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A mathematical model of portfolio optimization is usually represented as a bicriteria optimization
problem where a reasonable trade-off between expected rate of return and risk is sought. In a
classical Markowitz model, the risk is measured by a variance, thus resulting in a quadratic
programming model. As an alternative, the MAD model was developed by Konno and Yamazaki,
where risk is measured by (mean) absolute deviation instead of a variance. The MAD model is
computationally attractive, since it is easily transformed into a linear programming problem. An
extension to the MAD model proposed in this paper allows us to measure risk using downside
deviations, with the ability to penalize larger downside deviations. Hence, it provides for better
modeling of risk averse preferences. The resulting m—MAD model generates efficient solutions with
respect to second degree stochastic dominance, while at the same time preserving the simplicity
and linearity of the original MAD model. © 2001 John Wiley & Sons, Inc.
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1. INTRODUCTION

From the advent of Modern Portfolio Theory (MPT) which arouse of the work of Markowitz [16],
the notion of investing in diversified portfolios has become one of the most fundamental concepts
of portfolio management. The original Markowitz model was derived by using a representative
investor belonging to the normative utility framework, which manifested itself in portfolio opti-
mization techniques based on the mean-variance rule. This framework proved to be sufficiently rich
to provide the main theoretical background for an analysis of the importance of diversification. It
also gave rise to asset pricing models for security pricing, the best known being the Capital Asset
Pricing Model (CAPM) [3].

The portfolio optimization problem considered in this paper follows the original Markowitz
formulation, and is based on a single period model of investment where at the beginning of each
period, an investor would allocate capital among various securities. Assuming that each security
is represented by a variable, this is equivalent to assigning a nonnegative weight to each of the
variables. During the investment period, a security would generate a certain (random) rate of
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return. The change of invested capital observed at the end of the period is measured by the
weighted average of the individual rates of return. In mathematical terms, to select (optimal)
weights reflecting the amount invested in each security, investors need to solve an optimization
model consisting of a set of linear constraints, one of which should state that the weights must sum
to one (thus reflecting the fact that portions of available total capital are invested in individual
securities).

Following Markowitz [16], such a portfolio optimization problem is usually modeled as a bicriteria
optimization problem where a reasonable trade—off between the expected rate of return and risk is
sought. In the Markowitz model, the risk is measured by a variance from the mean rate of return,
thus resulting in the formulation of a quadratic programming model. Following Sharpe [23], many
attempts have been made to linearize the portfolio optimization problem (c.f., [27] and references
therein). Recently, Konno and Yamazaki [13] presented a MAD portfolio optimization model where
risk is measured by (mean) absolute deviation instead of variance. This model is computationally
attractive as (for discrete random variables) it results in the solving of linear programming (LP)
problems.

It can be argued that the variability of the rate of return above the mean should not be penalized
since the investors are concerned with the underperformance rather than the overperformance
of a portfolio. This led Markowitz [17] to propose downside risk measures such as (downside)
semivariance to replace variance as the risk measure. Consequently, one can observe the growing
popularity of the mean return — downside risk portfolio selection models [9]. The absolute deviation
used in the MAD model to measure risk is taken as twice the downside semideviation. Therefore,
the MAD model may be viewed as based on the downside risk, measured with mean deviation to
the mean. Nevertheless, due to a symmetric characteristic of the risk measure used in the MAD
model, it can be equally viewed as the “upside risk model”.

An investor who uses the MAD model is assumed to have a constant trade-off for a unit deviation
from the mean rate of return. This assumption does not allow for the distinction of risk associated
with larger losses. The purpose of this paper is to account for such a distinction, and to present
an extension to the MAD model that incorporates a “true” downside risk measure.

The Markowitz model has been criticized as not being consistent with axiomatic models of
preferences for choice under risk because it does not rely on a relation of stochastic dominance
(ct., [28], [15]). The MAD model is consistent with second degree stochastic dominance, provided
that the trade-off coefficient between risk and return is bounded by a certain constant [20]. The
proposed extension of the MAD model retains consistency with stochastic dominance.

The paper is organized as follows. In the next section we discuss the original MAD model.
Section 3 deals with the proposed extension of MAD, that incorpoates a true downside risk measure.
The consistency of the resulting model with stochastic dominance is discussed in Section 4. The
paper concludes with a discussion.

2. THE MAD MODEL

Let J ={1,2,...,n} denote a set of securities considered for investment. The rate of return for
each security j € J is represented by a random variable R; with a given mean pu; = E{R;}.

