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Abstract — Resource allocation problems are concerned with
the allocation of limited resources among competing activities
so as to achieve the best overall performances of the system
but providing fair treatment of all the competitors. Telecom-
munication networks are facing the increasing demand for
Internet services. Therefore, a problem of network dimen-
sioning with elastic traffic arises which requires to allocate
bandwidth to maximize service flows with fair treatment of
all the services. In such applications, the so-called max-min
fairness (MMF) solution concept is widely used to formulate
the resource allocation scheme. This guarantees the fairness
but may lead to significant losses in the overall throughput
of the network. In this paper we show how multiple criteria
optimization concepts can be used to generate various fair re-
source allocation schemes. The solution concepts are tested
on the network dimensioning problem and their abilities to
model various preferences are demonstrated.

Keywords — telecommunication networks, network dimension-
ing, resource allocation, fairness.

1. Introduction

Resource allocation decisions are concerned with the allo-
cation of limited resources so as to achieve the best system
performances. In this paper, we focus on approaches that,
while allocating resources, attempt to provide a fair (equal)
treatment of all the competing activities [8, 13]. The prob-
lems of efficient and fair resource allocation arise in various
systems which serve many users, like in telecommunication
systems among others [8].
The development of the Internet has led to an increased
role of the traffic carried by the IP protocol in telecom-
munication networks. Due to the use of packet switch-
ing, the IP protocol can provide greater network utilization
(the so-called multiplexing gain). For these reasons, net-
work management can be interested in designing networks
which have a high throughput for the IP protocol.
At the same time, data traffic carried by the TCP proto-
col (which is the most frequently used transport protocol in
IP networks) has a unique characteristic. The TCP protocol
will adapt its throughput to the amount of available band-
width. It is therefore capable to use the entire available
bandwidth, but it will also be able to reduce its throughput
in the presence of contending traffic. This type of network
traffic has been called elastic traffic.
Network design today often considers the problem of de-
signing networks that carry elastic traffic. If the network
is also used for other types of communication that require
guaranteed quality of service, the network design problem

can be decomposed into two parts: first, design the network
to carry non-elastic traffic in such a way that all demands
for that communication are satisfied. Next, use the spare
capacity to carry elastic traffic of the IP protocol. Resource
allocation models may be used to help to solve such net-
work design problems.
Within a telecommunication network the data traffic is gen-
erated by a huge number of nodes exchanging data. In such
a network, a relatively small subset of nodes are chosen to
serve as hubs which can be used as intermediate switching
points [2, 6]. Given a set of hubs, data traffic generated
by a service is sent from the source node to a hub first.
It can be then sent along communications link between
hubs, and finally reach the destination node along a link
from a hub. The hub-based network organization allows
the data traffic to be consolidated on the inter-hub links.
The problem of network dimensioning with elastic traffic
arises when there is a need to design the (inter-hub) link ca-
pacities to carry as much traffic as possible between a set of
network nodes. This can occur in the case described above,
when the network capacity available after considering all
non-elastic demands has to be used for elastic traffic, or in
another case: when the network capacity is insufficient to
carry all non-elastic demands. In such a case, the problem
is to determine how much traffic of the non-elastic demands
can be admitted into the network. To do so, the demands
can be treated as elastic traffic. The outcome of network
design will also specify the limits of traffic to be admitted
into the network for each demand [16].
Network management must stay within a budget of ex-
penses for purchasing link bandwidth. Network manage-
ment will want to have a high throughput of the IP network,
to increase the multiplexing gains. This traffic is offered
only a best-effort service, and therefore network manage-
ment is not concerned with offering guaranteed levels of
bandwidth to the traffic. Network dimensioning with elas-
tic traffic can therefore be thought of as a search for such
network flows that will maximize the network throughput
(the sum of all flows in the network) while staying within
a budget constraint for the costs of link bandwidth. How-
ever, such a problem formulation would lead to the starva-
tion of flows between certain network nodes.
Looking at the problem from the user perspective, the net-
work flows between different nodes should be treated as
fairly as possible. The users may be interested in high avail-
able bandwidth between any two nodes of the network, or
in high available bandwidth from all other network nodes
to the user’s node, or in high available bandwidth from the
user’s node to all other nodes. Whatever the user prefer-
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ence, it would be expressed in terms of fairness for a certain
set of criteria which depend on the individual flows. Let us
first consider providing fairness for all flows between any
two network nodes. Such a goal would clearly lead to lower
levels of throughput, since resources must be allocated to
distant nodes, which is more expensive than using the entire
budget to purchase a high capacity for close nodes.
Therefore, network management must consider two goals:
increasing throughput and providing fairness. These two
goals are clearly conflicting, if the budget constraint has to
be satisfied. Network management could therefore be in-
terested in finding compromise solutions that do not starve
network flows, and give satisfying levels of throughput.
The search for such compromise solutions has led to the
development of a method that finds solutions which are fair
with respect to flows in certain categories. These categories
can depend on the distance between the source and desti-
nation of a flow. The details of this method will be given
below; it is referred to as proportional fairness (PF) [5].
However, this method gives only one possible compromise
solution. The purpose of this work is to show that there
exists a methodology that allows the decision maker to ex-
plore a set of solutions that could satisfy his preferences
with respect to throughput and fairness, and choose the so-
lution which the decision maker finds best. This interactive
approach to decision making is superior to a black box ap-
proach, when the decision maker has only one solution and
cannot express his preferences [18].
The paper is organized as follows. In the next section we
recall the network dimensioning problem. In Section 3,
basic fair solution concepts for resource allocation are for-
mally introduced. In the next section, the ordered outcomes
are used to introduce LP implementable solution concepts
allowing to model various fair allocation schemes. Finally,
in Section 5, we report some results of our initial compu-
tational experience with this new approach.

