problem with & objective func-
tions. For simplification of the formal presentation we assume, without loss of generality,
that all the objective functions are to be minimized. The problem can be formulated then
as follows

minimize  F(x) (1)
subject to x € Q (2)
where
F = (F},..., F;) — represents a vector of £ objective functions,

() — denotes the feasible set of the problem,
X — is a vector of decision variables.

Consider further an achievement vector ¢ = F(x) which measures achievement of decision
x with respect to the specified set of k objectives Fy,..., Fy. Let Y = {q=F(x) : x € @}
denote the set of all the attainable achievement vectors. It is clear that an achievement
vector is better than another if all of its individual achievements are better or at least
one individual achievement is better whereas no other one is worse. Such a relation is
called domination of achievement vectors. Unfortunately, there usually does not exist an
achievement vector that dominates all the other vectors with respect to all the criteria.
Thus in terms of strict mathematical relations, we cannot distinguish the best achievement
vector. The nondominated vectors are incomparable on the basis of the specified set
of objective functions. The feasible solutions (decisions) that generate nondominated
achievement vectors are called efficient or Pareto-optimal solutions to the multi—criteria
problem.

It seems to be clear that the solution of multi—criteria optimization problems should
simply depend on identification of the efficient solutions. However, even a finite charac-
terization of the efficient set for a real-life problem is usually so large that it cannot be
considered a solution to the decision problem. So, there arises a need for further anal-
ysis, or rather decision support, to help the decision maker (DM) to select one efficient
solution for implementation. Of course, the original objective functions do not allow one
to select any efficient solution as better than any other one. Therefore, this analysis de-
pends usually on additional information about the DM’s preferences. The DM, working
interactively with a decision support system (DSS), specifies the preferences in terms of
some control parameters, and the DSS at each interactive step provides one efficient solu-
tion that meets the current preferences. Such a DSS can be used for analysis of decision
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control parameters the DM can identify every nondominated achievement vector.

Goal programming (GP), originally proposed by Charnes and Cooper (1961), seems
to be a convenient generating technique for a DSS. It is, in fact, commonly used in real-
life applications (White, 1990). Goal programming requires one to transform objectives
into goals by specification of an aspiration level for each objective. An optimal solution
is then the one that minimizes deviations from the aspiration levels. Various measures
of multidimensional deviations have been proposed. They are expressed as achievement
functions. Depending on the type of the achievement function we distinguish (compare
Ignizio, 1982): minisum (weighted) GP, minimax (fuzzy) GP, lexicographic (preemptive)
GP. If a GP model is used as the basis of a DSS, the aspiration levels can be changed
during an interactive analysis as the DM preferences evolve. One of the most important
advantages of the interactive GP approach is that it does not (necessarily) require the DM
to be consistent and coherent in his/her preferences. Thus the interactive goal program-
ming, as a natural extension of goal-seeking analysis, seems to be the most appropriate
multi—criteria technique for a spreadsheet based DSS.

Goal programming, unfortunately, does not satisfy the efficiency (Pareto—optimality)
principle. Simply, the GP approach does not suggest decisions that optimize the ob-
jective functions. It only yields decisions that have outcomes closest to the specified
aspiration levels. This flaw of goal programming has led to the development of the qua-
sisatisficing approach. This approach deals with the so—called scalarizing achievement
function which, when optimized, generates efficient decisions relative to the specified as-
piration levels. The best formalization of the quasisatisficing approach to multi—criteria
optimization was proposed and developed mainly by Wierzbicki (1982) as the reference
point method. The reference point method was later extended to permit additional in-
formation from the DM and, eventually, led to efficient implementations of the so—called
aspiration/reservation based decision support (ARBDS) approach with many successful
applications (Lewandowski and Wierzbicki, 1989).