Further, let x = (;)=1,2,....n denote a vector of securities’ weights (decision variables) defining
a portfolio. To represent a portfolio, the weights must satisfy a set of constraints that form a
feasible set (). The simplest way of defining a feasible set is by a requirement that the weights
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must sum to one, i.e.:
n
{x:(wl,xg,...,a:n)T : Z z;j=1, z; >0 forj=1,...,n} (1)
i=1

An investor must usually consider some other requirements which are expressed as a set of ad-
ditional side constraints. Hereafter, it is assumed that @ is a general LP feasible set given in a
canonical form as a system of linear equations (including (1)) with nonnegative variables:

Q={x=(21,22,...,3,)T : Ax=b, x=0} (2)

where A is a given p x n matrix and b = (by,...,b,)? is a given RHS vector. A vector x € Q is
called a portfolio.

FEach portfolio x defines a corresponding random variable Ry = Z]rle R;x; that represents a
portfolio rate of return. The mean rate of return for portfolio x is given as:

p(x) = E{Rx} = pjz;

=1

Following Markowitz [16], the portfolio optimization problem is modeled as a mean-risk op-
timization problem where u(x) is maximized and some risk measure g(x) is minimized. The
important advantage of a mean-risk approach is that it provides for the possibility of trade-off
analysis. Having assumed a trade-off coefficient A between the risk and the mean, one may directly
compare real values u(x) — Ag(x) and find the best portfolio by solving the optimization problem:

max {u(x) — Ao(x) : x€Q} 3)

This analysis is conducted by way of a so-called critical line approach [18], by solving a parametric
problem (3) with changing A > 0. Such an approach enables to select an appropriate value for the
trade-off coefficient A, and the corresponding optimal portfolio, through graphical analysis in the
mean-risk image space.

It is clear that if the risk is measured by a variance:

0% (x) = E{(u(x) — Rx)*} =

05T 4
1

n
1=

n
1 j=

where 0;; = E{(R; — pt;)(R; — p;)} is the covariance of securities ¢ and j, then the problem (3)
has a quadratic objective function.

The practical use of problem (3) with a quadratic objective function as a tool for optimizing
large portfolios is limited. In an attempt to analyze the reasons behind the limited popularity of
the Markowitz model among investors, Konno and Yamazaki [13] identify as its shortcomings the
need to solve a large scale quadratic programming problem and the investor’s reluctance to rely
on variance as a measure of risk [14]. An attempt to address these concerns involves considering
an alternative risk measure defined as the (mean) absolute deviation from a mean:

+oo
0(x) = B{|Rx — p(x)|} = /_ |i(x) = €| Px(dE) (4)
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where Py denotes a probability measure induced by the random variable Ry [21]. Absolute de-
viation (4) has already been considered by Edgeworth [2] in the context of regression analysis.
Within this context, it was used in various areas of decision making resulting among other things
in the goal programming formulation of LP problems [1]. Absolute deviation was also considered in
the portfolio analysis ([24] and references therein), and recently an interesting approach has been
proposed to solve stochastic optimization problems involving this risk measure [4]. Konno and
Yamazaki [13] presented the complete portfolio optimization model based on absolute deviation as
a risk measure — the so-called MAD model. Using data on stocks comprising the Nikei 225 index,
they demonstrated that the MAD model generates results very similar to those obtained with the
Markowitz model, while at the same time being easier to solve.

There is no universal risk measure equally good for all broad categories of risk and thus there is a
need for caution while using one [26]. For example, when an investment situation involves minimal
acceptable returns, then target semivariance and its extensions are considered to be good risk
measures [17, 7]. However, when the mean expected return is used as a performance measure, one
may then consider extending the above approach by using downside semideviations from the mean.
Many authors have pointed out that the MAD model opens up opportunities for more specific
modeling of the downside risk (c.f. [12, 5, 29]), because absolute deviation may be considered as a
measure of downside risk. Namely, the mean absolute deviation §(x) equals twice the (downside)
absolute semideviation [20]:

5(x) = E{max{u(x) - Rx,0}} (5)

n(x)
— E{u(x) - R Rx < p(x)}P{Rx < p(x)} = / (1(x) — €) Pu(de)

The absolute semideviation §(x) is well defined for any random variable Ry satisfying the condi-
tion E{|Rx|} < oo which is true in the portfolio optimization context considered here. According
to [13], the following parametric optimization problem is called the MAD model:

max {u(x) = M(x) : x€Q} (6)

The MAD model is not a true downside risk model, since the absolute semideviation represents
both downside as well as upside mean deviations [11, 20]:

6(x) = E{max{u(x) — Rx,0}} = E{max{Rx — u(x),0}} (7)
Therefore, it is equally appropriate to interpret (6) as an upside risk model. Assuming that the

