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Abstract

Two methods are frequently used for modeling the choice among uncertain outcomes: stochastic dominance and

mean-risk approaches. The former is based on an axiomatic model of risk-averse preferences but does not provide a

convenient computational recipe. The latter quanti®es the problem in a lucid form of two criteria with possible trade-

o� analysis, but cannot model all risk-averse preferences. In particular, if variance is used as a measure of risk, the

resulting mean±variance (Markowitz) model is, in general, not consistent with stochastic dominance rules. This paper

shows that the standard semideviation (square root of the semivariance) as the risk measure makes the mean-risk

model consistent with the second degree stochastic dominance, provided that the trade-o� coe�cient is bounded by a

certain constant. Similar results are obtained for the absolute semideviation, and for the absolute and standard de-

viations in the case of symmetric or bounded distributions. In the analysis we use a new tool, the Outcome±Risk (O±R)

diagram, which appears to be particularly useful for comparing uncertain outcomes. Ó 1999 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Comparing uncertain outcomes is one of fun-
damental interests of decision theory. Our objec-

tive is to analyze relations between the existing
approaches and to provide some tools to facilitate
the analysis.

We consider decisions with real-valued out-
comes, such as return, net pro®t or number of lives
saved. A leading example, originating from ®-
nance, is the problem of choice among investment
opportunities or portfolios having uncertain re-
turns. Although we discuss the consequences of
our analysis in the portfolio selection context, we
do not assume any speci®city related to this or
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another application. We consider the general prob-
lem of comparing real-valued random variables
(distributions), assuming that larger outcomes are
preferred. We describe a random variable X by the
probability measure PX induced by it on the real
line R. It is a general framework: the random
variables considered may be discrete, continuous,
or mixed (Pratt et al., 1995). Owing to that, our
analysis covers a variety of problems of choosing
among uncertain prospects that occur in eco-
nomics and management.

Two methods are frequently used for modeling
choice among uncertain prospects: stochastic
dominance (Whitmore and Findlay, 1978; Levy,
1992), and mean-risk analysis (Markowitz, 1987).
The former is based on an axiomatic model of risk-
averse preferences: it leads to conclusions which
are consistent with the axioms. Unfortunately, the
stochastic dominance approach does not provide
us with a simple computational recipe ± it is, in
fact, a multiple criteria model with a continuum of
criteria. The mean-risk approach quanti®es the
problem in a lucid form of only two criteria: the
mean, representing the expected outcome, and the
risk: a scalar measure of the variability of out-
comes. The mean-risk model is appealing to deci-
sion makers and allows a simple trade-o� analysis,
analytical or geometrical. On the other hand,
mean-risk approaches are not capable of modeling
the entire gamut of risk-averse preferences.
Moreover, for typical dispersion statistics used as
risk measures, the mean-risk approach may lead to
inferior conclusions.

The seminal Markowitz (1952) portfolio opti-
mization model uses the variance as the risk
measure in the mean-risk analysis. Since then
many authors have pointed out that the mean±
variance model is, in general, not consistent with
stochastic dominance rules. The use of the semi-
variance rather than variance as the risk measure
was already suggested by Markowitz (1959) him-
self. Porter (1974) showed that the mean-risk
model using a ®xed-target semivariance as the risk
measure is consistent with stochastic dominance.
This approach was extended by Fishburn (1977) to
more general risk measures associated with out-
comes below some ®xed target. There are many
arguments for the use of ®xed targets. On the other

hand, when one of performance measures is the
expected return, the risk measure should take into
account all possible outcomes below the mean.
Therefore, we focus our analysis on central semi-
moments which measure the expected value of
deviations below the mean. To be more precise, we
consider the absolute semideviation (from the
mean)

�dX �
ZlX

ÿ1

�lX ÿ n� PX �dn�

� 1

2

Z1
ÿ1

jnÿ lX j PX �dn� �1�

and the standard semideviation

�rX �
ZlX

ÿ1

�lX ÿ n�2 PX �dn�
0@ 1A1=2

; �2�

where lX � EfXg. We show that mean-risk mod-
els using standard or absolute semideviations as
risk measures are consistent with the stochastic
dominance, if a bounded set of mean-risk trade-
o�s is considered. In the portfolio selection context
these models correspond to the Markowitz (1959,
1987) mean±semivariance model and the Konno
and Yamazaki (1991) MAD model with absolute
deviation.

The paper is organized as follows. In Section 3
we recall the basics of the stochastic dominance
and mean-risk approaches. We also specify what
we mean by consistency of these approaches. In
Section 3 we introduce a convenient graphical tool
for the stochastic dominance methodology: the
Outcome±Risk (O±R) diagram, and we examine
various risk measures within the diagram. We
further use the O±R diagram to establish consis-
tency of mean-risk models using the absolute
semideviation (Section 4) and the standard semi-
deviation (Section 5), respectively, with the second
degree stochastic dominance rules. In a similar
way we reexamine the standard deviation as a
possible risk measure in Section 6. Owing to the
use of the O±R diagram all proofs are easy, nev-
ertheless, rigorous.
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2. Stochastic dominance and mean-risk models

Stochastic dominance is based on an axiomatic
model of risk-averse preferences (Fishburn, 1964).
It originated in the majorization theory (Hardy et
al., 1934) for the discrete case and was later ex-
tended to general distributions (Hanoch and Levy,
1969; Rothschild and Stiglitz, 1970). Since that
time it has been widely used in economics and ®-
nance (see Bawa (1982) and Levy (1992) for nu-
merous references). In the stochastic dominance
approach random variables are compared by point-
wise comparison of some performance functions
constructed from their distribution functions.

Let X be a random variable with the probability
measure PX . The ®rst performance function F �1�X is
de®ned as the right-continuous cumulative distri-
bution function itself:

F �1�X �g� � FX �g� � PfX 6 gg for g 2 R:

The weak relation of the ®rst degree stochastic
dominance (FSD) is de®ned as follows:

X �FSD Y () FX �g�6 FY �g� for all g 2 R: �3�
The second performance function F �2�X is given by
areas below the distribution function FX :

F �2�X �g� �
Zg
ÿ1

FX �n� dn for g 2 R;

and de®nes the weak relation of the second degree
stochastic dominance (SSD):

X �SSD Y () F �2�X �g�6 F �2�Y �g� for all g 2 R:

�4�
The corresponding strict dominance relations
�FSD and �SSD are de®ned by the standard rule

X � Y () X � Y and Y ² X : �5�
Thus, we say that X dominates Y under the FSD
rules (X �FSD Y ), if FX �g�6 FY �g� for all g 2 R,
where at least one strict inequality holds. Similarly,
we say that X dominates Y under the SSD rules
(X �SSD Y ), if F �2�X �g�6 F �2�Y �g� for all g 2 R, with
at least one inequality strict. Certainly, X �FSD Y
implies X �SSD Y and X �FSD Y implies X �SSD Y .

