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1. STOCHASTIC DOMINANCE

In the stochastic dominance approach random

variables are compared by pointwise compari-

son of some performance functions constructed

from their distribution functions. Let X be a ran-

dom variable representing some returns. The first

performance function F1(X, r) is defined as the

right-continuous cumulative distribution function

itself: F1(X, r) = P[X ≤ r] for r ∈ R. We say

that X weakly dominates Y under the FSD rules

(X �
F SD

Y ), if F1(X, r) ≤ F1(Y, r) for all

r ∈ R, and X FSD dominates Y (X ≻
F SD

Y ), if

at least one strict inequality holds. Actually, the

stochastic dominance is a stochastic order thus

defined on distributions rather than on random

variables themselves. Nevertheless, it is a com-

mon convention, that in the case of random vari-

ables X and Y having distributions PX and PY ,

the stochastic order relation PX � PY might be

viewed as a relation on random variables X � Y

(Müller and Stoyan, 2002).

The second degree stochastic dominance rela-

tion is defined with the second performance func-

tion F2(X, r) given by areas below the cumula-

tive distribution function itself, i.e.: F2(X, r) =
� r

−∞ F1(X, t)dt for r ∈ R. Similarly to FSD, we

say that X weakly dominates Y under the SSD

rules (X �
SSD

Y ), if F2(X, r) ≤ F2(Y, r) for all

r ∈ R, while X SSD dominates Y (X ≻
SSD

Y ),

when at least one inequality is strict. Cer-

tainly, X ≻
F SD

Y implies X ≻
SSD

Y . Func-

tion F2(X, r), used to define the SSD relation

can also be presented as follows (Ogryczak and

Ruszczyński, 1999): F2(X, r) = E[max{r −

∗Partial financial support from The Ministry of Science

and Information Society Technologies under grant 3T11C

005 27.

X, 0}], thus representing the mean below-target

deviations from real targets.

Alternatively, the stochastic dominance or-

der can be expressed on the inverse cumulative

functions (quantile functions) (Wang and Young,

1998). Namely, for random variable X, one may

consider the performance function F−1(X, p) de-

fined as is the left-continuous inverse of the

cumulative distribution function F1(X, r), i.e.,

F−1(X, p) = inf {η : F1(X, η) ≥ p}. Ob-

viously, X dominates Y under the FSD rules

(X ≻
F SD

Y ), if F−1(X, p) ≥ F−1(Y, p) for

all p ∈ [0, 1], where at least one strict inequal-

ity holds. Further, the second quantile function

(or the so-called Absolute Lorenz Curve ALC)

is defined by integrating F−1 as F−2(X, p) =
� p

0 F−1(X,α)dα for 0 < p ≤ 1. Actually,

as shown in (Ogryczak and Ruszczyński, 2002),

F−2(X, p) = maxr∈R [pr − F2(X, r)]. Hence,

by the theory of convex conjugate (dual) func-

tions, the pointwise comparison of ALCs pro-

vides an alternative characterization of the SSD

relation in the sense that X �
SSD

Y if and only

if F−2(X,β) ≥ F−2(Y,β) for all 0 < β ≤ 1.

If X ≻
SSD

Y , then X is preferred to Y

within all risk-averse preference models that pre-

fer larger outcomes. In terms of the expected

utility theory the SSD relation represent all the

preferences modeled with increasing and con-

cave utility functions. It is therefore a mat-

ter of primary importance that a stochastic op-

timization model be consistent with the second

degree stochastic dominance relation. However,

in many applications one may deserve stronger

risk averse. The classical higher degree stochas-

tic dominance relations no longer maintain the

equivalence of the primal and dual (inverse) mod-

els. This paper introduces a concept of the
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primal-dual higher degree stochastic dominance

which preserve the equivalence of the primal and

inverse dominance relations.