MAD model is being interpreted in a downside risk measure framework, one might notice that for
any real number 7 it holds that:

n — E{max{n — Rx,0}} = E{min{Rx,n}} (8)
and
p(x) = A(x) = (1 = Np(x) + Mp(x) = 6(x)) = (1 — Mp(x) + AE{min{Rx, u(x)}}

This implies, that in the MAD model a convex combination of the original mean and the mean of
underachievements (where all larger outcomes are replaced by the mean) is maximized. Therefore,
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0 < A <1 represents reasonable trade-offs between the mean and the downside risk. The downside
risk is measured only by the mean of downside deviations (see (5)), and thus the MAD model
assumes a constant trade-off for a unit of downside deviation from the mean portfolio rate of
return.

The proposed extension to the MAD model allows one to differentiate between downside and
upside risks, and to penalize larger downside deviations. It thus provides for better modeling of
risk averse preferences. Note that such an extension is in some ways equivalent to replacing &(x)
with &, (x) defined as:

Ou(x) = E{u(max{u(x) — Rx,0})} 9)

where u is some convex penalty function.

Simplicity and computational robustness are perceived as the most important advantages of the
MAD model. Following [13], it is assumed that 7;; is the realization of the random variable R;
during the period ¢t (where ¢t = 1,...,T') that is available from historical data. It is also assumed
that the expected value of R; can be approximated by:

1 T
uj:Tt; Tjt

Therefore, model (6) for a discrete set of realizations rj; can be rewritten as the following LP [5]:

n A T
max Z iz — TZ dy (10)
j=1 t=1
subject to
x€Q (11)
n
dtZZ (j —rjr)z; fort=1,...,T (12)
j=1
dg >0 fort=1,...,T (13)

The LP formulation (10)—(13) can be effectively solved, even for large number of securities. More-
over, a diversification of the optimal portfolio (i.e., a number of weights with nonzero values) is
controlled by the number T. In the case when @ is given as (1), no more than T + 1 securities
will be included in the optimal portfolio. The proposed extension to the MAD model, although
increasing the problem size, maintains the LP formulation.

If the rates of return are multivariate normally distributed, then the MAD model is equivalent
to the Markowitz model [13], although when the return distribution parameters are not known
with certainty the former performs slightly worse due to larger estimation errors [25]. However,
development of the MAD model does not ask for any specific type of return distributions, facilitat-
ing its application to portfolio optimization for mortgage-backed securities and other investment
situations where the distribution of rate of return is known not to be symmetric [29].

Recently, the MAD model was further validated by Ogryczak and Ruszczynski [20]. They
demonstrated that if the trade-off coefficient A is bounded by 1, then the MAD model is partially
consistent with second degree stochastic dominance [28]. The origins of stochastic dominance are
in an axiomatic model of risk-averse preferences [6, 10, 22]. Since that time it has been widely
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used in economics and finance (see [15] for numerous references). A detailed and comprehensive
discussion of stochastic dominance and its relation to downside risk measures is given in [19] and
[20]

In stochastic dominance, uncertain returns (random variables) are compared by the pointwise
comparison of some performance functions constructed from their distribution functions. Let
Ry be a random variable which represents the rate of return for portfolio x and Py denote the
induced probability measure. The first performance function F,gl) is defined as the right-continuous
cumulative distribution function:

FM () = Fye(n) = P{Rx <7} for real numbers 1.

The second performance function Ff) is derived from the distribution function Fy as:
n
FP(n) = / Fx(§) d¢  for real numbers 1,
— o0

and defines the weak relation of second degree stochastic dominance (SSD):
Ru oop Bxr & FPm) <ED () for all n.

The corresponding strict SSD relation > is defined as

SSD

Ry >sop Rxr & Ry =gop Rer and Ryw ¥.op Ry

Thus, we say that portfolio x' dominates x" under the SSD (Rx > ¢, Rxr), if F,E,Q) (n) < Fg,) (n)
for all 5, with at least one strict inequality. A feasible portfolio x° € Q is called efficient under the
SSD if there is no x € @ such that Ry >, Rxo.

The SSD relation is crucial for decision making under risk. If Ry >.., Rx~, then Ry is
preferred to Ry~ within all risk-averse preference models where larger outcomes are preferred.
Note that the SSD relation covers increasing and concave utility functions, while the first stochastic
dominance is less specific as it covers all increasing utility functions [15], thus neglecting a risk averse
attitude. It is therefore a matter of primary importance that a model for portfolio optimization be
consistent with the SSD relation, which implies that the optimal portfolio is efficient under SSD.