Note that FX �g� expresses the probability of
underachievement for a given target value g. Thus
the ®rst degree stochastic dominance is based on
the multidimensional (continuum-dimensional)
objective de®ned by the probabilities of under-
achievement for all target values. The FSD is the
most general relation. If X �FSD Y , then X is pre-
ferred to Y within all models preferring larger
outcomes, no matter how risk-averse or risk-
seeking they are.

For decision making under risk most important
is the second degree stochastic dominance relation,
associated with the function F �2�X . If X �SSD Y , then
X is preferred to Y within all risk-averse preference
models that prefer larger outcomes. It is therefore
a matter of primary importance that an approach
to the comparison of random outcomes be con-
sistent with the second degree stochastic domi-
nance relation. Our paper focuses on the
consistency of mean-risk approaches with SSD.

Mean-risk approaches are based on comparing
two scalar characteristics (summary statistics), the
®rst of which ± denoted l ± represents the expected
outcome (reward), and the second ± denoted r ± is
some measure of risk. The weak relation of mean-
risk dominance is de®ned as follows:

X �l=r Y () lX P lY and rX 6 rY :

The corresponding strict dominance relation �l=r

is de®ned in the standard way, as in Eq. (5). We
say that X dominates Y under the l=r rules
(X �l=r Y ), if lX P lY and rX 6 rY , and at least one
of these inequalities is strict. Note that random
variables X and Y such that lX � lY and rX � rY

are indi�erent under the l=r rules (X �l=r Y and
Y �l=r X ). We say then that X and Y generate a tie
in the l=r model.

An important advantage of mean-risk ap-
proaches is the possibility of a pictorial trade-o�
analysis. Having assumed a trade-o� coe�cient k
between the risk and the mean, one may directly
compare real values of lX ÿ krX and lY ÿ krY .
Indeed, the following implication holds:

X �l=r Y ) lX ÿ krX P lY ÿ krY for all k > 0:

We say that the trade-o� approach is consistent
with the mean-risk dominance.
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Suppose now that the mean-risk model is con-
sistent with the SSD model by the implication

X �SSD Y ) X �l=r Y :

Then mean-risk and trade-o� approaches lead to
guaranteed results:

X �l=r Y ) Y ²
SSD

X ;

lX ÿ krX > lY ÿ krY for some k > 0

) Y ²
SSD

X :

In other words, they cannot strictly prefer an in-
ferior decision.

In this paper we show that some mean-risk
models are consistent with the SSD model in the
following sense: there exists a positive constant a
such that for all X and Y

X �SSD Y ) lX P lY and

lX ÿ a rX P lY ÿ a rY : �6�
In particular, for the risk measure r de®ned as the
absolute semideviation (1) or standard semidevi-
ation (2), the constant a turns out to be equal to
1. Yitzhaki (1982) showed a similar result for the
risk measure de®ned as the Gini's mean (abso-
lute) di�erence rX � CX � 1

2

R R jnÿ gj PX �dn�PX

�dg�.
Relation (6) directly expresses the consistency

with SSD of the model using only two criteria: l
and lÿ a r. Both, however, are de®ned by l and r,
and we have

lX P lY and lX ÿ a rX P lY ÿ a rY

) lX ÿ krX P lY ÿ krY for 0 < k6 a:

Consequently, Eq. (6) may be interpreted as the
consistency with SSD of the mean-risk model,
provided that the trade-o� coe�cient is bounded
from above by a. Namely, Eq. (6) guarantees that

lX ÿ krX > lY ÿ krY for some 0 < k6 a

) Y ²
SSD

X :

Comparison of random variables is usually re-
lated to the problem of choice among risky alter-
natives in a given feasible set Q. For instance, in

the simplest problem of portfolio selection (Mar-
kowitz, 1987) the feasible set of random variables
is de®ned as all convex combinations (weighted
averages with nonnegative weights totaling 1) of a
given number of investment opportunities (secu-
rities). A feasible random variable X 2 Q is called
e�cient under the relation � if there is no Y 2 Q
such that Y � X . Consistency (6) leads to the fol-
lowing result.

Proposition 1. If the mean-risk model satis®es (6),
then except for random variables with identical l
and r, every random variable that is maximal by
lÿ kr with 0 < k < a is e�cient under the SSD
rules.

Proof. Let 0 < k < a and X 2 Q be maximal by
lÿ kr. This means that lX ÿ krX P lY ÿ krY for
all Y 2 Q. Suppose that there exists Z 2 Q such
that Z �SSD X . Then, from Eq. (6),

lZ P lX and lZ ÿ arZ P lX ÿ arX : �7�
Adding these inequalities multiplied by �1ÿ k=a�
and k=a, respectively, we obtain

�1ÿ k=a�lZ � �k=a��lZ ÿ arZ�
P �1ÿ k=a�lX � �k=a��lX ÿ arX �; �8�

which after simpli®cation reads:

lZ ÿ krZ P lX ÿ krX :

But X is maximal, so we must have

lZ ÿ krZ � lX ÿ krX ;

that is, equality in Eq. (8) holds. This combined
with Eq. (7) implies lZ � lX and rZ � rX : �

Proposition 1 justi®es the results of the mean-
risk trade-o� analysis for 0 < k < a. This can be
extended to k � a provided that the inequality
lX ÿ a rX P lY ÿ a rY turns into equality only in
the case of lX � lY .

Corollary 1. If the mean-risk model satis®es (6)
as well as

X �SSD Y and lX > lY

) lX ÿ a rX > lY ÿ a rY �9�
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then, except for random variables with identical l
and r, every random variable that is maximal by lÿ
kr with 0 < k6 a is e�cient under the SSD rules.

