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Abstract— Expanding demand on the Internet services leads
to an increased role of the network dimensioning problem for
elastic traffic where one needs to allocate bandwidth to maximize
service flows and simultaneously to reach a fair treatment of all
the elastic services. Thus, both the overall efficiency (throughput)
and the fairness (equity) among various services are important.
The Max-Min Fairness (MMF) approach, widely used to this
problem, guarantees fairness but may lead to significant losses
in the overall throughput of the network. In this paper we show
how the concepts of multiple criteria equitable optimization can
be effectively used to generate various fair resource allocation
schemes. We introduce a multiple target model equivalent to
equitable optimization and we develop a corresponding procedure
to generate fair efficient bandwidth allocations. The procedure
is tested on a sample network dimensioning problem and its
abilities to model various preferences are demonstrated.

I. INTRODUCTION

Expanding demand on the Internet services has led to an
increased role of the traffic carried by the IP protocol in
telecommunication networks. Due to the use of packet switch-
ing, the IP protocol can provide greater network utilization
(the so-called multiplexing gain). For these reasons, network
management may be interested in designing networks which
allow to extend throughput for the IP protocol. The TCP
protocol is the most frequently used transport protocol in
best-effort IP networks. The data traffic carried by the TCP
protocol adapts its throughput to the amount of available
bandwidth. Such traffic, called elastic traffic, is capable to
use the entire available bandwidth, but it will also be able
to reduce its throughput in the presence of contending traffic.
Nowadays, the network management often faces the problem
of designing networks that carry elastic traffic. These network
design problems are, essentially, the network dimensioning
problems as they can be reduced to a decision about link
capacities. Flow sizes are outcomes of the design problem,
since the flows adapt to given network resources on a chosen
path.

A straightforward network dimensioning with elastic traffic
could be thought of as a search for such network flows that
will maximize the aggregate network throughput while staying
within a budget constraint for the costs of link bandwidth.
However, maximizing aggregate throughput can result in ex-
tremely unfair solutions allowing even for starvation of flows

for certain services. On the other extreme, while looking
at the problem from the perspective of a network user, the
network flows between different nodes should be treated as
fairly as possible [2]. Actually, a fair way of distribution of
the bandwidth among competing demands becomes a key issue
in computer networks [3] and telecommunications network
design, in general [16], [18]. The so-called Max-Min Fairness
(MMF) [1], [4], [9] is widely considered as such ideal fairness
criteria. Indeed, the lexicographic max-min optimization used
in the MMF approach generalizes equal sharing at a single
link bandwidth to any network while maintaining the Pareto
optimality. Certainly, allocating the bandwidth to optimize the
worst performances may cause a large worsening of the overall
throughput of the network. Therefore, network management
must consider two goals: increasing throughput and providing
fairness.

The purpose of this work is to show that there exists a
multiple criteria model that allows to represent consistently
the overall efficiency and fairness goals. Moreover, the criteria
measure actual network throughput for various levels (targets)
of flows. Thereby, the criteria can easily be introduced into
the model and they allow to apply effectively the reference
point methodology where the decision maker specifies prefer-
ences in terms of aspiration levels (reference point), i.e., by
introducing desired (acceptable) levels for several criteria.

The paper is organized as follows. In the next section we
formalize the network dimensioning problem we consider. In
Section III, basic fair solution concepts for resource allocation
are related to the multiple criteria equitable optimization the-
ory and the multiple target model is introduced. In Section IV,
the reference point methodology is applied to the multiple
target problem allowing us to model various fair and efficient
allocation schemes with simple control parameters. Finally, in
Section V, we present some results of our initial computational
experience with this new approach.

II. THE BANDWIDTH ALLOCATION PROBLEM

The problem of network dimensioning with elastic traffic
can be formulated basically as a Linear Programming (LP)
based resource allocation model as follows [16]. Given a
network topology G =< V,E >, consider a set of pairs of
nodes as the set I = {1, 2, . . . ,m} of services representing the
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elastic flow from source vs
i to destination vd

i . For each service,
we have given the set Pi of possible routing paths in the
network from the source to the destination. This information
can be summarized in the form of binary matrices ∆e =
(δeip)i∈I;p∈Pi

assigned to each link e ∈ E, where δeip = 1 if
link e belongs to the routing path p ∈ Pi (connecting vs

i with
vd

i ) and δeip = 0 otherwise.
For each service i ∈ I , the elastic flow from source vs

i to
destination vd

i is a variable representing the model outcome
and it will be denoted by xi. This flow may be realized along
various paths p ∈ Pi. The flow may be either split among
several paths or a single path must be finally selected to serve
the entire flow. Actually, the latter case of nonbifurcated flows
is more commonly required and our analysis is focused on this
case. Both bifurcated or nonbifurcated flows may be modeled
as xi =

∑
p∈Pi

xip where xip (for p ∈ Pi) are nonnegative
variables representing the elastic flow from source vs

i to
destination vd

i along the routing path p. Although, the single-
path model requires additional multiple choice constraints to
enforce nonbifurcated flows.