2. The network dimensioning problem

The generic resource allocation problem may be stated as
follows. There is given a set I of m services. There is also
given a set Q of allocation patterns (allocation decisions).
For each service i 2 I a function fi(x) of the allocation
pattern x has been defined. This function, called the in-
dividual objective function, measures the outcome (effect)
yi = fi(x) of the allocation pattern for service i. In ap-
plications, we consider, an outcome usually expresses the
service flow. However, outcomes can be measured (mod-
eled) as service time, service costs, service delays as well
as in a more subjective way. In typical formulations a larger
value of the outcome means a better effect (higher service
quality or client satisfaction). Otherwise, the outcomes can
be replaced with their complements to some large num-
ber. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized which
results in a multiple criteria maximization model.

The problem of network dimensioning with elastic traffic
can be formulated as a linear programming (LP) resource
allocation problem as follows. Given a network routing
topology G =< V;E >, consider a set of pairs of nodes
as the set I of services. For each service i 2 I , the elas-
tic flow from source us

i to destination ud
i will be denoted

by yi , which is a variable representing the model outcome.
For each service, we have given the information about the
routing path in the network from the source to the desti-
nation. This information can be in the form of a matrix
A = (aei), which satisfies the relation: aei = 1 if link e be-
longs to the routing path connecting us

i with ud
i . Further,

for each link e2 E, marginal costs ce of link bandwidths is
given. Hence, the cost of the entire path for service i can
be expressed as:

κi = ∑
e2E

ceaei:

The network dimensioning problem depends on allocating
the bandwidth to several links in order to maximize flows
of all the services while remaining within available bud-
get B for all link bandwidths. The decisions are usually
modeled with (decision) variables: xe – representing the
bandwidth allocated to link e2 E. They have to fulfill the
following constraints:

∑
e2E

cexe = B (1)

∑
i

aeiyi = xe 8e2 E ; (2)

where Eq. (1) represents the budget limit while Eqs. (2)
establish the relation between service flows and links band-
width (the quantity ∑i2I aeiyi is the load of link e). Cer-
tainly, all the decision and outcome variables must be non-
negative: xe � 0 for all e2 E and yi � 0 for all i 2 I .
Alternatively, one may eliminate variables xe formulating
the problem as a simplified resource allocation model with
only one constraint:

m

∑
i=1

κiyi = B (3)