The necessary condition for SSD relation is (c.f. [8]):

Rx’ tSSD Rx” = /"L(XI) 2 'LL(X”)

Ogryczak and Ruszczynski [20] modified this relation to consider absolute semideviations, and
proved the following proposition:

PROPOSITION 1 (Ogryczak and Ruszczyiiski) [20]: If R >, Rxr, then u(x')
uw(x'") and p(x') — o(x") > p(x") — 4(x"), where the second inequality is strict whenever p(x')
u(x").

The assertion of Proposition 1 together with relation (8) leads to the following corollary (see
[20], for details):

2
>

COROLLARY:  Except for portfolios with identical mean and absolute semideviation, every
portfolio x € @ that is maximal by p(x) — Ad(x) with 0 < A < 1 is efficient under SSD.
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It follows from this Corollary that the unique optimal solution of model (6) with the trade-off
coefficient 0 < A < 1 is efficient under SSD. In the case of multiple optimal solutions, one of them
is efficient under SSD, but some of them may also be SSD dominated. Due to the Corollary, an
optimal portfolio X’ € () can be SSD dominated only by another optimal portfolio X" € () such that
pu(x") = p(x') and §(x") = §(x'). Although the MAD model is consistent with SSD for bounded
trade-offs, it requires an additional specification if one wants to maintain the SSD efficiency for
every optimal portfolio. The extension of the MAD model presented in this paper provides such a
specification.

3. EXTENDED MAD MODEL

The MAD model does not properly account for the risk aversion attitude. In order to do so, one
would need to differentiate between the various levels of downside deviations, and to penalize the
“larger” ones. Konno [12] has already proposed such an extension of the MAD model for portfolio
optimization. He considered additional mean deviations from some target rate of return predefined
as being proportional to the mean rate of return. Within the framework of downside risk (and
downside deviations) this may be interpreted as consideration of the following deviations:

6r(x) = E{max{k u(x) — Rx,0}} for0<k<1 (14)

For k = 1 one gets the §;(x) = &(x), namely the absolute semideviation used in the original

MAD model. One may attempt to augment the downside risk measure by penalizing additional

deviations for several k < 1. In terms of a penalty function (see (9)), this approach is equivalent to

introducing a convex piecewise linear function with breakpoints proportional to the mean of R,.
Let us focus on the model with one additional downside deviation as Konno [12] did:

max {p(x) — A6(x) — A\0e(x) : x€Q} (15)

where \ > 0 is the basic trade-off parameter and A\, > 0 is an additional parameter (a penalty for
larger deviations). We refer to this model as k-MAD.

Note that in the k-MAD model one penalizes deviations that are relatively large with respect
to the expected rate of return. However, the model performs correctly (i.e. rku(x) < p(x)) only
in the case of a nonnegative mean. This is true for a typical portfolio optimization problem, but
in general, one must be very cautious while trying to apply the k-MAD model, especially because
the deviations J,(x) are sensitive to any shift in the scale of measurement.

Konno [12] did not analyze the consistency of the k-MAD model with stochastic dominance,
and such a comprehensive analysis is also beyond the scope of this paper. Nevertheless, one can see
that for SSD consistency a proper selection of the parameters in k-MAD may be quite a difficult
task. We illustrate this with a simple example.

Consider two finite random variables Ry and Ry defined as:

1/(1+¢), £€=0

P{Ro=¢} =4 e/(1+e), £=1 and  P{Ry =§}={1’ £=0
0,

0, otherwise (16)

otherwise

where ¢ is an arbitrarily small positive number. Note that Ry >, Ry and p(x') =¢/(1 +¢),
d(x') =¢/(1 +¢€)? while u(x") = 6(x") = 0. It is easy to show that Ry is preferred to Ry in the
MAD model with any 0 < A < 1. Consider now k-MAD with k¥ = 0.5 as suggested in [12]. Then
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do.5(x") = (0.5¢) /(1 + €)% = 0.50(x'). Hence, the objective function of the s~MAD model for Ry
is u(x') — (A + 0.5X00.5)8(x') which means that A5 impacts only the value of trade-off coefficient
A. Thus, in case of Ag5 > 2(1 — X + €), Ry is preferred to Ry . This inconsistency of k-MAD
with SSD is rectified in the proposed extension of the MAD model.