The ARBDS approach is an interactive technique. The basic concept of the inter-
active scheme is as follows. The DM specifies requirements in terms of aspiration and
reservation levels for several objective functions. Depending on the specified aspiration
and reservation levels, a special scalarizing achievement function is built which while being
minimized generates an efficient solution to the problem. The computed efficient solution
is presented to the DM as the current solution in a form that allows comparison with the
previous ones and modification of the aspiration and reservation levels if necessary. While
building the scalarizing achievement function the following properties of the preference
model are assumed:

P1. For any individual outcome Fj(x) (i = 1,2,...,k) less is preferred to more (mini-
mization);

P2. A solution with all individual outcomes F;(x) satisfying the corresponding reserva-
tion levels is preferred to any solution with at least one individual outcome greater
than its reservation level;

P3. Provided that all the reservation levels are satisfied, a solution with all individual
outcomes Fj(x) equal to the corresponding aspiration levels is preferred to any



Ogryczak and Lahoda (1992) have shown that the implementation techniques of goal
programming can be used to model the ARBDS approach. Namely, they have shown how
employing lexicographic and minimax GP with appropriate weights one receives a GP
achievement function that satisfies all the requirements for the scalarizing achievement
function used in the ARBDS approach. The ARBDS approach uses the reservation levels
as the second vector of control parameters. The reservation levels can be introduced into
the GP model by the following goals (Ogryczak and Lahoda, 1992):

Fi(x)+d; —d!—di =q; fori=1,2,...,k (3)
d7 >0, 0<di<ri—a; d'>0 fori=1,2,... k (4)
did¢=0, (ri—a;—d})d;=0 fori=1,2,...,k (5)

where
a; and r; —  denote aspiration and reservation level for the i-th objective, respectively;
d; , d}, di — are nonnegative state variables which measure deviations of the current

value of the i-th objective function from the corresponding aspiration and
reservation levels:

d; — negative deviation from the aspiration level,

d} — positive deviation from the aspiration level within the interval
between the aspiration and the reservation level,

d; — positive deviation from the reservation level.

The goals (3)—(5) differ from the typical ones only through the splitting of the positive
deviation d; into a sum of two deviations d? and d? where the first one is limited to the
interval between the aspiration and reservation levels, and the second can be positive only
if d} = r; —a;. It is assumed that the aspiration and reservation levels satisfy the natural
inequality a; <r; (1 =1,2....,k).

Finally, the following lexicographic GP problem is formed:

RGP:  lexmin g(d—,d* d") = [¢1(d~,d* d"), go(d7,d* d")]
subject to (3)—(5) and x € @

where
gu(d™,d%,d7) = max {(~dy +df +d})/ (i — )} (6)
k
go(d™,d% d") = D (—Bdy +df +d))/(ri — ) (7)
i=1

B and v are arbitrarily defined parameters satisfying inequalities 0 < § < 1 < ~. Due to
(4) and (5), parameters 5 and vy do not affect the minimization of (6) and they can be
skipped (replaced with 1) in the formula for g;. Nevertheless, we keep them in formula (6)
to have both the achievement functions g; and g, based on the same individual quantities,
which simplifies the implementation.
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nonconvex or discrete problems) complying with the rules of the ARBDS approach (i.e.,
complying with the preference model defined by properties P1 to P3). Moreover, for pa-
rameters § and v satisfying strict inequalities 0 < 8 < 1 < =, the requirements (5) can
be simply omitted in the constraints of the problem RGP since they are guaranteed by
the optimization (Ogryczak and Lahoda, 1992, Proposition 6). In our implementation,
we use = 0.1 and v = 10 as the default values.

3 Implementation

We have implemented our system in Lotus 1-2-3 with What’sBest! (Lindo Systems, 1992)
as an optimization add-in. The implementation augments the set of variables of the
original decision model by deviation variables d; , d; and d;, adds new constraints of type
(3) and (4), and performs two optimization runs. The first run minimizes the objective
(6), and the second one — the objective (7) while keeping the value of (6) fixed on the
former, optimal level. Of course, an auxiliary variable choosing the maximum in (6) is
introduced. This way, two consecutive linear programs are obtained. A special template
implementing constraints (3)—(4) and achievement functions (6)—(7) has been prepared.
Since the additional goal constraints (3)—(4) use only values of the objective functions from
the original model, the template is connected with the original model only through a few
cells related to the objective functions Fj(x) in (3). In order to use the ARBDS analysis
capability a user only needs to copy the template into a worksheet containing the decision
model and specify the objective functions under the analysis. The add—in optimization
software (Lindo Systems, 1992) allows linear and mixed integer multi-criteria models to
be analyzed. However, since ARBDS applies also to nonlinear problems, it could be
implemented for such problems, provided that the add—in software supports nonlinear
optimization.