and variables yi representing directly decisions.
The model could have various objective functions, depend-
ing on the chosen approach. One may consider two extreme
approaches. The first extreme approach is the maximiza-
tion of the throughput (the sum of flows) ∑i2I yi . Due
to possible alternative formulation (3), it is apparent that
this approach would choose one variable yio which has the
smallest marginal cost κio = mini2I κi and make that flow
maximal within the budget limit (yio = B=κio), while lim-
iting all other flows to zero. A slightly more fair optimal
solution would give equal values to all flows which have
marginal costs equal to the minimal marginal cost. How-
ever, all flows that have marginal costs larger than the min-
imum would have to be zero in a solution that maximizes
throughput.
The so-called max-min fairness solution concept is widely
used to formulate fair resource allocation schemes [1, 8].
The worst performance (minimum flow) is there maximized
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and additonally regularized, if necessary, with the lexico-
graphic (sequential) maximization of the second worst per-
formance, the third worst etc. The MMF concept is con-
sistent with Rawlsian [15] theory of justice.
Actually, due to possible alternative formulation (3), the
MMF concept would lead us to a solution that has equal
values for all the flows [12]:

yMMF
i = B=∑

i2I

κi for i = 1; : : : ; m:

Allocating the resources to optimize the worst performances
may cause a large worsening of the overall (mean) perfor-
mances. In such a solution the throughput (mB=∑m

i=1 κi)
could be considerably smaller than the maximal through-
put (B=mini=1;::: ;mκi). In an example analyzed further, we
shall show that the throughput in a perfectly fair solution
can be less than 50% of the maximal throughput.
Network management can be interested in seeking a com-
promise between the two extreme approaches discussed
above. The approach called proportional fairness proposed
in [5] maximizes the sum of logarithms of the flows yi .
The use of the logarithmic function makes it impossible
to choose zero flows for any pair of nodes, and, on the
other hand, makes it not profitable to assign too much flow
to any individual demand. The optimization model of the
PF method takes the following form:

max
m

∑
i=1

log(yi): (4)

For the problem of network dimensioning with elastic traffic
and unbounded flows, the solution found by the PF method
has an interesting property [11]. The optimal flows yPF

i are
given by the expression:

yPF
i = B=κi for i = 1; : : : ; m: (5)

This property implies that the optimal flow in the PF model
is inversely proportional to the cost of the path that the flow
travels in the network. Due to this property, it is not neces-
sary to solve nonlinear models in order to find the PF op-
timal solution. Also, the solution provides fairness to the
flows which have the same path costs. Arguably, the PF so-
lution is a good compromise solution to the problem, since
it provides a higher throughput than the perfectly fair so-
lution. However, network management could be interested
in choosing among a larger set of compromise solutions in
order to satisfy their preferences. In the following sections,
we shall describe an approach that allows to search for such
compromise solutions.

3. Basic fair allocation schemes
Consider a generic resource allocation problem defined as
an optimization problem with m objective functions fi(x):

maxff(x) : x 2Qg ; (6)

where f(x) is a vector–function that maps the decision space
X = Rn into the criterion space Y = Rm, Q� X denotes

the feasible set, and x 2 X denotes the vector of decision
variables.

Model (6) only specifies that we are interested in maximiza-
tion of all objective functions fi for i 2 I = f1;2; : : : ;mg.
In order to make it operational, one needs to assume some
solution concept specifying what it means to maximize
multiple objective functions.
Typical solution concepts for multiple criteria problems are
defined by aggregation functions g : Y ! R to be maxi-
mized. Thus the multiple criteria problem (6) is replaced
with the maximization problem

max fg(f(x)) : x 2Qg : (7)

In order to guarantee the consistency of the aggregated
problem (7) with the maximization of all individual ob-
jective functions in the original multiple criteria problem,
the aggregation function must be strictly increasing with
respect to every coordinate, i.e., for all i 2 I ,

g(y1; : : : ;yi�1;y
0

i ;yi+1; : : : ;ym)< g(y1;y2; : : : ;ym) (8)

whenever y0i < yi .
In order to guarantee fairness (equitability) of the solu-
tion concept, the aggregation function must be additionally
symmetric (impartial), i.e. for any permutation τ of I ,

g(yτ(1);yτ(2); : : : ;yτ(m)) = g(y1;y2; : : : ;ym) (9)

as well as be equitable (to satisfy the principle of transfers)

g(y1; : : : ;yi0 � ε; : : : ;yi00 + ε; : : : ;ym)> g(y1;y2; : : : ;ym)