Let us begin with the original MAD model, assuming that the trade-off coefficient (A) has the
value 71. Since the mean deviation is already considered in (6), it is quite natural to focus on this
part of large deviations that exceed the mean deviation (later referred to as “surplus deviations”).
Mean surplus deviation E{max{u(x)—J(x) — Rx, 0} } needs to be penalized by a value, let’s say 72,
of a trade-off between the surplus deviation and a mean deviation, which leads to the maximization
of:

p(x) — 71(8(x) + 2 E{max{pu(x) — §(x) — Rx,0}})
Consequently, because surplus deviations are again measured by their mean, one might wish to
penalize “second level” surplus deviations exceeding that mean. This can be formalized as follows:

m

max {u(x Z H Tk) 0 : x€eQR} aan
i=1
where 71 > 0, ..., 7, > 0 are the assumed known trade-off coefficients and
ai(x) = d(x) = E{max{u( ) — Rx,0}}
8;(x) = E{max{u(x Z — Ry,0}} fori=2,.

k=1

It will be shown further that although formulated in a recursive manner, yet the problem (17)
remains a linear program. By substitution

i
XNi=]]m fori=1,...,m (18)
k=1
one gets the model:
m
max {p(x Z : xeQ} (19)
with parameters Ay > 0, ..., A\, > 0. Hereafter, we will refer to the model (19) as the recursive

m~level MAD model (or m—-MAD, for short).

Recalling example (16) which was used to illustrate the drawbacks of the k-MAD model, and
applying the m~MAD model to these random variables, one gets: ;(x') = &/(1 + ¢)**! and
8;(x"") = 0. Observe that for any m > 1 and 0 < \; < 1:

zm:g >,u”zm:5

which is consistent with the fact that Ry >,
model is its consistency with the SSD relation.

Ry In fact, an important feature of the m—MAD
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According to the Corollary, the MAD model is consistent with the SSD relation provided that
the trade-off coefficient is positive and not greater than 1. Imposing this restriction on coefficients
7;, and considering (18), one gets:

1>M >3 A > 0. (20)

Moreover, taking parameters A; satisfying (20), and due to (18), one gets that 0 < 7, < 1 for
i = 1,...,m. Thus, one may expect the m—MAD model to be consistent with the SSD relation
provided that the parameters \; satisfy (20). This will be demonstrated in Section 4.

The parameters A; in the m—MAD model represent the corresponding trade-offs for different
perceptions of downside risk. Using (18) they can be easily derived from coefficients 7;. If the
specific trade-off coefficient A is selected in the MAD model, then it is quite natural to use the
same value at every level of the m—MAD model, thus assuming 7; = A for ¢ = 1,...,m. This gives
A=A A=A, A=A

One may consider the objective function of the form:

which explicitly shows that A; is the basic risk to mean trade-off (denoted by X in the original MAD
model), whereas the quotients \;/A; define additional penalties for larger deviations. Specifically,
in terms of the penalty function u, the objective function in the m—MAD model takes the form

p(x) = A E{u(max{u(x) — Rx,0})}

where u is the (distribution dependent) piecewise linear convex function defined (for nonnegative
arguments) by breakpoints: by = 0, b; = b;_; + §;(x) fori = 1,...,m — 1 and the corresponding
slopes s1 =1, s; = 3 ;_; Ai/A1 for i = 1,...,m. The quotients \;/\; represent the increment
of the slope of u at the breakpoints b;_;. In particular, while assuming A, = ... = A2 = A\; one
gets the convex function u with slopes s; = i. The original MAD model with the linear function
u, may be considered as a limiting case of m—MAD with A\, =...= A2 =0.

Let us return to the case where the rates of return are represented as random variables measured
by a finite set of discrete realizations rj; (for j =1,...,n and ¢t = 1,...,T). Then, assuming that
the parameters \; satisfy (20), the m—MAD model can be formulated as an LP problem. For
instance, the 2-MAD model (i.e. m—MAD model with m = 2) is given as:

maxzn: -x<—£zT:d —ﬁid (21)
' HiZ T G 2
j=1 t=1 t=1
subject to
x€Q (22)
n
dtl > Z (Mj —rjt):cj for t = ].,...,T (23)
Jj=1
n 1 T
dtzzjzzl(lu,j—Tjt):l]'j—T; dll fOI‘t:].,...,T (24)

dtlZO, dtQZO fOI’t:].,...,T (25)
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The above formulation differs from (10)—(13) by having an additional group of T deviational
variables d;s (while the original d; are renamed d;;) and a corresponding additional group of T
inequalities (24) linking these variables together (similar to equations (12) in the MAD model).