Essentially, most of the ARBDS template is hidden from the user. The user works
with only one table prepared as a control panel. The control panel supports the entire
interactive analysis process as well as the assignment of the ARBDS tool to the original
model (by specification of the objective functions). The control panel has the form of
a simple table as in Table 1. Rows of the control panel correspond to several objective
functions. They all have the same structure of six columns. The first four columns have to
be filled out prior to the interactive analysis to assign the template for the current decision
model. The first column (Objective) contains a text cell to be filled with name of the
objective function. The second column (Max/Min) is used to specify the objective type.
It contains a text cell to be filled with max or min depending on the objective function
type. The third column (Activity) allows the user to deactivate some objective functions
during the interactive analysis. The fourth column (Value) is designed to show the current
value of the objective function. It contains a formula cell which at the beginning has to be
filled with the cell address of the objective function in the original decision model. This
operation assigns the control panel to the decision model.



Text cell Text cell | Numeric cell | Formula cell | Numeric cell | Numeric cell

Text cell Text cell | Numeric cell | Formula cell | Numeric cell | Numeric cell

Table 1. ARBDS Control Panel

Most of our implementation design lies in data structures prepared for the largest
potential number of criteria, containing definitions of variables, formulas and cells to
store some necessary constants. We have prepared a set of formulas which represent
constraints (3)—(4) for the largest possible number of criteria k. This set consists of &
disjoint subsets, each referring to a particular criterion ¢+ = 1,2,..., k. We have also
prepared two cells containing formulas representing objectives (6) and (7), respectively.
In order to adapt these structures to the particular decision model we need a mechanism to
exclude unnecessary cells associated with inactive criteria, according to the 0/1 switches
in the third column of the control panel. Fortunately, this can be done while calling
What’sBest! add—in which enables us to exclude certain spreadsheet ranges of cells from
the optimization problem. Note that our additional structures are independent of any
particular decision model and therefore they are of general use. The only connection with
the decision model is present in constraints (3) which are linked to the rest of the model
through the addresses of objective functions in the fourth column of the control panel.

The second part of the implementation is a spreadsheet macro. Its main task is to
exclude unnecessary ranges of cells, as described above, preparing linear programs for each
of two optimization runs and to call the What’sBest! add—in. This task is accomplished
with the standard Lotus 1-2-3 commands, like copying, erasing, protecting cells, naming
ranges etc. For the first optimization run the cell containing objective (7) is excluded.
After the first optimization the auxiliary variable choosing the maximum in (6) is fixed
at its current optimal value whereas objective (7) is activated for the second optimization
run. The macro is provided in Appendix.

Having assigned the control panel to the decision model one can start the ARBDS in-
teractive analysis as the model will be automatically extended by constraints (3)—(4) built
in the template. The user controls the interactive analysis editing aspiration and/or reser-
vation levels, i.e., using the fifth (Aspiration level) and sixth (Reservation level) columns
of the panel. These columns contain numeric cells to be filled out with appropriate data.
One may also deactivate or activate some objective functions in the third column. When-
ever the ARBDS macro is executed, the add—in optimization software is called to solve the
corresponding RGP problem and to generate the corresponding efficient solution. Current
achievements (values) of the objective functions appear in the fourth column (Value) of
the panel whereas current values of the original decision variables (adjustable cells in the
What’sBest! terminology) are placed in the corresponding cells of the original model. The
DM can perform an open interactive analysis without necessity of any coherent scenario,
just like what—if analysis. Standard spreadsheet data storage and graphic capabilities
allow the DM to store and compare several efficient solutions in his/her most convenient
way.

Optimization of each objective function separately is frequently used as the first step
of the multi—criteria analysis. It generates the so—called pay—off matrix (Steuer, 1986).
Therefore, we have provided in our implementation an additional macro to perform all
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containing values of all the objective functions (rows) obtained while solving several single—
objective problems (columns) and thereby it helps the DM to understand the conflict
between different objectives. Due to the regularization technique used while computing
the pay-off matrix, each generated single-objective optimal solution is also an efficient
solution of the original multi-criteria problem. The pay—off matrix provides the DM with
two reference vectors: the utopia vector and the nadir vector. The utopia vector represents
the best values of each objective considered separately, and the nadir vector expresses
the worst values of each objective noticed during several single-objective optimizations.
Usually, the utopia vector is not attainable, i.e. there is no feasible solution with such
objective values. Coefficients of the nadir vector cannot be considered as the worst values
of the objectives over the entire efficient (Pareto—optimal) set. They usually estimate
these values but they express only the worst values of each objective noticed during
optimization of the other objective functions.