Proof. Due to Proposition 1, we only need to prove
the case of k � a. Let X 2 Q be maximal by lÿ ar.
Suppose that there exists Z 2 Q such that Z �SSD X .
Hence, by Eq. (6), lZ P lX . If lZ > lX , then Eq. (9)
yields lX ÿ arX < lZ ÿ arZ , which contradicts the
maximality of X . Thus, lZ � lX and, by Eq. (6) and
the maximality of X , one has lX ÿ arX � lZ ÿ arZ .
Hence, lZ � lX and rZ � rX : �

It follows from Proposition 1 that for mean-risk
models satisfying Eq. (6) the optimal solution of
the problem

maxflX ÿ k rX : X 2 Qg �10�
with 0 < k < a, if it is unique, is e�cient under the
SSD rules. However, in the case of nonunique
optimal solutions, we only know that the optimal
set of Problem (10) contains a solution which is
e�cient under the SSD rules. The optimal set may
contain, however, also some SSD-dominated so-
lutions. Exactly, due to Proposition 1, an optimal
solution X 2 Q can be SSD dominated only by
another optimal solution Y 2 Q which generates a
l=r tie with X (i.e., lY � lX and rY � rX ). A
question arises whether it is possible to addition-
ally regularize (re®ne) problem (10) in order to
select those optimal solutions that are e�cient
under the SSD rules. We resolve this question
during the analysis of speci®c risk measures.

In many applications, especially in the portfolio
selection problem, the mean-risk model is analyzed
with the so-called critical line algorithm (Marko-
witz, 1987). This is a technique for identifying the
�l=r e�cient frontier by parametric optimization
(10) for varying k > 0. Proposition 1 guarantees
that the part of the e�cient frontier (in the l=r
image space) corresponding to trade-o� coe�cients
0 < k < a is also e�cient under the SSD rules.

3. The O±R diagram

The second degree stochastic dominance is
based on the pointwise dominance of functions

F �2�. Therefore, properties of the function F �2� are
important for the analysis of relations between the
second degree stochastic dominance and the mean-
risk models. The following proposition summa-
rizes the basic properties which we use in our
analysis.

Proposition 2. If EfjX jg <1, then the function
F �2�X �g� is well de®ned for all g 2 R and has the
following properties:
P1. F �2�X �g� is continuous, convex, nonnegative and
nondecreasing.
P2. If FX �g0� > 0, then F �2�X �g� is strictly increasing
for all gP g0.

P3. F �2�X �g� �
R g
ÿ1�gÿ n� dFX �n�

� R g
ÿ1�gÿ n� PX �dn�

� PfX 6 ggEfgÿ X jX 6 gg.
P4. limg!ÿ1F �2�X �g� � 0.

P5. F �2�X �g� ÿ �gÿ lX �
� R1g �nÿ g� dFX �n�
� R1g �nÿ g� PX �dn�
� PfX P ggEfX ÿ gjX P gg.

P6. F �2�X �g� ÿ �gÿ lX � is a continuous, convex,
nonnegative and nonincreasing function of g.
P7. limg!1�F �2�X �g� ÿ �gÿ lX �� � 0.
P8. For any given g0 2 R

F �2�X �g�
P F �2�X �g0� � �gÿ g0�supfFX �n� j n < g0g
P F �2�X �g0� � gÿ g0 for all g < g0;

F �2�X �g�
6 F �2�X �g0� � �gÿ g0�supfFX �n� j n < gg
6 F �2�X �g0� � gÿ g0 for all g > g0:

Properties P1±P4 are rather commonly known
but frequently not expressed in such a rigorous
form for general random variables. Properties P5±
P8 seem to be less known or at least not widely used
in the stochastic dominance literature. In Appen-
dix A we give a formal proof of Proposition 2.

From now on, we assume that all random
variables under consideration are integrable in the
sense that EfjX jg <1. Therefore, we are allowed
us to use all the properties P1±P8 in our analysis.
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Note that, due to property P3,

F �2�X �g� � PfX 6 ggEfgÿ X j X 6 gg
thus expressing the expected shortage for each
target outcome g. So, in addition to being the most
general dominance relation for all risk-averse
preferences, SSD is a rather intuitive multidimen-
sional (continuum-dimensional) risk measure.
Therefore, we will refer to the graph of F �2�X as to the
O±R diagram for the random variable X (Fig. 1).

The graph of the function F �2�X has two as-
ymptotes which intersect at the point �lX ; 0�.
Speci®cally, the g-axis is the left asymptote (prop-
erty P4) and the line gÿ lX is the right asymptote
(property P7). In the case of a deterministic out-
come (X � lX ), the graph of F �2�X coincides with the
asymptotes, whereas any uncertain outcome with
the same expected value lX yields a graph above
(precisely, not below) the asymptotes. Hence, the
space between the curve �g; F �2�X �g��, g 2 R, and
its asymptotes represents the dispersion (and
thereby the riskiness) of X in comparison to the
deterministic outcome of lX . We shall call it the
dispersion space. Both size and shape of the dis-
persion space are important for complete descrip-
tion of the riskiness. Nevertheless, it is quite
natural to consider some size parameters as sum-
mary characteristics of riskiness.

As the simplest size parameter one may con-
sider the maximal vertical diameter. By properties
P1 and P6, it is equal to F �2�X �lX �. Moreover,
property P3 yields the following corollary.

Corollary 2. If EfjX jg <1, then F �2�X �lX � � �dX .

The absolute semideviation �dX turns out to be a
linear measure of the dispersion space.

There are many arguments (see, e.g., Marko-
witz, 1959) that only the dispersion related to
underachievements should be considered as a
measure of riskiness. In such a case we should
rather focus on the downside dispersion space,
that is, to the left of lX . Note that �dX is the largest
vertical diameter for both the entire dispersion
space and the downside dispersion space. Thus �dX

seems to be a quite reasonable linear measure of
the risk related to the representation of a random
variable X by its expected value lX . Moreover, the
absolute deviation

dX �
Z1
ÿ1

jnÿ lX j PX �dn� �11�

is symmetric in the sense that dX � 2�dX for any
(possible nonsymmetric) random variable X . Thus
absolute mean d also can be considered a linear
measure of riskiness.

A better measure of the dispersion space should
be given by its area. To evaluate it one needs to
calculate the corresponding integrals. The follow-
ing proposition gives these results.

Proposition 3. If EfX 2g <1, then

Zg
ÿ1

F �2�X �f� df � 1

2

Zg
ÿ1

�gÿ n�2 PX �dn�

� 1

2
PfX 6 ggEf�gÿ X �2jX 6 gg; �12�

Fig. 1. The O±R diagram.
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Z1
g

�F �2�X �f� ÿ �fÿ lX �� df

� 1

2

Z1
g

�nÿ g�2 PX �dn�

� 1

2
PfX P ggEf�X ÿ g�2jX P gg: �13�

Formula (12) was shown by Porter (1974) for
continuous random variables. The second formula
seems to be new in the SSD literature. In the Ap-
pendix A we give a formal proof of both formulas
for general random variables.