A general m—MAD model can be formulated as LP with mT deviational variables and mT
inequalities linking them. In order to maintain the sparsity of its LP formulation (which is con-
venient when searching for solutions of the large scale LPs), it is preferable to write the m—MAD
as:

max zg + Z XiZi (26)
i=1
subject to
x€Q (27)
n
20 — Z piz; =0 (28)
j=1
T
T2+ di=0 fori=1,...,m (29)
t=1
i—1 n
dti—sz—kz rjpgz; >0 fort=1,...,T;i=1,...,m (30)
k=0 j=1
dy; >0 fort=1,...,T;i=1,...,m (31)
In the above formulation u(x) and §;(x) (i = 1,...,m) are explicitly represented using additional
variables zg and —z; (i = 1,...,m), respectively. Therefore, additional m + 1 constraints (28)—(29)

need to be introduced to define these variables. A number of nonzero coefficients in (30) can be
further reduced if repetitions of coefficients 7;; in several groups of inequalities (30) for various i
are avoided. This could be accomplished by introducing additional variables y; = E?:l T %43
however, it would increase the size of the LP problem to be solved. Diversification of the optimal
portfolio of the m—MAD model is controlled by the number mT.

An important shortcoming of the MAD model is that although it can be expressed in terms
of the downside risk measure 6(x) = E{max{u(x) — Rx,0}, the measure itself is symmetric in
the sense of the downside and upside risks (see (7)). The m—MAD model overcomes this flaw as
it introduces a risk term that is a true asymmetric risk measure. The reason for this is that for
asymmetric distributions E{max{u(x) + 7 — Rx,0} # E{max{Rx — u(x) — 0,0} for n > 0. To
illustrate this aspect of the m—MAD model, let us consider two finite random variables Ry and
Ry defined as [12]:

02, £=0 03, £=-1

0.1, £=1 04, £=4
P{Ry =&} =< 04, £=2 and P{Ryxr =&} =4 01, £€=5

03, £€=7 0.2, £=6

0, otherwise 0, otherwise

where Rx» = p(x') — (Rx — p(x')). Note that for any 7, the upside deviation for Ry is equal to
the corresponding downside deviation for Ryn (i.e. E{max{Rx — 1,0} = E{max{n — Rx,0}).
Since p(x') = p(x") = 3, §(x') = 6(x") = 1.2 and 0?(x') = 0?(x") = 7.4, both random variables
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are indistinguishable according to the Markowitz and MAD models. However, it appears that Ry
has a longer and “heavier” tail to the left of the mean, which can be demonstrated by comparing
their F®) functions for n < 3. It is possible to show that for any m > 1 and \; satisfying (20),
Ry is preferred to Ry according to the m—MAD model, thus allowing us to differentiate among
portfolios with different downside risk characteristics.

4. THE m—-MAD MODEL AND STOCHASTIC DOMINANCE

The function F{”, used to define the SSD relation (see Section 2) can also be presented as [20]:

FP(n) = /_ " =€) Pe(de) = P{Rx < n}E{n — Rx|Rx < n} = E{max{n — Rx,0}}

thus expressing the expected shortage for each target return 7. Hence, in addition to being the
most general dominance relation for all risk-averse preferences, SSD is also an intuitive multidi-
mensional (continuum-dimensional) risk measure. As shown by Ogryczak and Ruszczyniski [20],
the graph of F)(f), referred to as the Outcome-Risk (O-R) diagram, appears to be particularly
useful for comparing uncertain returns. The function F,gz) is continuous, convex, nonnegative and
nondecreasing. The graph F,EZ)(n) (Figure 1) has two asymptotes which intersect at the point
(1(x),0). Specifically, the n-axis is the left asymptote and the line n — pu(x) is the right asymp-
tote. In the case of a deterministic (risk-free) return (Rx = u(x)), the graph of £ (n) coincides
with the asymptotes, whereas any uncertain return with the same expected value p(x) yields a

graph above (precisely, not below) the asymptotes. The space between the curve (1, FP (), and
its asymptotes represents the dispersion (and thereby the riskiness) of Ry in comparison to the
deterministic return p(x). It is therefore called the dispersion space.

P (n)

p(x) n
Figure 1. The O-R diagram and the absolute semideviation

The absolute semideviation §(x) = F,g)(u(x)) turns out to be the maximal vertical diameter of
the dispersion space [20]. Following the argument that only the dispersion related to underachieve-
ments should be considered as a measure of riskiness [17], one should rather focus on the downside
dispersion space, that is, to the left of u(x). Note that §(x) is the largest vertical diameter for
both the entire dispersion space and the downside dispersion space.

Due to (8) and Proposition 1, it is possible to state that

Ry =s5p Rur = E{min{Ry,u(x')}} > E{min{ Ry, u(x")}} (32)

Note that P{min{Ry, u(x)} < n} is equal to P{Rx < n} for n < p(x) and equal to 1 for n >
p(x). The second performance function F(?) for the random variable min{ Ry, u(x)} coincides with
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F? (n) for n < pu(x) and takes the form of a straight line n — (u(x) — §(x)) for n > p(x). One may
notice that

Ry tSSD Ry = min{Rx/,p(x')} tssn min{qu,p(x")} (33)

which is a stronger relation than (32). From (33) it is possible to derive a stronger form of
Proposition 1, namely:

PROPOSITION 2: If Ry >, ., Rxr, then min{R.,u(x")} >4, min{Ryx,u(x")} and
E{min{Ry, pu(x')}} > E{min{ R, u(x"")}} whenever pu(x') > p(x").