4 Sample problem

In order to show an outline of the basic multi—criteria analysis performed with our ARBDS
spreadsheet template we use a small sample decision problem. The problem is based on
the textbook financial planning model (Shogan, 1988, Section 4.4) but we take into ac-
count the multi—criteria nature of the problem whereas the original model was formed
as a single—objective linear program. One needs to decide how to invest for 6 months
an amount of “idle” cash. There are several investment opportunities characterized by
various maturity horizons, interest rates and risk indices. At the time of maturity of some
investment its principal and interests are available for immediate reinvestment in other op-
portunities available at that time. It creates a dynamic network of cash flow which can be
described with linear balance equations (compare Shogan, 1988, for details). The spread-
sheet modeling technique (compare, Lindo Systems, 1990) allows us to keep the decision
model in the lucid form of a rectangular table of decision variables (amounts invested)
with rows corresponding to several investment opportunities and columns corresponding
to several months, whereas the balance equations are hidden in some additional formulas.

The goal is to develop an investment scenario that maximizes the profit at the end
of the 6 month period, minimizes the investment risk, and maximizes the investment
mobility. The profit is simply defined as the difference between the final cash outflow
and the initial amount of the invested funds. To minimize the investment risk we define
for each month the total risk index of invested funds as the sum of current investments
weighted with the corresponding risk indices. The objective function (to be minimized)
is then the maximum, over all 6 months, of the total risk indices. As a measure of the
investment mobility we consider the amount of funds available for an early withdrawal.
For this purpose we calculate for each month two quantities: amount of funds available
to withdraw in 1 month and amount of funds available to withdraw in 2 months. This
allows us to form two corresponding objective functions (to be maximized) expressing the
minimum, over all 6 months, of funds available for an early withdrawal in 1 or 2 months,
respectively. Thus the decision problem under consideration is finally modeled as the
multi-criteria linear program with four objective functions. Hereafter we call the four
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nadir vectors, as presented in Table 2. We find out that the objective values vary signif-
icantly depending on the selected single-objective optimization. Moreover, we recognize
a strong conflict between Profit and all the other objectives.

Optimized objective
Objective | Profit | Risk | EW-1 | EW-2 | Utopia | Nadir

Profit 12.36 9.35 9.35 | 10.80 12.36 9.35
Risk 9.54 1.08 1.08 4.00 1.08 9.54
EW-1 0.00 | 101.50 | 101.50 0.00 | 101.50 0.00
EW-2 0.00 | 101.50 | 101.50 | 103.50 | 103.50 0.00

Table 2. Pay-off matrix

Tteration 1 Tteration 2 Tteration 3 Tteration 4
Obj. Asp. | Res. | Sol. | Asp. | Res. | Sol. | Asp. | Res.| Sol. | Asp.| Res. | Sol
Profit 12.36 | 9.35 | 10.86 | 12.36 9.35 | 10.51 | 12.36 | 11.00 | 10.76 | 12.36 | 11.00 | 11.04
Risk 1.08 | 9.54 5.26 3.00 4.00 3.62 3.00 4.00 4.19 3.00 5.00 4.94
EW-1 | 101.50 | 0.00 | 51.15 | 50.00 | 30.00 | 37.65 | 50.00 | 30.00 | 26.26 | 40.00 | 20.00 | 20.56
EW-2 | 103.50 | 0.00 | 52.17 | 50.00 | 30.00 | 65.48 | 50.00 | 30.00 | 53.49 | 50.00 | 30.00 | 30.59

Table 3. ARBDS analysis

The interactive analysis is summarized in Table 3. At the beginning we use the utopia
vector as the aspiration levels and the nadir vector as the reservation levels, which results
in the so—called neutral solution. Analyzing the neutral solution, we find the level of Risk
as unsatisfactory whereas the outcomes of both the mobility criteria as better than we
expected. Therefore, in Iteration 2, we change the aspiration and reservation levels for
those criteria. In effect, we get an efficient solution with a smaller Profit and very good
other achievements. Note that the value of EW-2 is even better than the corresponding
aspiration level as it could be improved without worsening the other criteria. It just
differentiates the ARBDS approach from standard goal programming. We want to find
a solution with a higher Profit. Therefore, in Iteration 3, we increase the corresponding
reservation level to 11. As a result we get an efficient solution with all the achievements
worse than the corresponding reservation levels. Thus we reconsider our requirements and
decide to relax the requirements on the risk and one month early withdrawal. It allows us
to get, in Tteration 4, an efficient solution with all the achievements satisfying the specified
requirements. We decide to accept it as a final solution. The selection of the final solution
depends, certainly, on the DM’s preferences. Our sample ARBDS session shows, however,
how easily the DM can learn the decision problem and control the analysis of the efficient
frontier, working in a spreadsheet what—if style.