The network dimensioning problem depends on allocating
the bandwidth to several links in order to maximize flows of
all the services (demands). Typically, the network is already
operated and some bandwidth is already allocated (installed)
and decisions are rather related to the network expansion.
Therefore, we assume that each link e ∈ E has already
capacity ae while decision variables ξe represent the band-
width newly allocated to link e ∈ E thus expanding the link
capacity to ae + ξe. Certainly, all the decision variables must
be nonnegative: ξe ≥ 0 for all e ∈ E and there are usually
some bounds (upper limits) on possible expansion of the links
capacities: ξe ≤ āe for all e ∈ E. Finally, the following
constraints must be fulfilled:

0 ≤ xip ≤ Muip, uip ∈ {0, 1} ∀ i ∈ I; p ∈ Pi (1)∑
p∈Pi

uip = 1 ∀ i ∈ I (2)

∑
i∈I

∑
p∈Pi

δeipxip ≤ ae + ξe ∀e ∈ E (3)

0 ≤ ξe ≤ āe ∀e ∈ E (4)∑
p∈Pi

xip = xi ∀i ∈ I (5)

∑
e∈E

ceξe ≤ B (6)

where (1)–(2) represent single-path flow requirements using
additional binary (flow assignment) variables uip equal 1 if
path p ∈ Pi is assigned to serve flow xi and 0 otherwise,
and a large constant M upper bounding the largest possible
total flows xi. Next, (5) define the total service flows, while
(3)–(4) establish the relation between service flows and links
bandwidth. The quantity ye =

∑
i∈I

∑
p∈Pi

δeipxip is the load
of link e and it cannot exceed the available link capacity.
Further, while allocating the bandwidth to several links in
the network dimensioning process the decisions must keep the
cost within available budget B for all link bandwidths. This

represented with inequality (6) where for each link e ∈ E
the cost of allocated bandwidth is ce. In the basic model
of network dimensioning it is assumed that any real amount
of bandwidth may be installed and marginal costs ce of link
bandwidth is given.

The model constraints (1)–(6) define a Mixed Integer LP
(MILP) feasible set. In the simplified problem with linear link
dimensioning function (ae = 0 for all links), the cost of the
entire path p for service i can be directly expressed by the
formula: κip =

∑
e∈E ceδeip and the cheapest path for each

service can be then easily identified and preselected. Having
preselected routing path for each demand (|Pi| = 1) one may
consider variable xi directly as flow along the corresponding
path (xi = xi1). Constraints (6) and (3) may be then treated
as equations and allowing one to eliminate variables ξe, thus
formulating the problem as a simplified resource allocation
model with only one constraint:

∑m
i=1 κixi = B and variables

xi representing directly the decisions. Note that one cannot
define directly any cost κip of the path p ∈ Pi when some
capacity is already available (ae > 0 for some e ∈ E).
In other words, in the problem we consider the cost of
available link capacity is actually nonlinear (piecewise linear)
and this results in the lack of direct formula for the path cost
since it depends on possible sharing with other paths of the
preinstalled bandwidth (free capacity ae).

The network dimensioning model can be considered with
various objective functions, depending on the chosen goal.
One may consider two extreme approaches. The first extreme
is the maximization of the total throughput (the sum of flows)∑

i∈I xi. On the other extreme, the network flows between
different nodes should be treated as fairly as possible which
leads to the maximization of the smallest flow or rather to
the lexicographically expanded max-min optimization (the so-
called max-min ordering) allowing also to maximize the sec-
ond smallest flows provided that the smallest remain optimal,
the third smallest, etc. This approach is widely recognized in
networking as the so-called Max-Min Fairness (MMF) [1], [4]
and it is consistent with the Rawlsian theory of justice [17].
The throughput maximization can always result in extremely
unfair solutions allowing even for starvation of certain flows
while the MMF solution may cause a large worsening of
the throughput of the network. In an example built on the
backbone network of a Polish ISP, it turned out that the
throughput in a perfectly fair solution could be less than 50%
of the maximal throughput [13].