2. PRIMAL-DUAL TSD

Classical higher degree stochastic dominance re-

lations depend on performance functions derived

by integrating those of lower degrees. The third

function F3(X, r) is given by integrating F2, i.e.:

F3(X, r) =
� r

−∞ F2(X, t)dt for r ∈ R and it

can also be presented as follows (Ogryczak and

Ruszczyński, 2001): F3(X, r) = E[max{r −

X, 0}2]/2, thus representing the mean square

below-target deviations from real targets. The

kth function Fk(X, r) is defined as: Fk(X, r) =
� r

−∞ Fk−1(X, t)dt for r ∈ R. Similarly to

FSD and SSD, we say that X weakly domi-

nates Y under the kSD rules (X �
kSD

Y ), if

Fk(X, r) ≤ Fk(Y, r) for all r ∈ R. Certainly,

X ≻
(k−1)SD

Y implies X ≻
kSD

Y . One may

also consider the higher degree quantile perfor-

mance functions (Muliere and Scarsini, 1989). In

particular, the third quantile function is defined

by integrating as F−3(X, p) =
� p

0 F−2(X,α)dα

for 0 < p ≤ 1, while higher degree functions

can respectively be built. Although, already the

third degree inverse SD relation, X �
TISD

Y

iff F−3(X, p) ≥ F−3(Y, p) for all 0 < p ≤ 1,

is not equivalent to the primal TSD. Moreover,

function F−3 is neither monotonic nor convex as

already F−2 is not always monotonic.

In order to build a primal-dual third degree

stochastic dominance concept we need to nor-

malize the corresponding second performance

functions prior to their integration. We in-

troduce a nondecreasing performance function

H2(X, .) : R → [0, 1] and its generalized inverse

H−2(X, .) = H−1
2 (X, .) such that X �

SSD
Y iff

H2(X, r) ≤ H2(Y, r) for all r ∈ R, and equiva-

lently H−2(X, p) ≥ H−2(Y, p) for all 0 < p ≤ 1.

In other words, we introduce alternative per-

formance functions similar to a cdf and its in-

verse, respectively, but defining the second de-

gree stochastic dominance instead of the FSD.

The simplest way to define such performance

functions is

H2(X, η) = sup{p : F2(X, η + ξ) ≥ pξ ∀ξ≥0}

H−2(X, p) = inf{η : F−2(X, p) ≤ pη }

When introducing the set of random variables

Q(η, p) = {Z : P[Z < η] = 0, P[Z ≤

η] ≥ p} the functions can be interpreted as fol-

lows. H2(X, η) represents then the largest p such

that X̂ �
SSD

X for some X̂ ∈ Q(η, p) while

H−2(X, p) represents the smallest η such that

X̂ �
SSD

X for some X̂ ∈ Q(η, p).

By integration we get the third degree perfor-

mance functions H3(X, r) =
� r

−∞ H2(X, t)dt

for r ∈ R and H−3(X, p) =
� p

0 H−2(X,α)dα

for 0 < p ≤ 1, respectively. Such functions

are convex and they form a pair of conjugate

functions. This allows us to define the third de-

gree primal-dual stochastic dominance (TPDSD)

as X �
TPDSD

Y iff H3(X, r) ≤ H3(Y, r) for all

r ∈ R, and equivalently H−3(X, p) ≥ H−3(Y, p)

for all 0 < p ≤ 1. Obviously, X �
SSD

Y implies

X �
TPDSD

Y , but not vice versa. Similar ap-

proach one may apply to construct higher degree

primal-dual stochastic dominance relations.

Various risk averse models can be build

by using TPDSD performance functions as op-

timization criteria. Note that H−2(X, p) =

F−2(X, p)/p thus representing the TailVaR risk

measures (known also as Average VaR or Con-

ditional VaR). There is no simple formula for

H2(X, r). Nevertheless, for both H−3(X, p) and

H3(X, r) the corresponding integral approxima-

tions can be quite easily defined.

This paper presents initial analysis of the

TPDSD relation and corresponding risk averse

optimization models.
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