5 ARBDS versus Goal Programming

In the ARBDS approach, reservation levels are used to define, implicitly, weights w; =
1/(ri — a;). One may consider the standard GP approach with such defined weights as
an even simpler technique to be implemented within a spreadsheet. In this section, we
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Moreover, we allow the reference levels to be used as the second targets thus defining
goal programming approach with penalty functions (Romero, 1991, Chpt. 6). In terms of
model (1)-(5), the minimized GP achievement functions, we consider, take the following
forms

k

gl d%,d7) = St +9d)/ (ri— o) ®)
o, dd) = Do(Bd; + !+ D)/ - ) )
o(d, a0, d7) = max {(d +7d)/(ri — o)} (10)
o(d",a%,d") = max {(Bd; +d2 + D)/ (i — ai)} (1)

Formula (8) represents the one—sided minisum achievement function minimizing only pos-
itive deviations whereas two—sided formula (9) takes into account also negative deviations.
In the case of v = 1, the standard positive deviations are considered with the correspond-
ing weights equal to 1/(r; —a;). For 7 > 1 the formulas define double-target achievement
functions with additional penalties for deviations exceeding the corresponding reserva-
tion levels. Formulas (10) and (11) define similar minimax achievement functions. Note
that GP achievement functions (11) and (9) differ from functions (6) and (7) used in the
ARBDS approach due to the sign of the final weights assigned to negative deviations d; .

Table 4 summarizes results for the standard minisum GP approach (8) with v =1 to
the sample problem from the previous section. Iterations 1 to 4 correspond to those from
Table 3 in the sense that the same aspiration and reservation levels have been used. One
can easily notice much worse controllability of the interactive process by the aspiration
and reservation levels. In the first iteration, using the utopia vector as aspiration levels
and the nadir vector as reservation levels, instead of some compromise solution we get the
solution corresponding to the single-objective optimization of Risk or EW-1 (compare
Table 2). In Iteration 3, despite the change of the reservation level for Profit, we get again
the solution from Iteration 2 with the value of Profit below the reservation level whereas
all the other criteria reach or exceed their aspiration levels. Similar properties has the
solution of Iteration 4. In order to get a solution with a higher Profit, in Iteration 5, we
raise the corresponding reservation level to 12. It results in a solution with Profit=11.04
(like in Iteration 4 of ARBDS but much below the current reservation level) and the value
of Risk exceeding its reservation level whereas the mobility criteria reach their aspiration
levels.

Tter. 1 | Iter. 2 | Tter. 3 | Iter. 4 Iteration 5
Obj. Sol. Sol. Sol. Sol. Asp. | Res. | Sol
Profit 9.35 10.24 10.24 10.28 | 12.36 | 12.00 | 11.04
Risk 1.08 3.00 3.00 3.00 3.00 5.00 5.60
EW-1 | 101.50 50.00 50.00 40.00 | 40.00 | 20.00 | 40.00
EW-2 | 101.50 78.32 78.32 93.71 | 50.00 | 30.00 | 50.00

Table 4. Minisum GP analysis for the sample problem



minisum GP approach (with v = 10) to our sample problem, for the same five iterations
as in Table 4. One may notice an improvement in the controllability by the reservation
levels in the sense that the solutions are forced to satisfy all the reservation levels if it is
possible. However, apart from an improvement in Iteration 4, all main difficulties with
controllability pointed out in Table 4 remain valid in Table 5. In particular, we still have
not got any compromise solution in Iteration 1, and even the solution from Iteration 4
does not treat the aspiration and reservation levels in such an equal manner as that in
Table 3.