Corollary 3. If EfX 2g <1, then

�r2
X � 2

ZlX

ÿ1

F �2�X �f� df; �14�

r2
X � 2

ZlX

ÿ1

F �2�X �f� df� 2

Z1
lX

�F �2�X �f� ÿ �fÿ lX �� df:

�15�

Hereafter, whenever considering variance r2 or
semivariance �r2 (standard deviation r or standard
semideviation �r) we will assume that EfX 2g <1.
Therefore, we are eligible to use formulas (14) and
(15) in our analysis.

By Corollary 3, the variance r2
X represents the

doubled area of the dispersion space of the ran-
dom variable X , whereas the semivariance �r2

X is the
doubled area of the downside dispersion space.
Thus the semimoments �d and �r2, as well as the
absolute moments d and r2, can be regarded as
some risk characteristics and they are well depicted
in the O±R diagram (Figs. 2 and 3). In further
sections we will use the O±R diagram to prove that
the mean-risk model using the semideviations �d
and �r is consistent with the second degree sto-
chastic dominance. Geometrical relations in the
O±R diagram make the proofs easy. However, as
the geometrical relations are the consequences of
Propositions 2 and 3, the proofs are rigorous.

To conclude this section we derive some addi-
tional consequences of Propositions 2 and 3. Let
us observe that in the O±R diagram the diagonal
line F �2�X �g0� � gÿ g0 is parallel to the right as-

Fig. 2. The O±R diagram and the semimoments.

Fig. 3. The O±R diagram and the absolute moments.
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ymptote gÿ lX and intersects the graph of F �2�X �g�
at the point �g0; F �2�X �g0��. Therefore, property P8
can be interpreted as follows. If a diagonal line
(parallel to the right asymptote) intersects the
graph of F �2�X �g� at g � g0, then for g < g0, F �2�X �g�
is bounded from below by the line, and for g > g0,
F �2�X �g� is bounded from above by the line. More-
over, the bounding is strict except in the case of
supfFX �n� j n < g0g � 1 or FX �g0� � 1, respective-
ly. Setting g0 � lX we obtain the following prop-
osition (Fig. 4).

Proposition 4. If EfX 2g <1, then �rX P �dX and this
inequality is strict except in the case �rX � �dX � 0.

Proof. From P8 in Proposition 2,

F �2�X �g� > F �2�X �lX � � gÿ lX for all g < lX ;

since supfFX �n� j n < lXg < 1. Hence, in the case
of F �2�X �lX � > 0, one has 1

2
�r2

X >
1
2
�d

2

X and �rX > �dX .
Otherwise �rX � �dX � 0: �

Recall that, due to the Lyapunov inequality for
absolute moments (Kendall and Stuart, 1958), the
standard deviation and the absolute deviation
satisfy the following inequality:

rX P dX : �16�
Proposition 4 is its analogue for absolute and
standard semideviations.

While considering two random variables X and
Y in the common O±R diagram one may easily
notice that, if lX < lY , then the right asymptote of
F �2�X (the diagonal line gÿ lX ) must intersect the
graph of F �2�Y �g� at some g0. By property P8,

F �2�X �g�P gÿ lX P F �2�Y �g� for gP g0:

Moreover, since gÿ lY is the right asymptote of
F �2�Y (property P7), there exists g1 > g0 such that

F �2�X �g� > F �2�Y �g� for g P g1:

Thus, from the O±R diagram one can easily derive
the following, commonly known, necessary con-
dition for the second degree stochastic dominance
(Fishburn, 1980; Levy, 1992).

Proposition 5. If X �SSD Y , then lX P lY .

While considering in the common O±R diagram
two random variables X and Y with equal expected
values lX � lY , one may easily notice that the
functions F �2�X and F �2�Y have the same asymptotes.
It leads us to the following commonly known re-
sult (Fishburn, 1980; Levy, 1992).

Proposition 6. For random variables X and Y with
equal means lX � lY ;

X �SSD Y ) r2
X 6 r2

Y ; �17�

X �SSD Y ) r2
X < r2

Y : �18�

4. Absolute deviation as risk measure

In this section we analyze the mean-risk model
with the risk de®ned by the absolute semideviation
�d given by Eq. (1). Recall that �dX � F �2�X �lX �
(Corollary 2) and it represents the largest vertical
diameter of the (downside) dispersion space.

Fig. 4. 1
2
�r2

X P 1
2
�d

2

X .
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Hence, �d is a well de®ned geometrical character-
istic in the O±R diagram.

Consider two random variables X and Y in the
common O±R diagram (Fig. 5). If X �SSD Y , then,
by the de®nition of SSD, F �2�X is bounded from
above by F �2�Y , and, by Proposition 5, lX P lY . For
gP lY , F �2�Y �g� is bounded from above by �dY � gÿ
lY (second inequality of P8 in Proposition 2).
Hence,

�dX � F �2�X �lX �6 F �2�Y �lX �6 �dY � lX ÿ lY :

This simple analysis of the O±R diagram allows us
to derive the following necessary condition for the
second degree stochastic dominance.

Proposition 7. If X �SSD Y , then lX P lY and
lX ÿ �dX P lY ÿ �dY , where the second inequality is
strict whenever lX > lY .

Proof. Due to the considerations preceding the
proposition, we only need to prove that lX ÿ �dX >
lY ÿ �dY whenever X �SSD Y and lX > lY . Note
that from the second inequality of P8 (g � lX ,
g0 � lY ), in such a case,

�dX � F �2�X �lX �
6 F �2�X �lY � � �lX ÿ lY � supfFX �n� j n < lXg
< �dY � lX ÿ lY : �
Proposition 7 says that the l=�d mean-risk

model is consistent with the second degree sto-
chastic dominance by the rule (6) with a � 1.
Therefore, a l=�d comparison leads to guaranteed
results in the sense that

lX ÿ k�dX > lY ÿ k�dY for some 0 < k6 1

) Y ²
SSD

X :

For problems of choice among risky alternatives in
a given feasible set, due to Corollary 1, the fol-
lowing observation can be made.

Corollary 4. Except for random variables with
identical mean and absolute semideviation, every
random variable X 2 Q that is maximal by lX ÿ
k�dX with 0 < k6 1 is e�cient under the SSD rules.