Network management may be interested in seeking a com-
promise between the two extreme approaches discussed above.
One possible approach depends on maximization of the sum
of the flows evaluated with some (concave) utility function∑

i∈I Ui(xi) [11]. However, such an approach requires to
build (or to guess) a utility function prior to the analysis
and later it gives only one possible compromise solution. It is
very difficult to identify the preferences at the beginning of
the decision process. Moreover, all the utility functions that
really take into account any fairness preferences are nonlinear,
thus resulting in computationally hard optimization problems
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when applied to the MILP models. In the following, we shall
describe an approach that allows to search for such compro-
mise solutions with multiple linear criteria rather than the
use nonlinear objective functions. All these criteria represent
partial throughput for several target levels of flows.

III. FAIR ALLOCATIONS AND PARTIAL THROUGHPUTS

The bandwidth allocation problem we consider may be
viewed as a special case of general resource allocation problem
where a set I of m services is considered and for each
service i ∈ I , its measure of realization xi is a function
xi = fi(ξ) of the allocation pattern ξ ∈ A. This function,
called the individual objective function, represents the outcome
(effect) of the allocation pattern for service i. In applications,
we consider, the measure expresses the service flow and a
larger value of the outcome means a better effect (higher
service quality or client satisfaction). This leads us to a vector
maximization problem:

max {(x1, x2, . . . , xm) : x ∈ Q} (7)

where Q = {(x1, . . . , xm) : xi = fi(ξ), i ∈ I, ξ ∈ A}
denotes the attainable set for outcome vectors x. For the
network dimensioning problems, we consider, the set Q is
an MILP feasible set defined by basic constraints (1)–(6).

Model (7) only specifies that we are interested in maxi-
mization of all outcomes xi for i ∈ I . In order to make
it operational, one needs to assume some solution concept
specifying what it means to maximize multiple outcomes.
The solution concepts are defined by properties of the cor-
responding preference model within the outcome space. The
commonly used concept of the Pareto-optimal solutions, as
feasible solutions for which one cannot improve any criterion
without worsening another, depends on the rational dominance
�r which may be expressed in terms of the vector inequality:
x′ �r x′′ iff x′

i ≥ x′′
i for all i ∈ I .

In order to ensure fairness in a system, all system entities
have to be equally well provided with the system’s services.
This leads to concepts of fairness expressed by the equitable
rational preferences [12], [6]. First of all, the fairness requires
impartiality of evaluation, thus focusing on the distribution of
outcome values while ignoring their ordering. That means, in
the multiple criteria problem (7) we are interested in a set of
outcome values without taking into account which outcome is
taking a specific value. Hence, we assume that the preference
model is impartial (anonymous, symmetric). In terms of the
preference relation it may be written as the following axiom

(xτ(1), xτ(2), . . . , xτ(m)) ∼= (x1, x2, . . . , xm) (8)

for any permutation τ of I . Further, fairness requires equi-
tability of outcomes which causes that the preference model
should satisfy the (Pigou–Dalton) principle of transfers:

x − εei′ + εei′′ � x, 0 < ε < xi′ − xi′′ (9)

whenever xi′ > xi′′ . The principle of transfers states that
a transfer of any small amount from an outcome to any

other relatively worse–off outcome results in a more preferred
outcome vector.

The rational preference relations satisfying additionally ax-
ioms (8) and (9) are called hereafter fair (equitable) rational
preference relations. We say that outcome vector x′ fairly
dominates x′′ (x′ �e x′′), iff x′ � x′′ for all fair rational
preference relations �. In other words, x′ fairly dominates x′′,
if there exists a finite sequence of vectors xj (j = 1, 2, . . . , s)
such that x1 = x′′, xs = x′ and xj is constructed from
xj−1 by application of either permutation of coordinates,
equitable transfer, or increase of a coordinate. Fig. 1 presents
the structure of fair dominance for two-dimensional outcome
vectors. For any outcome vector x, the fair dominance relation
distinguishes set D(x) of dominated outcomes (obviously
worse for all fair rational preferences) and set S(x) of
dominating outcomes (obviously better for all fair rational
preferences). However, some outcome vectors are left (in white
areas) and they can be differently classified by various specific
fair rational preferences. The MMF assigns the entire interior
of the inner white triangle to the set of preferred outcomes
while classifying the interior of the external open triangles
as worse outcomes. Isolines of various utility functions split
the white areas in different ways. For instance, there is no
fair dominance between vectors (0.01, 1) and (0.02, 0.02) and
the MMF considers the latter as better while the so-called
proportional fairness (PF) defined with logarithmic utility
function [5] points out the former. On the other hand, vector
(0.02, 0.99) fairly dominates (0.01, 1) and all fairness models
(including MMF and PF) prefers the former.