Iter. 1 | Iter. 2 | Tter. 3 | Iter. 4 | Iter. 5

Obj. Sol. Sol. Sol. Sol. Sol.
Profit 9.35 | 10.24 | 10.62 | 11.00 | 11.62
Risk 1.08 3.00 4.00 5.00 7.17

EW-1 | 101.50 | 50.00 | 41.20 | 23.55 | 20.00
EW-2 | 101.50 | 78.32 | 50.00 | 50.00 | 30.00

Table 5. Double-target minisum GP analysis for the sample problem

A level of controllability similar to that of the ARBDS approach can be reached with
the double-target minimax GP approach. Its achievement function (10) differs from the
first level ARBDS achievement function (6) only due to not using negative weights for
deviations d; . However, these negative weights and the use of the second level achievement
function (7) are crucial to guarantee efficiency of a generated solution (Ogryczak and
Lahoda, 1992). The standard GP techniques violate the property P1 and therefore they do
not comply with the efficiency principle. We address this issue with analysis of randomly
generated test problems. We have generated 20 bicriteria integer problems defined directly
in the two-dimensional objective space (i.e. y; = F;(x) = ;). For each problem we have
randomly generated 10 sets of aspiration and reservation levels. All the feasible solutions
have been included in the square defined by vertices (0, 0), (0, 100), (100, 100) and (100, 0).
Moreover, there have been randomly generated two inequalities cutting off vertex (0,0);
one from vertex (0, 100) and the second from vertex (100, 0). Aspiration vectors have been
generated as integer points in the triangle defined by vertices (0,0), (0,99) and (99,0)
thus all them have defined reasonable aspiration levels for goal programming approaches.
In fact, 87% of the generated aspiration vectors have been unattainable. The reference
levels have been randomly generated as integers satisfying inequalities a; + 1 < r; < 100.
It results in 44% of the reservation vectors being unattainable. All the random numbers
have been generated as uniformly distributed.

Tables 6 and 7 summarize performances of various achievement functions on the ran-
domly generated test problems. We include in this comparison four GP achievement func-
tions (8)—(11), achievement functions (6) and (7) from the ARBDS approach considered
separately and, finally, the ARBDS technique based on the lexicographic minimization of
(6) and (7). The corresponding rows of the tables report: percent of the generated solu-
tions that have failed the efficiency requirement, percent of the generated solutions that
have failed to reach their reservation levels (i.e. y; > r1 or y, > 73), percent of the gen-
erated solutions that have failed to reach their aspiration levels (i.e. y; > a1 or ¥y > ay),
and the average percent of overlapped (duplicated) solutions generated. One may easily
notice that all the GP achievement functions have generated 11-30% nonefficient solutions

10
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which corresponds to the standard weighting approach (Steuer, 1986), has presented very
poor controllability by aspiration and reservation levels. All the approaches based on
the minimax achievement functions, including the ARBDS technique, have reached all
the attainable aspiration and reservation levels. Note that even “flattened” version of
the ARBDS technique (with § = v = 1) have satisfied properties P1-P3. Introducing
of parameters § = 0.1 and v = 10 (Table 7) have improved performances of the GP
achievement functions but still many solutions have been left nonefficient.

Achievement functions with f =~ =1
(8) | (9 | (0) | (11) [ ) | (7) | (6)~(7)
Not reached efficiency 15% | 30% | 17% | 30% | 20% | 0% 0%
Not reached reservations | 50% | 50% | 44% | 44% | 44% | 82% 44%
Not reached aspirations | 87% | 87% | 87% | 87% | 87% | 98% 87%
Overlapped solutions 27% | 21% | 24% | 18% | 20% | 66% 26%

Table 6. Statistics for randomly generated MIP problems

Achievement functions with § = 0.1 and v = 10
® @ layjay| ® | ) |6~
Not reached efficiency 11% | 26% | 13% | 21% | 15% | 0% 0%
Not reached reservations | 44% | 44% | 44% | 44% | 44% | 44% 44%
Not reached aspirations | 87% | 87% | 87% | 87% | 87% | 90% 87%
Overlapped solutions 19% | 14% | 23% | 17% | 19% | 27% 25%

Table 7. Statistics for randomly generated MIP problems

While implementing GP approaches to our sample problem from Section 4, we no-
ticed a serious modeling difficulty which seems to be overlooked in goal programming
methodology (Romero, 1991). It is related to minimax criteria in the original optimiza-
tion problem (1)—(2). In many decision problems, an objective of type max;c; z; needs
to be minimized. It is usually converted into a conventional linear programming form
by introducing a variable z to represent the objective value and additional inequalities
z; < z for j € J (Williams, 1993). The inequalities guarantee that z is no less than any
z; (j € J) and by minimizing z it is driven down to the maximum of z;. Note that the
standard GP approach with nonnegative weights violates the property P1 and therefore,
when applied to z as an objective function, it may arise that z is no longer equal to
max; ey z;. For instance, 1 = 0.4, x5 = 0.6, z = 0.7 and d~ = d* = 0 define an optimal
solution to the GP problem