The upper bound on the trade-o� coe�cient k
in Corollary 4 cannot be increased for general
distributions. For any e > 0 there exist random
variables X �SSD Y such that

lX > lY and lX ÿ �1� e��dX � lY ÿ �1� e��dY :

As an example one may consider two ®nite ran-
dom variables: X de®ned as PfX � 0g � 1=�1� e�,
PfX � 1g � e=�1� e�; and Y de®ned as PfY � 0g
� 1.

Konno and Yamazaki (1991) introduced the
portfolio selection model based on the l=d mean-
risk model. The model is very attractive compu-
tationally, since (for discrete random variables) it
leads to linear programming problems. Therefore,
it is recently applied to various ®nance problems
(e.g., Zenios and Kang, 1993).

Note that the absolute deviation d is a symmetric
measure and the absolute semideviation �d is its half.
Hence, Proposition 7 is also valid (with factor 1/2)
for the l=d mean-risk model. Thus, for the l=d
model there exists a bound on the trade-o�s such

Fig. 5. SSD and the absolute semideviations: X �SSD Y ) �dX 6 �dY � lX ÿ lY .
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that for smaller trade-o�s the model is consistent
with the SSD rules. Speci®cally, due to Corollary 4,
the following observation can be made.

Corollary 5. Except for random variables with
identical mean and absolute deviation, every random
variable X 2 Q that is maximal by lX ÿ kdX with
0 < k6 1=2 is e�cient under the SSD rules.

The upper bound on the trade-o� coe�cient k
in Corollary 5 can be substantially increased for
symmetric distributions.

Proposition 8. For symmetric random variables X
and Y ,

X �SSD Y ) lX P lY and lX ÿ dX P lY ÿ dY :

Proof. If X �SSD Y then, due to Proposition 5,
lX P lY . From the second inequality of P8 in
Proposition 2,

1

2
dX � F �2�X �lX �

6 F �2�X �lY � � �lX ÿ lY �supfFX �n� j n < lXg

6 1

2
dY � 1

2
�lX ÿ lY �;

since for symmetric random variables

supfFX �n� j n < lXg6 1=2:

Hence,

lX ÿ dX P lY ÿ dY : �
For problems of choice among risky alterna-

tives in a given feasible set, Propositions 1 and 8
imply the following result.

Corollary 6. Within the class of symmetric ran-
dom variables, except for random variables with
identical mean and absolute deviation, every random
variable X 2 Q that is maximal by lX ÿ kdX with
0 < k < 1, is e�cient under the SSD rules.

The bound on the trade-o� coe�cient k in
Corollary 6 cannot be increased. There exist sym-

metric random variables X �SSD Y such that lX >
lY and lX ÿ dX � lY ÿ dY . As an example one may
consider two ®nite random variables: X de®ned as
PfX � 0g � 0:5, PfX � 4g � 0:5; and Y de®ned as
PfY � 0g � 0:5, PfY � 2g � 0:5.

It follows from Corollary 4 that the optimal
solution of the problem

maxflX ÿ k �dX : X 2 Qg; 0 < k6 1; �19�
is e�cient under the SSD rules, if it is unique. In
the case of multiple optimal solutions, the optimal
set of problem (19) contains a solution which is
e�cient under SSD rules but it may contain also
some SSD dominated solutions. Exactly, due to
Corollary 4, an optimal solution X 2 Q can be
SSD dominated only by another optimal solution
Y 2 Q which generates a l=�d tie with X (i.e., lY �
lX and �dY � �dX ). A question arises how di�erent
can the random variables be that generate a tie
(are indi�erent) in the l=�d mean-risk model. Ab-
solute semideviation is a linear measure of the
dispersion space and therefore many di�erent dis-
tributions may tie in the l=�d comparison. Note
that two random variables X and Y with the same
expected value lX � lY are l=�d indi�erent if
F �2�X �lX � � F �2�Y �lX �, independently of values of
F �2�X �g� and F �2�Y �g� for all other g 6� lX . Consider
two ®nite random variables: X de®ned as PfX �
ÿ20g � 0:5, PfX � 20g � 0:5; and Y de®ned as
PfY � ÿ1000g � 0:01, PfY � 0g � 0:98, PfY �
1000g � 0:01. They are l=�d indi�erent, because
lX � lY � 0 and �dX � �dY � 10. Nevertheless,
X �SSD Y and F �2�X �g� < F �2�Y �g� for all 0 < jgj
< 1000. As an extreme one may consider the case
when F �2�X �g� < F �2�Y �g� for all g 2 R except for
g � lX � lY , and despite that X and Y are l=�d
indi�erent (Fig. 6). Therefore, the l=�d model, al-
though consistent with the second degree stochastic
dominance for bounded trade-o�s, dramatically
needs some additional regularization to resolve ties
in comparisons.

Ties in the l=�d model can be resolved with
additional comparisons of standard deviations or
variances. By its de®nition, a tie in the l=�d model
may occur only in the case of equal means, and
this is exactly the case when Proposition 6 applies.
We can simply select from X and Y the one that
has a smaller standard deviation. It can be for-
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malized as the following lexicographic compari-
son:

�lX ÿ k�dX ;ÿrX �P lex�lY ÿ k�dY ;ÿrY �
() lX ÿ k�dX > lY ÿ k�dY or

lX ÿ k�dX � lY ÿ k�dY and ÿ rX P ÿ rY :

The lexicographic relation de®nes a linear order.
Hence, for problems of choice among risky alter-
natives in a given feasible set, the lexicographic
maximization of �lÿ k�d;ÿr� is well de®ned. It has
two phases: the maximization of lÿ k�d within the
feasible set, and the selection of the optimal solu-
tion that has the smallest standard deviation r.
Owing to Eq. (18), such a selection results in SSD
e�cient solutions (even in the case of multiple
optimal solutions).

Corollary 7. Every random variable X 2 Q that
is lexicographically maximal by �lX ÿ k�dX ;ÿrX �
with 0 < k6 1 is e�cient under the SSD rules.

For the l=d portfolio selection model (Konno
and Yamazaki, 1991) the results of our analysis
can be summarized as follows. While identifying
the l=d e�cient frontier by parametric optimiza-
tion

maxflX ÿ k dX : X 2 Qg �20�
for trade-o� k varying in the interval �0; 0:5� the
corresponding image in the l=d space represents
SSD e�cient solutions. Thus it can be used as the
mean-risk map to seek a satisfactory l=d com-
promise. It does not mean, however, that the so-

lutions generated during the parametric optimization
(20) are SSD e�cient. Therefore, having decided
on some values of l and d one should apply the
regularization technique (minimization of stan-
dard deviation) to select a speci®c portfolio which
is SSD e�cient.