(10)

for any 0 < ε < yi0 � yi00 . In the case of an aggregation
function satisfying all the requirements (8), (9) and (10),
we call the corresponding problem (7) a fair (equitable)
aggregation of problem (6). Every optimal solution to the
fair aggregation (7) of a resource allocation problem (6)
defines some fair allocation scheme.
Note that symmetric functions satisfying the requirement

g(y1; : : : ;yi0 � ε; : : : ;yi00 + ε; : : : ;ym)� g(y1;y2; : : : ;ym)

(11)

for 0< ε < yi0 �yi00 are called (weakly) Schur-concave [10]
while the stronger requirement of equitability (10), we con-
sider, is related to strictly Schur-concave functions. In other
words, an aggregation (7) is fair if it is defined by a strictly
increasing and strictly Schur-concave function g.
The simplest aggregation functions commonly used for the
multiple criteria problem (6) are defined as the sum of
outcomes

g(y) =
m

∑
i=1

yi (12)

or the worst outcome

g(y) = min
i=1;::: ;m

yi : (13)

In the network dimensioning problem, the former repre-
sents throughput maximization while the latter corresponds

36



Fair resource allocation schemes and network dimensioning problems

to the MMF model. The sum (12) is a strictly increasing
function while the minimum (13) is only non-decreasing.
Therefore, the aggregation (7) using the sum of outcomes
always generates a Pareto-optimal solution while the max-
imization of the worst outcome may need some additional
refinement. Both the functions are symmetric and satisfy
the requirement (11), although they do not satisfy the eq-
uitability requirement (10). Hence, they are Schur-concave
but not strictly Schur-concave. To guarantee the fairness
of solutions, some enforcement of concave properties is
required.

For any strictly concave, increasing function s : R! R, the
function

g(y) =
m

∑
i=1

s(yi) (14)

is a strictly monotonic and strictly Schur-concave func-
tion [10]. This defines a family of the fair aggregations
according to the following corollary [7].

Corollary 1. For any strictly convex, increasing function
s : R! R, the optimal solution of the problem

max

� m

∑
i=1

s( fi(x)) : x 2Q

�
(15)

is a fair solution for resource allocation problem (6).

In the case of the outcomes restricted to positive values,
one may use logarithmic function thus resulting in the pro-
portional fairness model (4). Various other concave func-
tions s can be used to define fair aggregations (15) and the
resulting resource allocation schemes. However, the prob-
lem of network dimensioning, we consider, is originally
an LP model. Therefore, it is important if various fair al-
location schemes can be generated with LP tools. We will
show such LP models in the next section.

The standard maximin approach (13) may be lexicograph-
ically extended to the full MMF model where, in addition
to the smallest outcome, one maximizes also the second
smallest outcome (provided that the smallest one remains
as large as possible), maximizes the third smallest (provided
that the two smallest remain as large as possible), etc. Note
that the lexicographic maximization is not applied to any
specific order of the original criteria. Nevertheless, in the
case of LP problems, there exists a dominating objective
function which is constant on the entire optimal set of the
maximin problem [9]. Hence, having solved the maximin
problem, one may try to identify the dominating objective
and eliminate it to formulate a restricted maximin problem
on the former optimal set. Therefore, the lexicographic
maximin solution to LP problems can be found by sequen-
tial maximin optimization with elimination of the dominat-
ing functions. Although, the LP models, we will present
in the next section, provide us with a direct formulation for
the MMF model.