An allocation pattern ξ ∈ A is called fairly (equitably) effi-
cient if x = f(ξ) is fairly nondominated. Note that each fairly
efficient solution is also Pareto-optimal, but not vice verse.
The theory of majorization [10] includes the results which
allow us to express the relation of fair (equitable) dominance
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Fig. 1. Structure of the fair dominance: D(x) – the set fairly dominated by
x, S(x) – the set of outcomes fairly dominating x.
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as a vector inequality on the cumulative ordered outcomes
[6]. This can be mathematically formalized as follows. First,
introduce the ordering map Θ : Rm → Rm such that
Θ(x) = (θ1(x), θ2(x), . . . , θm(x)), where θ1(x) ≤ θ2(x) ≤
· · · ≤ θm(x) and there exists a permutation τ of set I such
that θi(x) = xτ(i) for i = 1, . . . , m. Next, apply to ordered
outcomes Θ(x), a linear cumulative map thus resulting in the
cumulative ordering map Θ̄(x) = (θ̄1(x), θ̄2(x), . . . , θ̄m(x))
defined as

θ̄i(x) =
i∑

j=1

θj(x), i = 1, . . . , m (10)

The coefficients of vector Θ̄(x) express, respectively: the
smallest outcome, the total of the two smallest outcomes,
the total of the three smallest outcomes, etc. The theory of
majorization allow us to derive the following theorem [6].

Theorem 1: Outcome vector x′ fairly dominates x′′, if and
only if θ̄i(x′) ≥ θ̄i(x′′) for all i ∈ I where at least one strict
inequality holds.

Theorem 1 permits one to express fair solutions of problem
(7) as Pareto-optimal solutions to the multiple criteria problem

max {(θ̄1(x), θ̄2(x), . . . , θ̄m(x)) : x ∈ Q}. (11)

Indeed, the multiple criteria problem (11) may serve as a
source of various fair allocation schemes [13], [15]. Although
defined with simple linear constraints, the quantities θ̄k(x) ,
used as criteria in (11), introduce m2 additional variables and
inequalities while m corresponds to the number of ordered
pairs of network nodes which is already on the order of the
square of the number of nodes |V |.

The ordered achievement vectors describe a distribution
of outcomes generated by a given decision x. In the case
when there exists a finite set of all possible outcomes of the
individual objective functions, we can directly deal with the
distribution of outcomes described by frequencies of several
outcomes. Let V = {v1, v2, . . . , vr} (where v1 < v2 < · · · <
vr) denote the set of all attainable outcomes (all possible
values of the individual flows xi = fi(ξ) for ξ ∈ A). We
introduce integer functions hk(x) (k = 1, . . . , r) expressing
the number of values vk taken in the outcome vector x.
Having defined the functions hk we can introduce cumulative
distribution functions:

h̄k(x) =
k∑

l=1

hl(x) , k = 1, . . . , r. (12)

The function h̄k expresses the number of outcomes smaller
or equal to vk. Since we want to maximize all the outcomes,
we are interested in the minimization of all the functions h̄k.
The following assertion is valid [12]. For outcome vectors
x′,x′′ ∈ V m,

Θ(x′) ≥ Θ(x′′) ⇔ h̄(x′) ≤ h̄(x′′). (13)

Note that h̄r(x) = m for any x which means that the r-th
quantity is always constant and therefore redundant.

In order to take into account the principle of transfers we
need to distinguish values of outcomes smaller or equal to vk.
For this purpose we weight vector h̄(x) to get:

ĥk(x) =
k−1∑
l=1

(vl+1 − vl)h̄l(x) =
k−1∑
l=1

(vk − vl)hl(x) (14)

for k = 2, . . . , r and ĥ1(x) = 0. In other words, ĥk(x)
expresses the total of differences between vk and all the
outcomes xi smaller than vk. Since (vk − vl) > 0 for 1 ≤
l < k, it follows from (14) that vector function ĥ(x) provides
a unique description of the distribution of coefficients of vector
x, i.e., for any x′,x′′ ∈ V m one gets:

ĥ(x′) = ĥ(x′′) ⇔ h(x′) = h(x′′) ⇔ Θ(x′) = Θ(x′′).

Moreover the following assertion is valid (Ogryczak, 1997).
For achievement vectors x′,x′′ ∈ V m,

ĥ(x′) ≤ ĥ(x′′) ⇔ Θ̄(x′) ≥ Θ̄(x′′). (15)

Equivalence (15) permits one to express fair efficiency for
problem (7) in terms of the standard efficiency for the multiple
criteria problem with objectives ĥ(x):

min {(ĥ1(x), ĥ2(x), . . . , ĥr(x)) : x ∈ Q}. (16)

Theorem 2: A feasible solution x ∈ Q is an fairly efficient
solution of the multiple criteria problem (7), if and only if it
is an efficient solution of the multiple criteria problem (16).