min{w d” +w'd": z+d —dt =07, <2 2,<2z 21+m33=1}

for any nonnegative weights w— and w™. In this case, neither z expresses max{z, zo} nor
d~ expresses the corresponding negative deviation. Thus, unlike to the ARBDS approach,
the standard GP approach cannot be applied to multi—criteria optimization problem (1)-
(2) as an external tool without an in-depth analysis and possible rebuilding of the original
optimization model.
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Spreadsheets allow the decision maker to observe many outcomes during an analysis per-
formed in an interactive way. Thus they seem to be an ideal environment for implementa-
tion of interactive multi—criteria techniques for decision support. It is therefore natural to
consider an interactive multi—criteria optimization mode as an additional spreadsheet ca-
pability (Troutt et al., 1991). Unfortunately, there is a remarkable lack of such tools even
as experimental implementations. Certainly, not all multi—criteria techniques match a spe-
cific style of the spreadsheet interactive analysis. However, many techniques originated
from goal programming or reference point approaches are appropriate for the spreadsheet
interaction.

In this paper we have presented a spreadsheet implementation of the ARBDS method.
This multi—criteria interactive technique, originating from the reference point method
(Wierzbicki, 1982) joins the strict optimization rules with an interactive process based
upon commonly accepted goal programming control parameters. Moreover, the interac-
tive process is completely open, as in typical what—if analysis, thus making the method
very well suited for the spreadsheet implementation. Our work confirms that the goal
programming model of the ARBDS method (Ogryczak and Lahoda, 1992) can easily be
implemented as an additional analysis mode in a standard spreadsheet with an opti-
mization capability. Even our experimental template implementation preserves the inde-
pendence of the interactive optimization tool from the original model formulation. The
implementation is used to analyze applicability of the bicriteria L; Markovitz’s portfo-
lio optimization model (Konno and Yamazaki, 1991) to the Polish stock market. Initial
experience shows that the ARBDS interaction, which is very similar to the spreadsheet
what—if and goal-seeking analyses, is easily understood by spreadsheet users.

One may consider the standard GP approaches as simpler techniques to be imple-
mented within a spreadsheet. However, our experience shows that even GP approaches
with penalty functions fail to generate efficient solutions and provide worse controllability
of the interactive analysis. Moreover, as pointed out in Section 5, the GP achievement
functions can not always be implemented independently of the original model formulation.
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\v

crit2

crit3

crith

addr

start

/rncubfreel~c28..j28~
/rncubfree2”c30..330~
/rncwbfree3~c32..j32"
/rncwbfree4”c34..j34"
/rncubfree5”c36. .36~
/cd24..h247d26..h26~

{if c8=0}{branch crit2}

/rndubfreel”™

{if @exact(b8,"max")}/cd25..d257d26..d26~
{let d22, (1-2xQ@exact (b8, "max")) *e8}

{let d23, (1-2xQ@exact (b8, "max")) *f8}

{let 128,1/@min(126,0@max(k26, (d23-d22)))}
{let k28,k27x128}

{let m28,127%128%}

{if c10=0}{branch crit3}

/rndubfree2”

{if @exact(b10,"max")}/ce25..e25%e26..e26~
{let e22, (1-2x0@exact(b10,"max"))*el0}
{let €23, (1-2*xQexact(b10,"max"))*f10}
{let 130,1/@min(126,0@max(k26, (e23-e22)))}
{let k30,k27x130}

{let m30,127%130}

{if c12=0}{branch crit4}

{if c16=0}{branch addr}

/rndubfreeb5”

{if @exact(b16,"max")}/ch25..h25"h26..h26~
{let h22, (1-2*Qexact(bl16,"max"))*el6}
{let h23, (1-2*Qexact(bl16,"max"))*f16}
{let 136,1/@min(126,@max(k26, (h23-h22)))}
{let k36,k27*136}

{let m36,127%136}

/Tuj26..j26"

/rncwbmin~j25..j257

/rnc\0"start”

/aiwb~F2

/rnd\0~

/Tpj26..j26~

{let j26,j26+123*@abs(j26)+124}
/rndwbmin”

/rncwbmin”j27..j27"

/aiwb~F2