4. Ordered outcomes

Multiple criteria optimization defines the dominance
relation by the standard vector inequality. The the-
ory of majorization [10] includes the results which al-
low us to express the relation of fair (equitable) dom-
inance as a vector inequality on the cumulative or-
dered outcomes [7]. This can be mathematically for-
malized as follows. First, introduce the ordering map
Θ : Rm! Rm such that Θ(y) = (θ1(y);θ2(y); : : : ;θm(y)),
where θ1(y)� θ2(y)� �� � � θm(y) and there exists a per-
mutation τ of set I such that θi(y) = yτ(i) for i = 1; : : : ;m.
Next, apply to ordered outcomes Θ(y), a linear cumula-
tive map thus resulting in the cumulative ordering map
Θ̄(y) = (θ̄1(y); θ̄2(y); : : : ; θ̄m(y)) defined as

θ̄i(y) =
i

∑
j=1

θ j(y) for i = 1; : : : ;m: (16)

The coefficients of vector Θ̄(y) express, respectively: the
smallest outcome, the total of the two smallest outcomes,
the total of the three smallest outcomes, etc.
Vector Θ̄(y) can be viewed graphically with a piece
wise linear curve connecting point (0,0) and points
(i=m; θ̄i(y)=m) for i = 1; : : : ;m. Such a curve represents
the absolute Lorenz curve which can be mathematically for-
malized as follows. First, we introduce the right-continuous
cumulative distribution function:

Fy(d) =
m

∑
i=1

1
m

δi(d) ; where δi(d) =

�
1 if yi � d
0 otherwise

which for any real value d provides the measure of out-
comes smaller or equal to d. Next, we introduce the quan-
tile function F(�1)

y as the left-continuous inverse of the cu-
mulative distribution function Fy:

F (�1)
y (η) = inf

�
d : Fy(d)� η

	
for 0< η � 1:

By integrating F(�1)
y one gets F (�2)

y (0) = 0 and

F (�2)
y (η) =

Z η

0
F (�1)

y (α)dα for 0< η � 1:

Graphs of functions F (�2)
y (η) (with respect to η) take

the form of concave curves (Fig. 1), the (upper) ab-
solute Lorenz curves. In our case of m outcomes, the
absolute Lorenz curve is completely defined by the
values F(�2)

y (i=m) = 1
m θ̄i (y) for i = 1; : : : ; m, where

F(�2)
y (1=m) = θ̄1(y) = θ1(y) represent the worst outcome

and F (�2)
y (1) = 1

mθ̄m(y) = 1
m ∑m

i=1 θi(y).
In income economics the Lorenz curve is a cumulative pop-
ulation versus income curve [10]. A perfectly equal distri-
bution of income has the diagonal line as the Lorenz curve
and no outcome vector can be better. The absolute Lorenz
curves, we consider, are unnormalized taking into account
also values of outcomes. Vectors of equal outcomes are dis-
tinguished according to the value of outcomes. They are
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Fig. 1. Vectors Θ̄(y) as the absolute Lorenz curves.

graphically represented with various ascent lines in Fig. 1.
Hence, with the relation of fair dominance an outcome vec-
tor of large unequal outcomes may be preferred to an out-
come vector with small equal outcomes.
Note that fair solutions to problem (6) can be expressed as
Pareto-optimal solutions for the multiple criteria problem
with objectives Θ̄(f(x))

max
n�

θ̄1(f(x)); θ̄2(f(x)); : : : ; θ̄m(f(x))
�

: x 2Q
o
: (17)

Corollary 2. A feasible solution x 2Q is a fair solution of
the resource allocation problem (6), iff it is a Pareto-optimal
solution of the multiple criteria problem (17).
Corollary 2 provides the relationship between fair alloca-
tion schemes and Pareto-optimality. Moreover, the multiple
criteria problem (17) may serve as a source of fair alloca-
tion schemes.
Although the definitions of quantities θ̄k(y), used as criteria
in (17), are very complicated, the quantities themselves can
be modeled with simple auxiliary variables and constraints.
It is commonly known that the worst (largest) outcome
may be defined by the following optimization: θ̄1(y) =
=maxft : t � yi for i = 1; : : : ;mg, where t is an unrestricted
variable. It turns out that this approach can be generalized
to provide an effective modeling technique for quantities
θ̄k(y) with arbitrary k [14]. Namely, for a given outcome
vector y the quantity θ̄k(y) may be found by solving the
following linear program:

θ̄k(y) = max kt�∑m
i=1di

s:t: t�yi � di ; di � 0 for i = 1; : : : ;m;
(18)

where t is an unrestricted variable while nonnegative vari-
ables di represent, for several outcome values yi , their
downside deviations from the value of t. Independently
from the formal proof [14], this formula can be justified
as follows. It is obvious that max(kt�∑m

i=1di) = θ̄k(y)

whenever no more than k�1 deviations di are strictly pos-
itive. On the other hand, for any t and di feasible to (18)
one can define an alternative feasible values: t̃ = t �∆
and d̃i = di �∆ for di > 0, where ∆ is an arbitrary small
positive number. For at least k positive values one gets
kt̃�∑m

i=1 d̃k � kt�∑m
i=1dk, which justifies (18).