Let us define a sequence of random variables related to portfolio x:

R® =R, and RY =min{R{ Y, E{RFV}} fori=1,...,m. (34)

and the corresponding means:
pi(x) = E{RP} fori=0,1,...,m (35)
where po(x) = p(x). Note that:
pi(x) = BE{min{ RV ;1 (x)}} < pi_1(x) fori=1,...,m.
Hence, R,(f) = min{Rx, ui—1(x)}} fori =1,...,m and:
po(x) = p(x) and  pi(x) = E{min{Ry, p;i—1(x)}} fori=1,...,m.

Finally, because of (8), one gets p;(x) = p;_1(x) — 8;(x) for i = 1,...,m. Thus:

i (x) =,u(x)—z Op(x) fori=1,...,m (36)

and
6:(x) = E{max{u;i_1(x) — Ry,0}} = F®(p;_1(x)) fori=1,...,m
The relations between y;(x) and §;(x) may be illustrated on the O-R diagram as shown in Figure 2.
Note that, p;(x) < pi—1(x) for any ¢ > 1. However, if Rx is lower bounded by a real number
Ix (ie. P{Rx < Ix} = 0), then Ix < p;(x) for any ¢ > 0. One may prove that in the case of

P{Rx =Ix} > 0 if m tends to infinity then p,,(x) converges to lx.
The objective function in model (19) can be expressed as:

p(x) =Y Xidi(x) =) oipui(x) (37)
=1 =0
where
ap=1-X, a=X—Xiy1 fori=1,....m—1 and am=An (38)

Note that E?;O a; = 1. Moreover, for the parameters \; satisfying (20), all «; are nonnega-
tive and the objective function (37) of m—MAD becomes a convex combination of means p;(x).
Maximization of the means u;(x) is consistent with SSD.
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p2(x) pa(x)  po(x) U
Figure 2. p;(x) and é;(x) on the O-R diagram for Rx

THEOREM 3: If Ry >_., Ryr, then p;(x') > p;(x") for all ¢ = 0,1,...,m and if any
of these inequalities is strict (u;, (x') > pi, (x")), then all subsequent inequalities are also strict
(wi(x') > pi(x") for i =i, ..., m).

PROOF: According to (35), ui(x) (i =0,...,m) are the means of the corresponding random
variables RS defined in (34). By (recursive) application of Proposition 2 m times for defined
random variables RY’ (fori =0,...,m—1) one gets R,(j,) > son R and thereby u;(x') > p;(x"") for

<!

alli =0,1,...,m,as well as u;(x') > p;(x") whenever p;—1(x') > pi—1(x")foralli=1,....m n

The assertion of Theorem 3, along with the relations (37)—(38), leads to the following theorem.

THEOREM 4: Except for portfolios characterized by identical mean and identical semidevi-
ations, every portfolio x € () that maximizes pu(x) — > iv; Xid;(x) with ); satisfying the condition
(20) is efficient under SSD.

PROOF: According to (37)—(38) and (20), it follows that u(x)—>_1r, Aidi(x) = S i, aipi(x)
where all the coefficients a; for ¢ = 0,...,m are nonnegative, whereas «, is strictly positive. Let
x° € Q maximize p(x) — Y10, Xidi(x). This means that > - a;pi(x°) > S0 aypi(x) for all
x € . Suppose that there exists x' € @ such that Ry >, Rxo. Then from Theorem 3,
pi(x') > pi(x°) for all i = 0,...,m and Y ;"o aipi(x') > Y7o ipi(x°). The latter together
with the fact that x° is optimal, implies that Y .- aipi(x') = Y1t @ipi(x°) which means that
x' must also be an optimal portfolio. Further, suppose that for some i, (0 < i, < m) there is
wi, (x') > pi, (x°), then, according to Theorem 3, i, (x') > p1rm (x°). Since ay, > 0, the latter leads
to the conclusion that 30" a;pi(x") > >0 aipi(x°) which contradicts the assumption that x°
is optimal. Hence, yu;(x') = u;(x°) for all i = 0,...,m, and therefore u(x') = u(x°). Due to (36),
it follows that 0;(x') = 6;(x°) for all i = 1,...,m. n