Formula (14) allows us to express ĥk(x) as a piecewise
linear function of x:

ĥk(x) =
m∑

i=1

max{vk − xi, 0}, k = 1, . . . , r. (17)

Note that ĥ1(x) = 0 for any x which means that the first
criterion is constant and redundant in problem (16). Moreover,
mvr − ĥr(x) =

∑m
i=1 xi. thus representing the total through-

put. Similarly, one may define for all k the complementary
quantities ηk(x) = mvk − ĥk(x) =

∑m
i=1 min{xi, vk}

expressing the corresponding partial throughputs generated
by flows ranged to vk. Therefore, the entire multiple criteria
model (16) can be reformulated as follows:

max [η2, η3, . . . , ηr]
s.t.

ηk =
m∑

i=1

tki, k = 2, . . . , r,

tki ≤ xi, i = 1, . . . , m; k = 2, . . . , r,
tki ≤ vk, i = 1, . . . , m; k = 2, . . . , r,
x ∈ Q

(18)

Note that the above formulation adds only linear constraints
to the original attainable set Q. Hence, for the basic network
dimensioning problems with the set Q defined by constraints
(1)–(6), the resulting formulation (18) remains in the class of
(multiple criteria) MILP.
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IV. MULTIPLE TARGET ANALYSIS

Although defined with simple linear constraints, the ex-
panded model (18) introduces r × m additional variables and
inequalities. This may cause a serious computational burden
for real-life network dimensioning problems. Note that the
number of services (traffic demands) m corresponds to the
number of ordered pairs of network nodes which is already
square of the number of nodes |V |. On the other hand, quantity
r represents the number of various possible outcomes (flow
sizes). In order to reduce the problem size one may attempt the
restrict the number of distinguished outcome values (criteria
in the problem (18)).

Let us consider a sequence of indices K = {k1, k2, . . . , kq},
where vk1 < vk2 < . . . < vkq−1 < vkq

, and the corresponding
restricted form of the multiple criteria model (16):

max {(ηk1 , . . . , ηkq
) : x ∈ Q} (19)

with only q < r criteria. Following Theorem 2, multiple
criteria model (16) allows us to generate any fairly efficient
solution of problem (7). Reducing the number of criteria
we restrict these opportunities. Nevertheless, one may still
generate reasonable compromise solutions. First of all the
following assertion is valid.

Theorem 3: If xo is an efficient solution of the restricted
problem (19), then it is an efficient (Pareto-optimal) solution of
the multiple criteria problem (7) and it can be fairly dominated
only by another efficient solution x′ of (19) with exactly the
same values of criteria: ĥk(x′) = ĥk(xo) for all k ∈ K.

Proof: Suppose, there exists x′ ∈ Q which dominates
xo. This means, x′

i ≥ xo
i for all i ∈ I with at least one

inequality strict. Hence, ĥk(x′) ≤ ĥk(xo) for all k = 1, . . . , r
and ĥkq

(x′) < ĥkq
(xo) which contradicts efficiency of xo

within the restricted problem (19).
Suppose now that x′ ∈ Q fairly dominates xo. Due to

Theorem 2, this means that ĥk(x′) ≤ ĥk(xo) for all k =
1, . . . , r with at least one inequality strict. Hence, ĥk(x′) ≤
ĥk(xo) for all k ∈ K and any strict inequality would contradict
efficiency of xo within the restricted problem (19). Thus,
ĥk(x′) = ĥk(xo) for all k ∈ K.

It follows from Theorem 3 that while restricting the number
of criteria in the multiple criteria model (16) we can essen-
tially still expect reasonably fair efficient solution and only
unfairness may be related to the distribution of flows within
classes of skipped criteria. In other words, we have guaranteed
some rough fairness while it can be possibly improved by
redistribution of flows within the intervals (vkj

, vkj+1 ] for j =
1, 2, . . . , q−1. Since the fairness preferences assume increase
of smaller flows against larger ones, they aware of the use of
very small flows, One may introduce a grid of critical values
vk1 < vk2 < . . . < vkq−1 < vkq

which is dense for smaller
indices (smaller flow values) while sparser for larger indices
thus expecting some reasonable compromise between fairness
and throughput maximization. In our computational analysis
on the network with 132 elastic flows and the total throughput
requirements ranging between 500 and 1100 (Section V) we
have preselected 11 values vk as 1, 2, . . . , 10, and 20.