Formula (18) provides us with a computational formulation
for the worst conditional mean M k

m
(y) defined as the mean

outcome for the k worst-off services, i.e.:

M k
m
(y) =

1
k

θ̄k(y); for k= 1; : : : ;m: (19)

Note that for k = 1, M 1
m
(y) = θ̄1(y) = θ1(y) = M(y)

thus representing the minimum outcome, and for k = m,
Mm

m
(y) = 1

mθ̄m(y) = 1
m ∑m

i=1 θi(y) =
1
m ∑m

i=1yi = µ(y) which
is the mean outcome. Formula (18) allows us to maximize
effectively the worst conditional means for various interme-
diate values k [13].
Note that Corollary 2 allows one to generate equitably effi-
cient solutions of (6) as efficient solutions of problem (17).
The aggregation maximizing the sum of outcomes, corre-
sponds to maximization of the last (mth) objective in prob-
lem (17). Similar, the maximin scalarization corresponds
to maximization of the first objective in (17). For modeling
various fair preferences one may use some combinations of
the cumulative ordered outcomes θ̄i(y). In particular, for
the weighted sum on gets

m

∑
i=1

wi θ̄i(y) : (20)

Note that, due to the definition of map Θ̄ with (16), the
above function can be expressed in the form with weights
vi = ∑m

j=i wj (i = 1; : : : ;m) allocated to coordinates of the
ordered outcome vector. Such an approach to aggregation
of outcomes was introduced by Yager [19] as the so-called
ordered weighted averaging (OWA). When applying OWA
to problem (6) we get

max
n m

∑
i=1

viθi(f(x)) : x 2Q
o
: (21)

The OWA aggregation is obviously a piece wise linear func-
tion since it remains linear within every area of the fixed
order of arguments.
If weights vi are strictly decreasing and positive, i.e.
v1 > v2 > � � �> vm�1 > vm > 0, then each optimal solution
of the OWA problem (21) is a fair solution of (6). More-
over, in the case of LP models, as the network dimension-
ing one, every fair allocation scheme can be identified as an
optimal solution to some OWA problem with appropriate
monotonic weights [7].
While equal weights define the linear aggregation, several
decreasing sequences of weights lead to various strictly
Schur-concave and strictly monotonic aggregation func-
tions. Thus, the monotonic OWA aggregations provide
a family of piece wise linear aggregations filling out the
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space between the piece wise linear aggregation func-
tions (12) and (13) as shown in Fig. 2. Actually, formu-
las (20) and (18) allow us to formulate any monotonic (not
necessarily strictly) OWA problem (21) as the following
LP extension of the original multiple criteria problem:

max
m

∑
k=1

wkzk (22)

subject to x 2Q

zk = ktk�
m

∑
i=1

dik for k= 1; : : : ;m (23)

tk�dik � fi(x); dik � 0 for i;k= 1; : : : ;m; (24)

where wm= vm and wk = vk�vk+1 for k= 1; : : : ;m�1.

Fig. 2. Isoline contours for equitable OWA.

When differences among weights tend to infinity, the OWA
aggregation approximates the lexicographic ranking of the
ordered outcome vectors [20]. That means, as the limiting
case of the OWA problem (21), we get the lexicographic
problem:

lexmax
�

Θ(f(x) : x 2Q
	

(25)

which represents the MMF (lexicographic maximin) ap-
proach to the original resource allocation problem (6).
Problem (25) is a regularization of the standard maximin
optimization (13), but in the former, in addition to the worst
outcome, we maximize also the second worst outcome (pro-
vided that the smallest one remains as large as possible),
maximize the third worst (provided that the two smallest
remain as large as possible), and so on. Due to (16),
the MMF problem (25) is equivalent to the problem:

lexmax
�

Θ̄(f(x) : x 2Q
	

which leads us to a standard lexicographic optimization
with predefined linear criteria defined according to (18).