5. Standard semideviation as risk measure

In this section we analyze the mean-risk model
with the risk de®ned by the standard semideviation
�r given by Eq. (2). Recall that the standard semi-
deviation is the square root of the semivariance
which equals to the doubled area of the downside
dispersion space (Corollary 3). Hence, �r is a well
de®ned geometrical characteristic in the O±R dia-
gram.

Consider two random variables X and Y in the
common O±R diagram (Fig. 7). If X �SSD Y , then,
by the de®nition of SSD, F �2�X is bounded from
above by F �2�Y , and, by Proposition 5, lX P lY . Due
to the convexity of F �2�X , the downside dispersion
space of X is no greater than the downside dis-
persion space of Y plus the area of the trapezoid
with the vertices: �lY ; 0�, �lX ; 0�, �lX ; F

�2�
X �lX �� and

�lY ; F
�2�

Y �lY ��. Formally,

1

2
�r2

X 6
1

2
�r2

Y �
1

2
�lX ÿ lY ���dX � �dY �: �21�

This inequality allows us to derive new necessary
conditions for the consistency with SSD of the
bicriteria mean-risk model using standard semi-
deviation as the risk measure.

Fig. 7. SSD and the semivariances: X �SSD Y ) 1
2
�r2

X 6 1
2
�r2

Y � 1
2
�lX ÿ lY ���dX � �dY �.
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Proposition 9. If X �SSD Y , then lX P lY and
lX ÿ �rX P lY ÿ �rY , where the second inequality is
strict whenever lX > lY .

Proof. If X �SSD Y then, due to Proposition 5,
lX P lY . Moreover, inequality (21) is valid. From
Proposition 4 we have �rX P �dX and �rY P �dY . Using
these inequalities in (21) we get

�r2
X ÿ �r2

Y 6 �lX ÿ lY ���rX � �rY �:
Hence, �rX ÿ �rY 6 lX ÿ lY , and ®nally lX ÿ �rX P
lY ÿ �rY .

Moreover, from Proposition 4, �rX � �dX and
�rY � �dY can occur only if �rX � �rY � 0. Hence,

X �SSD Y and lX > lY ) lX ÿ �rX > lY ÿ �rY ;

which completes the proof. �

The message of Proposition 9 is that the l=�r
mean-risk model is consistent with the second de-
gree stochastic dominance by the rule (6) with
a � 1. Therefore, l=�r comparisons lead to guar-
anteed results in the sense that

lX ÿ k�rX > lY ÿ k�rY for some 0 < k6 1

) Y ²
SSD

X :

For problems of choice among risky alternatives in
a given feasible set, Corollary 1 results in the fol-
lowing observation.

Corollary 8. Except for random variables with
identical mean and standard semideviation, every

random variable X 2 Q that is maximal by lX ÿ
k�rX with 0 < k6 1 is e�cient under the SSD rules.

The upper bound on the trade-o� coe�cient k
in Corollary 8 cannot be increased for general
distributions. For any e > 0 there exist random
variables X �SSD Y such that lX > lY and lXÿ
�1� e��rX � lY ÿ �1� e��rY . As an example one
may consider two ®nite random variables: X de-
®ned as PfX � 0g � �1� e�ÿ2

, PfX � 1g � 1ÿ
�1� e�ÿ2

; and Y � 0.
It follows from Corollary 8 that the optimal

solution of the problem

maxflX ÿ k �rX : X 2 Qg; 0 < k6 1 �22�
is e�cient under the SSD rules, if it is unique. In
the case of nonunique optimal solutions, however,
we only know that the optimal set of problem (22)
contains a solution which is e�cient under SSD
rules. Thus, similar to the l=�d model, the l=�r
model may generate ties (Fig. 8) and the optimal
set of problem (22) may contain also some SSD
dominated solutions. However, two random vari-
ables that generate a tie (are indi�erent) in the l=�r
mean-risk model cannot be so much di�erent as in
the l=�d model. Standard semideviation �rX is an
area measure of the downside dispersion space and
therefore it takes into account all values of F �2�X �g�
for g6 lX . Note that, if two random variables X
and Y generate a tie in the l=�r model, then

lX � lY and

ZlX

ÿ1

F �2�X �f� df �
ZlY

ÿ1

F �2�Y �f� df:

Fig. 8. A tie in the l=�r model: lX � lY , �rX � �rY and X �SSD Y .
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Functions F �2��g� are continuous and nonnegative.
Hence, if X �SSD Y generate a l=�r tie, then
F �2�X �g� � F �2�Y �g� for all g6 lX . Thus a tie in the
l=�r model may happen for X �SSD Y but the sec-
ond degree stochastic dominance X over Y is then
related to overperformances rather than the un-
derperformances. Summing up, the l=�r model
needs some additional regularization to resolve ties
in comparisons, but it is not such a dramatic need
as in the l=�d model.

Similar to the l=�d model, ties in the l=�r model
can be resolved by additional comparisons of
standard deviations or variances. In the case when
lX ÿ k�rX � lY ÿ k�rY , one may select from X and
Y the one that has a smaller standard deviation. It
can be formalized as the following lexicographic
comparison:

�lX ÿ k�rX ;ÿrX �P lex�lY ÿ k�rY ;ÿrY �
() lX ÿ k�rX > lY ÿ k�rY or

lX ÿ k�rX � lY ÿ k�rY and ÿ rX P ÿ rY :

For problems of choice among risky alternatives in
a given feasible set, the lexicographic maximiza-
tion of �lÿ k�r;ÿr� has two phases again: maxi-
mization of lÿ k�r on the feasible set, and
selection of the optimal solution that has the
smallest standard deviation r, if many optimal
solutions occur. Due to Eq. (18), such a selection
results in SSD e�cient solutions (even in the case
of multiple optimal solutions).

Corollary 9. Every random variable X 2 Q that
is lexicographically maximal by �lX ÿ k�rX ;ÿrX �
with 0 < k6 1 is e�cient under the SSD rules.

The mean±semivariance optimization approach
was proposed by Markowitz (1959). It is quite an
intuitive modi®cation of the mean±variance mod-
el, since an investor worries about underperfor-
mance rather than overperformance. Nevertheless,
it is less used in portfolio optimization. One reason
is that it is more di�cult to compute the mean±
semivariance e�cient frontier that for the mean±
variance model. Still, Markowitz et al. (1993) have
developed a critical line algorithm for the mean±
semivariance e�cient frontier.