According to Theorem 4, a unique optimal portfolio of the m—MAD model with the trade-off
coefficient \; satisfying (20), is efficient under SSD. In the case of multiple optimal solutions of (19)
(similarly to the case of the original MAD model) some of them may be SSD dominated. Due to
Theorem 4, an optimal portfolio x’ € @ can be SSD dominated only by another optimal portfolio
x" € @ such that u(x") = u(x') and §;(x") = &;(x') for all i = 1,...,m. This means that even
if one generates an SSD dominated portfolio, then it has the same mean and downside risk as the
dominating one.
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5. DISCUSSION

The m—MAD model is well defined for any type of rate of return distribution, and it is not
sensitive to the scale shifting with regard to the mean and deviations. It also is a “true” downside
risk model as the risk measure used in m—MAD is not symmetric. Therefore, it comprehends
the investor’s (downside) risk aversion, and as demonstrated in the paper, it is robust given SSD
efficiency. The computational robustness associated with the linear programming (LP) formulation
for random returns defined by a finite number of scenarios (historical data) is the most important
advantage of the MAD model. Although formulated in a recursive manner, the proposed m—-MAD
model, maintains the LP formulation. The number of LP constraints is increased by factor m
(usually not greater than 3 or 4) and the resulting augmented LP can still be solved by a standard
commercial LP solver.

Both the Markowitz and MAD models are powerful portfolio optimization tools, which do not
impose a significant information burden on an investor for a given risk/return trade-off. This
feature, considered to be an advantage in certain situations, may also be viewed as a shortcoming
because it does not provide an investor with any process control mechanism. This is not the case
with the m—MAD model. Application of this model allows an investor to control and fine-tune
the portfolio optimization process through the ability to determine m trade-off parameters A;.
Thus, an investor exhibiting (downside) risk aversion can, to some extent, control which securities
enter his/her optimal portfolio through varying a penalty associated with the “larger” (downside)
deviations from a mean return. Within such a framework, higher risk aversion is reflected in an
investor’s desire to exclude from a portfolio those securities that have potential “large” deviations,
while a more risk neutral investment attitude will result in the acceptance of these securities. On
the other hand, the modeling flexibility of m—MAD is also its possible shortcoming related to the
selection of proper values for m and \; parameters. It is important to stress here that if a specific
trade-off coefficient A is selected in the original MAD model, then it is quite reasonable to use
the same coefficient at every level of the m-MAD model, which results in: A\; = X, Ao = A2,...,
Am = A™. For computational reasons it becomes clear that a limited number of levels (small value
of m) should be considered. However, for the trade-off A < 1 it is very likely that, in the sequence
{A}1,....m, the values of its elements approach 0 very quickly. Thus, in practice, it is not necessary
to solve m—MAD for a value of m larger than 3 or 4.

The m—MAD model allows us to penalize larger downside deviations relative to the mean by
using a piecewise linear penalty function. The penalty increase per unit deviation depends on
two factors: the slope of a corresponding linear segment of the penalty function and a number of
segments. The former is controlled through trade-off coefficients A;. The latter depends on the
recursive scheme of penalizing deviation greater than the corresponding mean deviation, and thus
it involves a self-scaling. One might consider a scaling parameter v and the scaled deviations such
that d,(,)(x) = E{max{u(x)—vd; (x) — Rx,0}}. However, in order to maintain the SSD consistency
of the m—MAD model, values of v must belong to (0, 1] interval and more complicated restrictions
on the trade-off coefficients must be satisfied. Such requirements together with an unnecessary
modeling burden, in our opinion, overweight the possible advantages associated with relaxing the
self-scaling component with a parameter v.

In this paper, we argue that a solution of the m—MAD model for a particular m, reflects
an investor’s specific (downside) risk aversion attitude. At the same time, by varying m and
solving a sequence of the m—MAD models, it is possible to generate a set of optimal portfolios
{x°(m)}m=1,2,.... For each of these portfolios, one can define some piecewise linear penalty function
where x°(m) is its optimal solution. Moreover, assuming that this process is applied to historical
data, for every {x°(m)}m—1,2,.. it is possible to calculate the portfolio cumulative wealth index
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(pcwi). Therefore, a trajectory of x°(m) plotted on the “pcwi scale” allows one to represent
an investor’s proneness to (downside) risk aversion as a function of the pcwi. Such combined
representation (a penalty function and a function of pcwi) may prove to be sufficiently intuitive
to serve as a useful tool in evaluating an investor’s risk aversion attitude — information that is
critical when designing an effective investment strategy. However, the specific computational and
methodological issues associated with this representation and evaluation need to be investigated
further and resolved prior to its practical application.
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