Finally, we may generate various fairly efficient bandwidth
allocation patterns as efficient solutions of the multiple criteria
problem:

max (ηk)k∈K

s.t. x ∈ Q
ηk =

∑
i∈I tki, k ∈ K

tki ≤ xi, tki ≤ vk, i ∈ I, k ∈ K

(20)

where the attainable set Q is defined by constraints (1)–(6).
Exactly, in the case of the complete multiple criteria model
(K = {1, . . . , r}), according to Theorem 2, all fairly efficient
allocations can be found as efficient solutions to (20) while in
the case of restricted set of criteria K some minor unfairness
related to the distribution of flows within classes of skipped
criteria may occur (Theorem 3).

The simplest way to model a large gamut of fairly effi-
cient allocations may depend on the use some combinations
of criteria (ηk)k∈K . Better controllability and the complete
parameterization of nondominated solutions for discrete prob-
lems can be achieved with the direct use of the reference point
methodology introduced by Wierzbicki [19] and later extended
leading to efficient implementations of the so-called aspira-
tion/reservation based decision support (ARBDS) approach
[8]. The ARBDS approach allows the decision maker (DM) to
specify the requirements in terms of aspiration and reservation
levels, i.e., by introducing acceptable and required values for
several criteria. Depending on the specified aspiration and
reservation levels, a special scalarizing achievement function is
built and maximized. Maximization of the scalarizing achieve-
ment function generates an efficient solution to the multiple
criteria problem. The solution is accepted by the DM or
some modifications of the aspiration and reservation levels
are introduced to continue the search for a better solution.
When applying the ARBDS methodology to the multiple target
model (20), one may generate various fairly efficient solutions
of the original problem (7).

While building the scalarizing achievement function the
following properties of the preference model are assumed.
First of all, the function must be strictly increasing with
respect to each outcome to guarantee that more is preferred to
less (maximization) for any individual outcome ηk. Second,
a solution with all individual outcomes ηk satisfying the
corresponding reservation levels is preferred to any solution
with at least one individual outcome worse (smaller) than
its reservation level. Next, provided that all the reservation
levels are satisfied, a solution with all individual outcomes
ηk equal to the corresponding aspiration levels is preferred
to any solution with at least one individual outcome worse
(smaller) than its aspiration level. That means, the scalarizing
achievement function maximization must enforce reaching the
reservation levels prior to further improving of criteria. In other
words, the reservation levels represent some soft lower bounds
on the maximized criteria. When all these lower bounds are
satisfied, then the optimization process attempts to reach the
aspiration levels.

The generic scalarizing achievement function takes the
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following form [19]:

σ(η) = min
k∈K

{σk(ηk)} + ε
∑
k∈K

σk(ηk) (21)

where ε is an arbitrary small positive number and σk, for
k ∈ K, are the partial achievement functions measuring
actual achievement of the individual outcome ηk with re-
spect to the corresponding aspiration and reservation levels
(ηa

k and ηr
k, respectively). Thus the scalarizing achievement

function is, essentially, defined by the worst partial (individual)
achievement but additionally regularized with the sum of all
partial achievements. The regularization term is introduced
only to guarantee the solution efficiency in the case when the
maximization of the main term (the worst partial achievement)
results in a non-unique optimal solution.

The partial achievement function σk can be interpreted as
a measure of the DM’s satisfaction with the current value
(outcome) of the k-th criterion. It is a strictly increasing
function of outcome ηk with value σk = 1 if ηk = ηa

k , and
σk = 0 for ηk = ηr

k. Thus the partial achievement functions
map the outcomes values onto a normalized scale of the DM’s
satisfaction. We use the piecewise linear partial achievement
function introduced in [12]:

σk(ηk) =




γ(ηk − ηr
k)/(ηa

k − ηr
k), ηk ≤ ηr

k

(ηk − ηr
k)/(ηa

k − ηr
k), ηr

k < ηk < ηa
k

β(ηk − ηa
k)/(ηa

k − ηr
k) + 1, ηk ≥ ηa

k

where β and γ are arbitrarily defined parameters satisfying
0 < β < 1 < γ. In our implementation the values β =
0.01 and γ = 100 have been used. This partial achievement
function is strictly increasing and concave which guarantees
its LP computability with respect to outcomes ηk.

Recall that in our model outcomes ηk represent partial
throughputs for ranged flows xi, i.e. ηk =

∑m
i=1 min{xi, vk}.

Hence, the reference vectors (aspiration and reservation) repre-
sent, in fact, some reference distributions of outcomes (flows).
Moreover, due to the cumulation of outcomes, while consid-
ering equal flows φ as the reference (aspiration or reservation)
distribution, one needs to set the corresponding levels as
ηk = mφ for φ ≤ vk and ηk = mvk otherwise. Certainly,
one may specify any desired reference distribution in terms
of ranged throughputs. Although, special meaning of the last
(throughput) criterion should be rather operated independently
from the others. Such an approach to control the search for a
compromise fair and efficient bandwidth allocation has been
confirmed by the computational experiments as described in
the following section.