The use of semivariance �r2 or standard semi-
deviation �r in the mean-risk analysis may be
considered to be equivalent, with the former easier
to implement. In fact, both de®ne exactly the same
e�cient set, since standard deviation is nonnega-
tive and the square function is strictly increasing
for nonnegative arguments. However, our result
that the l=�r model with trade-o�s bounded by one
is consistent with the SSD rules cannot be directly
applied to the mean±semivariance model. Note
that X 2 Q that is maximal by lÿ k�r2 may be not
maximal by lÿ �k�rX ��r, in general. Consider two
random variables X and Y with lX � 0, �rX � 1
and lY � 1, �rY � 2, respectively. For k � 0:4, lX ÿ
0:4�r2

X � ÿ0:4 > ÿ0:6 � lY ÿ 0:4�r2
Y but lX ÿ 0:4�rX

� ÿ0:4 < 0:2 � lY ÿ 0:4�rY . While comparing two
random variables X and Y by the mean±semi-
variance trade-o� analysis the following relation-
ship is valid:

lX ÿ k�r2
X P lY ÿ k�r2

Y () lX ÿ �k��rX

� �rY ���rX P lY ÿ �k��rX � �rY ���rY :

Thus for problems where the l=�r2 e�cient set is
bounded (like typical portfolio selection prob-
lems), there exists an upper bound on the trade-o�
coe�cients which guarantees that for smaller
trade-o�s the corresponding mean-risk e�cient
solutions are also e�cient under the SSD rules. It
explains the high number of SSD e�cient solutions
included in the l=�r2 e�cient set observed in ex-
periments with real-life portfolio selection prob-
lems (Porter, 1974). The upper bound, though,
may be very tight.

6. Standard deviation as risk measure

After the work of Markowitz (1952) the vari-
ance (or the standard deviation) is the most fre-
quently used risk measure in mean-risk models for
portfolio selection. The O±R diagram (Fig. 3)
shows the variance as a natural area measure of
dispersion. Comparison of random variables with
equal means leads to guaranteed results (Proposi-
tion 6). However, for general random variables X
and Y with unequal means, no relation involving
their standard deviations is known to be necessary
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for the second degree stochastic dominance of X
over Y .

In the case of symmetric distributions one has
r � ���

2
p

�r, and �r in Proposition 9 can be replaced
with standard deviation r multiplied by factor���

2
p

=2. It turns out, however, that for symmetric
distributions the relation between �d and �r can be
described in more detail.

Proposition 10. For symmetric random variables X
and Y ,

X �SSD Y ) lX P lY and lX ÿ rX P lY ÿ rY :

�23�

Proof. If X �SSD Y then, by Proposition 5, lX P
lY . Moreover, inequality (21) is valid. Lyapunov
inequality (16) for symmetric variables yields
rX P 2�dX and rY P 2�dY . Using these inequalities
in (21) we get

r2
X ÿ r2

Y 6 �lX ÿ lY ��rX � rY �:
Hence, rX ÿ rY 6 lX ÿ lY , and ®nally lX ÿ rX P
lY ÿ rY which completes the proof. �

For problems of choice among risky alterna-
tives in a given feasible set, Propositions 1 and 6
imply the following result.

Corollary 10. Within the class of symmetric
random variables, every random variable X 2 Q that
is maximal by lX ÿ krX with 0 < k < 1, is e�cient
under the SSD rules.

The bound on the trade-o� coe�cient in Cor-
ollary 10 is the best in the sense that there exist
symmetric random variables X �SSD Y such that
lX ÿ rX � lY ÿ rY . As an example one may con-
sider two ®nite random variables: X de®ned as
PfX � 0g � 0:5, PfX � 4g � 0:5; and Y de®ned as
PfY � 0g � 0:5, PfY � 2g � 0:5. Therefore, the
upper bound on the trade-o� coe�cient k in
Corollary 10 cannot be increased.

In the general case of nonsymmetric random
variables, standard deviation is not a symmetric
measure and there is no direct analogue of
Proposition 9 for the standard deviation. Some
similar, but much weaker, necessary conditions
for the SSD dominance can be derived for dis-
tributions bounded from above (random variables
with an upper bounded support). Note that, if X
is upper bounded by a real number MX (i.e.
PfX > MXg � 0), then MX P lX and for gP MX ,
FX �g� � 1. Thus for g P MX the function F �2�X �g�
coincides with its right asymptote (F �2�X �g�
� gÿ lX ). Hence

Fig. 9. SSD and the variances: X �SSD Y ) 1
2
r2

X 6 1
2
r2

Y � 1
2
�lX ÿ lY ���MX ÿ lX � � �MY ÿ lY ��.
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r2
X � 2

ZlX

ÿ1

F �2�X �f� df� 2

ZMX

lX

�F �2�X �f� ÿ �fÿ lX �� df:

Consider two random variables X and Y such
that PfX > MXg � 0 and PfY > MY g � 0 in the
common O±R diagram (Fig. 9). If X �SSD Y , then,
by the de®nition of SSD, F �2�X is bounded from
above by F �2�Y and, by Proposition 5, one has
lX P lY . Due to the convexity of F �2�X , the area
between this function and its asymptotes cannot be
greater than the area between F �2�Y and its asymp-
totes plus the area of the trapezoid de®ned by the
vertices: �lY ; 0�, �lX ; 0�, �MX ;MX ÿ lX � and �MY ;
MY ÿ lY �. This is valid for MX > MY (like in
Fig. 9), as well as for MX 6MY . Formally,

1

2
r2

X 6
1

2
r2

Y �
1

2
�lX ÿ lY ���MX ÿ lX � � �MY ÿ lY ��:

�24�
This inequality is similar but stronger than the
inequality derived by Levy (1992), Theorem 9, p.
570, which reads:

r2
X ÿ r2

Y 6 �lX ÿ lY ��2 maxfMX ;MY g ÿ lX ÿ lY �:
Inequality (24) allows for the formulation of the
following necessary conditions for the bicriteria
mean-risk model with the standard deviation used
as the risk measure.

Proposition 11. Suppose that a common upper
bound h > 0 is known for �X ÿ lX �=rX and
�Y ÿ lY �=rY . Then

X �SSD Y ) lX P lY and

lX ÿ
1

h
rX P lY ÿ

1

h
rY :

Proof. If X �SSD Y , then due to Proposition 5,
lX P lY . Further, note that inequality (24) can be
rewritten as

r2
X ÿ r2

Y 6 h�rX � rY ��lX ÿ lY �:
This immediately yields the required result. �

Corollary 11. Within the class of random vari-
ables such that PfX > lX � hrXg � 0, every ran-
dom variable that is maximal by lX ÿ krX with
0 < k < 1=h, is e�cient under the SSD rules.