5. Computational results

First we have tested the OWA computational mod-
els (22)–(24) when applied to a generic LP resource al-
location problem. We tested solution times for different
size parameters. For each number of decision variables
n and number of criteria (services) m we solved 20 ran-
domly generated problems (Table 1). All computations
were performed on a PC with the Pentium 200 MHz pro-
cessor employing the CPLEX 6.0 package [4].

Table 1
Computation times for randomly generated problems

Services Allocations – n

m 5 10 20 40 60 100

10 0.05 0.10 0.10 0.15 0.15 0.20
20 0.30 0.35 0.40 0.60 0.75 1.00

30 0.80 1.00 1.55 2.15 2.65 3.35

40 1.95 2.35 3.20 5.25 6.75 9.50
60 7.30 8.80 10.95 20.75 31.30 44.95

100 49.05 54.60 65.40 104.15 173.10 278.80

Further we have analyzed sample network dimensioning
problem with elastic traffic. For this purpose we have con-
sidered a network of the topology is patterned after the
backbone network of a Polish ISP (Fig. 3). The network
has 12 nodes, and we consider flows between any pair of
these nodes (therefore, there are 144�12= 132flows). All
links have marginal costs equal to one, and the budget for
link bandwidth is B = 1000. Since all links have equal
costs of one, path cost will be equal to the link length,
which is 1, 2, 3 or 4 in the example topology. All flows
are unbounded. However, it is clear that due to the budget
constraint no flow can exceed B.

Fig. 3. Sample network topology.

To have control over the solution that will be found by the
model, we decided to scale the outcomes (flows). Following
the concepts of reference point methodology [17], we as-
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sume that the decision maker (DM) specifies requirements
in terms of aspiration and reservation levels, i.e., by intro-
ducing desired (acceptable) and required values for several
outcomes. Depending on the specified aspiration and reser-
vation levels, ya

i and yr
i , respectively, a special achievement

function is built which can be interpreted as a measure of
the DM’s satisfaction with the current value of outcome the
ith outcome. It is a strictly increasing function of outcome
yi with value 1 if yi = ya

i , and value 0 for yi = yr
i . Thus

the partial achievement functions map the outcomes values
onto a normalized scale of the DM’s satisfaction. Various
functions can be built meeting those requirements [18]. We
use the piece wise linear function:

σi(yi) =

8><
>:

γ(yi �yr
i )=(y

a
i �yr

i ); for yi � yr
i

(yi �yr
i )=(y

a
i �yr

i ); for yr
i < yi < ya

i

β (yi �ya
i )=(y

a
i �yr

i )+1; for yi � ya
i

where β and γ are arbitrarily defined parameters satisfying
0< β < 1< γ . Parameter β represents additional increase
of the DM’s satisfaction over level 1 when a criterion gen-
erates outcomes better than the corresponding aspiration
level. On the other hand, parameter γ > 1 represents dis-
satisfaction connected with outcomes worse than the reser-
vation level. The achievement function σi can be viewed as
an extension of the fuzzy membership function to a strictly
monotonic and concave utility (Fig. 4).

Fig. 4. Outcomes scaled with the achievement function.

The scaled flows are combined into an objective function
using the OWA model. The linear program formulation
of the OWA approach uses weights wi , which are first-
order differences of the weights vi which are coefficients
of the ordered outcome vector in the OWA model. In the
approach used here, the weights wi = 1 for all i. Thus,
the OWA model has linearly decreasing weights. In the next
section, we shall apply the outlined approach to search for
compromise solutions of the network dimensioning prob-
lem with elastic flows using the sample topology given
in Fig. 3.

The first application of the outlined approach used the
same reservation and aspiration levels for all flows. Pre-
dictably, the result was a perfectly fair solution with each
flow equal to 3:546, and a throughput of 468:1. This solu-
tion has a throughput which is less than 50% of the opti-
mum throughput (equal to the budget constraint, 1000).