V. COMPUTATIONAL EXAMPLES

The reference distribution approach described in preceding
sections has been tested on a sample network dimensioning
problem with elastic traffic. The network topology of the
presented problem (Fig. 2) is patterned after the backbone
network of a Polish ISP [13]. The network consists of 12 nodes
and 18 links. Flows between any pair of different nodes have
been considered (i.e., 144 − 12 = 132 flows). For each flow,

two alternative paths have been specified that could be used
for transport. All information of a flow had to travel along one
of the paths. All links have unit costs equal to one, and the
budget for link bandwidth is B = 1000. Since all links have
equal costs of one, path cost are equal to the path length (1,
2, 3 or 4 for the shortest paths in the example topology). For
each flow, two alternative paths (the shortest and the second
shortest) have been specified that could be used for transport.
The entire flow had to travel along one of the paths with no
splitting allowed (nonbifurcation formulation (1)–(2)).

We have analyzed the network dimensioning problem de-
fined by constraints (1)–(6). Thus the model under considera-
tion allows flows to choose one of two paths for transport (1)–
(2) and limits the capacity of certain links from above while
providing also some free link capacity for certain links (3). The
intention behind the model has been to depict a situation when
the network operator wishes to extend the capacity of an exist-
ing network. In this network, certain links cannot be upgraded
beyond a certain values to the use of legacy technologies, due
to prohibitive costs or administrative reasons (for instance, it
may be cheap to use already installed fiber that has not been
in use before, but it may be prohibitively expensive to install
additional fiber). Actually, free link capacity was set to 10,
and the upper limit on the expansion capacity was set to 30.
Due to the presence of free link capacity and upper limits on
link capacity, the MILP solver found solutions where certain
flows had to use alternative paths rather than the shortest
paths. These flows were more expensive than other flows that
were allowed to use their shortest paths. Recall that we have
used a single-path formulation, meaning that the entire flow
had to be switched to the alternative path. Flows could not
be split, which is consistent with several traffic engineering
technologies used today.

For all model versions, the final input to the model consisted
of the reservation and aspiration levels for the total throughput
within ranges of the specified target flow values. We have
preselected 11 target flow values: ten values vk = k (k =
1, 2, . . . , 10), and v11 = 20. For simplicity of the analysis, all
aspiration levels were set larger than the maximum possible
value mvk+1, and only reservation levels were used to control
the outcome flows. One of the most significant parameters was
the reservation level for the largest target value representing

Fig. 2. Sample network topology patterned after the backbone network of a
Polish ISP.

53



0

200

400

600

800

1000

0 20 40 60 80 100 120 140

i

S
u
m

 o
f 

i 
s
m

a
lle

s
t 

fl
o
w

s

750 throughput reservation (1)

800 throughput reservation (2)

900 throughput reservation (3)

1000 throughput reservation (4)

1050 throughput reservation (5)

1100 throughput reservation (6)

1

3
2

4
5
6

(b)

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

i

S
u
m

 o
f 

i 
s
m

a
lle

s
t 

fl
o
w

s
750 throughput reservation (1)

800 throughput reservation (2)

850 throughput reservation (3)

900 throughput reservation (4)

950 throughput reservation (5)

1000 throughput reservation (6)

1100 throughput reservation (7)

1

3
2

4
5
6
7

(a)

Fig. 3. Flow distribution for varying throughput reservation with φ = 2 and
s = 0.01 (a), s = 0.04 (b).

actually the required network throughput. This value denoted
by ηr

r was selected separately from the other reservation levels.
All the other reservation levels were formed as a linearly
increasing sequence of the ordered values with slope (step)
s. Exactly, a value φ is selected as required minimal flow and
further the (ordered) required flows are defined as φ+(i−1)s.
Hence, one gets the reservation levels ηr

k = mvk for vk ≤ φ
and mvk − k̄(k̄ − 1)s/2 where k̄ = (vk − φ)/s. For the sake
of simplicity, we select value φ as one of the lower target
values vk. Thus we have 3 control parameters: reservation
level for total throughput, minimum required flow, and the
slope of ordered required flows.

Fig. 4 and 3 present plots of cumulated ordered flows θ̄i(x)
versus number i (rank of a flow in ordering according to flow
throughput). The total network throughput is represented in the
figures by the altitude of the right end of the curve (θ̄132(x)).
A perfectly equal distributions of flows would be graphically
represented by an ascending line of constant slope. Solutions
resulting in similar flow distribution have been skipped.