Note that Proposition 11 is applicable to any
pair of ®nite random variables. Similarly, Corollary
11 shows that in the case of a portfolio selection
problem with ®nite random variables (for example
de®ned by historical data), there exists a positive
bound on the trade-o� coe�cient for the standard
deviation which guarantees that for smaller trade-
o�s the corresponding mean-risk e�cient solutions
are also e�cient under the SSD rules.

Analogously to the case of the semivariance
discussed in the previous section, an upper bound
on the variance trade-o� coe�cients exists which
guarantees that l=r2 e�cient solutions are also
e�cient under the SSD rules. However, the upper
bound may be very tight. Corollary 11 provides a
theoretical explanation for the results of numerous
experimental comparisons of mean±variance and
SSD e�cient sets on real-life portfolio selection
problems (Porter, 1974, and references therein).
Most of them, like that performed by Porter and
Gaumnitz (1972) on over 900 portfolios of securi-
ties randomly selected from the Chicago Price
Relative File, provided some support for the idea
that mean±variance and SSD choices are empiri-
cally similar. The main di�erence was the tendency
of the mean±variance e�cient set to include some
low mean, low variance portfolios that were elim-
inated by the SSD rules. Although e�cient in the
mean±variance analysis, they obviously corres-
pond to large trade-o� coe�cients for the variance.

7. Concluding remarks

The second degree stochastic dominance rela-
tion is based on an axiomatic model of risk-averse
preferences, but does not provide us with a simple
computational recipe.

The mean-risk approach quanti®es the problem
in only two criteria: the mean, representing the
expected outcome, and the risk: a scalar measure
of the variability of outcomes (usually, a central
moment or the corresponding deviation). This is
appealing to decision makers and allows a simple
trade-o� analysis, analytical or geometrical.

In the paper we have analyzed the consistency
of these two approaches. We have shown that
standard semideviation (the square root of the
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semivariance) as the risk measure makes the mean-
risk model consistent with the second degree sto-
chastic dominance, provided that the trade-o�
coe�cient is bounded by one. Similar results have
been obtained for the absolute semideviation as
the risk measure. These results are valid for all
(possibly nonsymmetric) random variables for
which these moments are well-de®ned. In the case
of symmetric random variables the same results
are valid for the standard and absolute deviations,
respectively.

In many applications, especially in portfolio
selection problems, the mean-risk model is ana-
lyzed by the critical line algorithm. This is a
technique for identifying the mean-risk e�cient
frontier via parametric optimization with a vary-
ing trade-o� coe�cient. Our results guarantee that
when risk is measured by the standard or the ab-
solute semideviation (the standard or the absolute
deviation in the case of symmetric distributions),
the part of the e�cient frontier (in the mean-risk
image space) corresponding to trade-o� coe�-
cients smaller than one is also e�cient under the
SSD rules. In some way our analysis justi®es the
critical line methodology for typical risk measures,
provided that it is not extended too far in terms of
the trade-o� coe�cient. It also explains some re-
sults of experimental comparisons of the SSD and
mean-risk e�cient sets for portfolio selection
problems.

In the analysis we have used a new graphical
tool, the O±R diagram, which appears to be par-
ticularly convenient for comparing uncertain out-
comes and examining second degree stochastic
dominance. Typical dispersion statistics, com-
monly used as risk measures (absolute deviation
and semideviation, variance and semivariance) are
well depicted in the O±R diagram, and it may be
useful for various types of comparisons of uncer-
tain outcomes, especially in computerized decision
support systems.

Appendix A

A.1. Proof of Proposition 2

P1. Simple consequence from de®nition of F �2�X .

P2. Simple consequence from de®nition of F �2�X .
P3. Changing the order of integration by Fubini's
theorem we obtain

F �2�X �g� �
Zg
ÿ1

FX �f� df

�
Zg
ÿ1

Z f

ÿ1
PX �dn� df

�
Zg
ÿ1

Zg
n

df PX �dn�

�
Zg
ÿ1

�gÿ n� PX �dn�

� PfX 6 ggEfgÿ X jX 6 gg:

P4.

06 lim
g!ÿ1

F �2�X �g� � lim
g!ÿ1

Zg
ÿ1

�gÿ n� PX �dn�

6 lim
g!ÿ1

Zg
ÿ1

jnj PX �dn� � 0;

because gÿ n6 jnj for n6 g < 0, and EfjX jg
<1.
P5.

F �2�X �g� ÿ �gÿ lX �

�
Zg
ÿ1

�gÿ n� PX �dn� ÿ g� lX

�
Zg
ÿ1

g PX �dn� �
Z1
g

n PX �dn� ÿ g

�
Z1
g

�nÿ g� PX �dn�

� PfX P ggEfX ÿ gjX P gg:

P6. Simple consequence from P5.
P7.
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06 lim
g!1
�F �2�X �g� ÿ �gÿ lX ��

� lim
g!1

Z1
g

�nÿ g� PX �dn�

6 lim
g!1

Z1
g

n PX �dn� � 0;

similarly to P4.
P8. If g < g0, then

F �2�X �g0� ÿ F �2�X �g� �
Zg0

g

FX �n�dn6 �g0

ÿ g� supfFX �n� j n < g0g6 g0 ÿ g:

Interchanging g and g0 we obtain the second
inequality.

A.2. Proof of Proposition 3

By Fubini's theorem,

Zg
ÿ1

F �2�X �f� df �
Zg
ÿ1

Zf
ÿ1

�f
24 ÿn�PX �dn�

35 df

�
Z Z

f6 g
n6 f

�fÿ n� PX �dn� df

�
Zg
ÿ1

Zg
n

�fÿ n� df

264
375 PX �dn�

� 1

2

Zg
ÿ1

�gÿ n�2 PX �dn�

� 1

2
PfX 6 ggEf�gÿ X �2jX 6 gg:

Analogously, noting that

fÿ lX �
Z 1

ÿ1
�fÿ n�PX �dn�;

we obtain

Z1
g

�F �2�X �f� ÿ �fÿ lX �� df

�
Z1
g

Z1
f

�n

264 ÿf�PX �dn�

375 df

�
Z Z

g6 f
f6 n

�nÿ f� PX �dn� df

�
Z1
g

Zn
g

�nÿ f� df

264
375 PX �dn�

� 1

2

Z1
g

�nÿ g�2 PX �dn�

� 1

2
PfX P ggEf�X ÿ g�2jX P gg:
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