Next, the aspiration and reservation levels were chosen
close to the values of the flows predicted by the property
of the PF approach. Indeed, we got the optimal solution
of the PF model, which has a throughput of 573:3. While
the throughput of this solution is larger than in the per-
fectly fair solution, it is still not large when compared to
the optimum.

Finally, the aspiration levels were set to 999 (close to the
maximal flow), and the reservation levels were chosen for
flows that had identical path costs in the following way:
the flows with path cost equal to 1 had a reservation level
of 15; flows with path cost equal to 2 had a reservation level
of 2:0; flows with path cost equal to 3 had a reservation
level of 1:0, and flows with path cost equal to 4 had a reser-
vation level of 0:5. This approach resulted in a solution that
had a throughput of 732:7, yet the smallest flow was larger
than 1:0, and flows with equal path costs were treated fairly,
like in the proportionally fair solution. The Lorenz curves
of all the described solutions are shown in Fig. 5. Note
that none of the solutions dominates any other.

Fig. 5. Solutions obtained for the sample topology.

As was indicated in the introduction, the users of a network
could be interested in fair treatment of flows between any
pair of nodes, or in some other form of fairness. For ex-
ample, the users could be interested in having fair amounts
of available throughput from all other nodes to the user’s
node. This form of preferences could be expressed by the
criteria:

nv = ∑
pi=(u;v)

xi 8v2V : (26)

In this case, the number of criteria is reduced. Also, note
that in approaches which make the value of a flow de-
pendent on the distance between the origin and destination
(like proportional fairness), nodes which are distant from
all other nodes will be treated unfairly. The three solutions
described above will be shown in Fig. 6. The figure plots
the Lorenz curves for the 12 criteria nv for each of the three
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Fig. 6. The three solutions with respect to node criteria nv.

solutions. It can be seen that the solution which increases
throughput dominates the other two. This is a consequence
of the design of the network topology, which is such that
increasing network throughput improves the throughputs to-
ward all the nodes. Another consequence of the topology is
that all nodes have close values of criteria nv, which is why
the curves on the figure are almost straight; in more detail
one could notice that the curves for proportional fairness
and the OWA method have each 6 changes of slope. The
perfectly fair solution predictably remains perfectly fair for
the criteria nv.

6. Concluding remarks

In various systems which serve many users, like in telecom-
munications systems, there is a need to respect the fairness
rules, i.e. to allocate resources equitably among the com-
peting services. Allocating the resources to optimize the
worst performances may cause a large worsening of the
overall (mean) performances. Therefore, several other fair
allocation schemes are searched and analyzed.

The conditional mean is based on averaging restricted to
the group of the worst performances defined by the tol-
erance level. Our earlier computational experiments with
the conditional mean criterion applied to a traffic engineer-
ing model (a single ring bidirectional loading) were very
promising [13]. The OWA aggregation further enriches
modeling capacity offered by the conditional mean. In the
case of LP models all equitable preferences may be mod-
eled by selection of weights in the OWA aggregation.

Initial experiments with application of the OWA criterion
(together with the reference point methodology) to the prob-
lem of network dimensioning with elastic traffic have con-
firmed the theoretical properties of the approach. We were
able to generate easily allocations representing classical
fairness models as well as to find new compromise so-
lutions.

Maximization of the OWA aggregation, similar to the stan-
dard minimax approach, can be defined by optimization of
a linear objective and a number of auxiliary linear inequal-
ities. Many specific large-scale allocation models (espe-
cially discrete ones) may need some specialized exact or
approximate algorithms. Thus, further research on compu-
tational aspects is necessary.

The problem of network dimensioning with elastic traf-
fic could be extended with constraints on the individual
flows. For example, network management could obtain traf-
fic statistics that indicate the maximum throughputs which
will be required between a pair of nodes. On the other
hand, network statistics could also determine how much
of the IP traffic requires guaranteed throughput (for exam-
ple, from voice over IP applications). From this, mini-
mal throughputs between a pair of nodes could be derived.
In this work, we have analyzed in details the network design
with elastic traffic without flow constraints. However, our
approach allows to express such constraints in the objective
function.
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