In the first experiment, we set the minimal flow value φ = 1
while the throughput reservation level ηr

m and the slope s have
been used to search for compromise solutions that traded off
fairness against efficiency. The throughput reservation level
has been varied from 500 to 1100 for two values of slope
s = 0.01 and 0.04. For low throughput reservations (up to
750) no significant conflict with fairness has occurred and the
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Fig. 4. Flow distribution for varying throughput reservation with φ = 1 and
s = 0.01 (a), s = 0.04 (b).

total throughput about 750 has been provided with up to 10
flows on level of 2 and other larger than 2 (for s = 0.01) and
up to 8 flows on the level of 1 and other larger than 1 (for
s = 0.04). As ηr

m increases, the cheaper flows receive more
throughput at the expense of more expensive (longer) flows.
For s = 0.01 and values of ηr

m above 1000, some flows are
starved; almost 50 for ηr

m = 1100. Actually, no solution has
managed to reach the total throughput significantly larger than
1050. For s = 0.04, already values of ηr

m above 950 cause
that a few flows are starved. When repeating the experiment
with the required minimal flow value φ = 2, for s = 0.01 and
values of ηr

m up to 950 all flows reach the level of at least
2. For larger values of ηr

m up to 1100 still all flows remain
positive but a few of them are reduced to the level of 1. Finally,
for throughput reservation 1100 about 1% of flows are starved.
For s = 0.04 and values of ηr

m up to 800 all flows reach the
level of at least 2. For larger values, all flows remain positive.

Overall, the experiments on the sample network topology
demonstrated the versatility of the described methodology
for fair network dimensioning. The use of reservation levels,
controlled by a small number of simple parameters, allowed
us to search for solutions best fitted to various possible
preferences of a network designer. Moreover, the computation
time to generate a single solution of our sample dimensioning
problem does not exceed 200 seconds when using CPLEX
9.1 on an 1.4GHz PC, thus enabling an interactive search of
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Fig. 5. Flows distribution for varying parameters in the interactive analysis.

a satisfactory fair and efficient allocation. Consider a network
designer who wishes to extend link capacities of a network
shown in Fig. 2. Note that the network designer need not have
a set of directly expressed preferences, but rather is an expert
that works using tacit knowledge. First, she may search for
a solution that has a high overall throughput by setting 1100
as the corresponding reservation, and some reasonable slope
value s = 0.04 and the required minimal flow value φ = 1.
Solution 1, shown in Fig. 5, indeed provides a high throughput
(about 1050) but is unfair with more than 40 flows completely
starved. When the network designer relaxes the throughput
reservation to 750, she gets Solution 2 that is quite close to
perfectly fair, but has a low throughput (750). To identify a
relatively fair solution with a larger throughput, the network
designer returns to ηr

m = 1100, but increases the required
smallest flow to φ = 2. This leads to Solution 3 with all
positive flows, (but about 40 of them below 2) and a total
throughput of about 1000. The solution plot is very similar to
that of Solution 1, thus depicting strong unfairness. To reach
a more fair solution, the network designer accepts a decrease
of the total throughput. When setting ηr

m = 1000, she gets
Solution 4 with a total throughput about 900, but similarly
fair as Solution 2. In Solution 4, about 80% of (smallest)
flows remain on the level close to those of Solution 2, while
about 20% receive much larger values, thus increasing the total
throughput. The network designer finds Solution 4 an accept-
able compromise. The presented analysis is simplified, but it
demonstrates that it is possible to easily find a satisfactory
fair and efficient allocation pattern in a few interactive steps.
Moreover, the plots of cumulated ordered flows turn out to be
a convenient graphical interface to support the search process.
The selected solution contains values for link capacitites and
allows the network designer to extend the network in Fig. 2.

VI. CONCLUSION

A central issue in networking is how to allocate bandwidth
to flows efficiently and fairly. The Max-Min Fairness is widely
used to meet these goals. Allocating the resources to optimize

the worst performances may cause a large worsening of the
overall (mean) performances. Therefore, several other fair al-
location schemes have been researched and analyzed. We have
shown that there exists a multiple criteria model that allows to
represent consistently the overall efficiency and fairness goals.
Moreover, the criteria measure actual network throughputs
for various levels (targets) of flows. Thereby, the criteria can
easily be introduced into the model. While looking for fairly
efficient bandwidth allocation the reference point methodology
can be applied to the multiple target partial throughputs. Our
initial experiments with such an approach to the problem of
network dimensioning with elastic traffic have confirmed the
theoretical advantages of the method. We were easily able to
generate various (compromise) fair solutions despite the fact
that the search for fairly efficient compromise solutions was
controlled by only three parameters. One of these parameters
was a reservation level for the network throughput.
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