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Abstract

The problem of aggregating multiple criteria to form overall objective functions is of considerable importance in

many disciplines. The most commonly used aggregation is based on the weighted sum. The ordered weighted averaging

(OWA) aggregation, introduced by Yager, uses the weights assigned to the ordered values (i.e. to the worst value, the

second worst and so on) rather than to the specific criteria. This allows to model various aggregation preferences,

preserving simultaneously the impartiality (neutrality) with respect to the individual criteria. In this paper we analyze

solution procedures for linear programs with the OWA objective functions. Two alternative linear programming for-

mulations are introduced and their computational efficiency is analyzed.
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1. Introduction

Consider a decision problem defined as a linear

optimization problem with m uniform objective

functions fiðxÞ ¼ cix. For simplification we as-

sume, without loss of generality, that the objective

functions are to be maximized. The problem can

be formulated as follows:

maxfCx : x 2 Qg ð1Þ
where C is an m� n matrix (consisting of rows ci)

representing the vector-function that maps the

decision space X ¼ Rn into the criterion space Y ¼

Rm, x 2 X denotes the vector of decision variables,
Q � X denotes the feasible set defined by a system
of linear equations with nonnegative variables

Q ¼ fx 2 Rn : Ax ¼ b; x= 0g ð2Þ

where A is a given p � n matrix and b ¼
ðb1; . . . ; bpÞT is a given RHS vector.
We refer to the elements of the criterion space

as achievement vectors. An achievement vector

y 2 Y is attainable if it expresses outcomes of a

feasible solution x 2 Q ðy ¼ CxÞ. Model (1) only
specifies that we are interested in maximization of

all individual objective functions fi for i 2 I ¼
f1; 2; . . . ;mg. Each feasible solution for which one
cannot improve any criterion without worsening

another is called an efficient (Pareto-optimal)
solution [14].
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In order to make model (1) operational, one
needs to assume some solution concept specify-

ing what it means to maximize multiple objective

functions. The solution concepts are defined by

aggregation functions a : Y ! R to be maximized.
Thus the multiple criteria problem (1) is replaced

with the maximization problem

maxfaðCxÞ : x 2 Qg ð3Þ
In order to guarantee the consistency of the ag-

gregated problem (3) with maximization of all

individual objective functions in the original mul-

tiple criteria problem, the aggregation function

must be strictly monotonic, i.e.

y0i < yi ) aðy1; . . . ; yi�1; y 0i ; yiþ1; . . . ; ymÞ
< aðy1; y2; . . . ; ymÞ for i 2 I ð4Þ

In the case of a strictly monotonic function a,

every optimal solution to the aggregated problem

(3) is an efficient solution of the original multiple

criteria problem.

The most commonly used aggregation is based

on the weighted sum

aðyÞ ¼
Xm
i¼1

wiyi ð5Þ

In the case of positive weights (wi > 0 for i 2 I),
every optimal solution to the weighted sum ag-

gregation (i.e. problem (3) with the aggregation

function (5)) is an efficient solution of the original
multiple criteria problem. Moreover, for linear

multiple criteria problems, we consider, every effi-

cient solution can be found as an optimal solution

to the weighted sum aggregation with appropriate

positive weights (cf. [14]).

A primary factor in determination of the ag-

gregation structure is the relationship between the

criteria involved. There are several multiple crite-
ria decision problems where the weighted sum

aggregation cannot be applied since the criteria are

uniform and the distribution of their values is an

important issue. Such problems require an aggre-

gation function satisfying the property of impar-

tiality (neutrality, symmetry)

aðysð1Þ; ysð2Þ; . . . ; ysðmÞÞ ¼ aðy1; y2; . . . ; ymÞ
for any permutation s of I ð6Þ

The most direct problems with uniform impartial

criteria are related to the optimization of systems

which serve many users. For instance, in location

problems the decisions often concern the place-

ment of facilities in positions so that the clients are

treated impartially [11]. Another type of model is

that of approximation of discrete data set by a

functional form. The residuals may be viewed as
criteria to be minimized, and in the classical ap-

proaches, there is no reason to treat them in any

way but impartially. The latter class of problems

covers as special cases the problems arriving in

neural networks and fuzzy optimization method-

ologies [21] as well as in the goal programming and

the reference point approaches to the multiple

criteria decision support [15]. Uniform objectives
arise in many dynamic programs where individual

objective functions represent the same outcome for

various periods [8]. In the stochastic problems

uniform objectives may represent various possible

values of the same (uncertain) outcome under

several scenarios.

The weighted sum aggregation (5) violates the

requirement of impartiality as it assigns the
weights to the specific criteria. Yager [16] intro-

duced the so-called ordered weighted averaging

(OWA) aggregation. In the OWA aggregation

the weights are assigned to the ordered values

(i.e. to the smallest value, the second smallest and

so on) rather than to the specific criteria. This

can be mathematically formalized as follows. We

introduce the ordering map H: Rm ! Rm such
that HðyÞ ¼ ðh1ðyÞ;h2ðyÞ; . . . ;hmðyÞÞ, where h1ðyÞ6
h2ðyÞ6 � � � 6hmðyÞ and there exists a permutation
s of set I such that hiðyÞ ¼ ysðiÞ for i¼ 1;2; . . . ;m.
Further, we apply the weighted sum aggregation to

ordered achievement vectors HðyÞ, i.e. the OWA
aggregation function has the form:

awðyÞ ¼
Xm
i¼1

wihiðyÞ ð7Þ

Note that formula (7) differs from that originally

introduced by Yager [16], due to opposite ordering

of outcomes (the weight w1 corresponds to the
largest outcome hmðyÞ in [16]) and not necessarily
normalized weights (

Pm
i¼1 wi ¼ 1 in [16]). These

changes, without loss of generality, simplify the

cumulative transformations we introduce further.
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The OWA aggregation (7) allows to model various

aggregation functions from the minimum (w1 ¼ 1,
wi ¼ 0 for i ¼ 2; . . . ;m) trough the arithmetic

mean (wi ¼ 1=m for i ¼ 1; . . . ;m) to the maximum
(wm ¼ 1, wi ¼ 0 for i ¼ 1; . . . ;m� 1). Since its in-
troduction, the OWA aggregation has been ap-

plied to many fields of decision making [3,12,

17,19,20]. In the case of positive weights (wi > 0
for i 2 I), the OWA aggregation (7) is strictly

monotonic and impartial.

When applying the OWA aggregation to prob-

lem (1) we get

max
Xm
i¼1

wihiðCxÞ : x 2 Q

( )
ð8Þ

In this paper we analyze solution procedures for

problem (8). The ordering operator H causes that

the OWA optimization problem (8) is nonlinear

even for the case of linear programming (LP) form

of the original constraints and criteria. Yager [17]
has shown that the nature of the nonlinearity in-

troduced by the ordering operations allows us to

convert the optimization (8) into a mixed integer

programming problem. We show that the OWA

optimization with the monotonic weights can be

formed as a standard LP of higher dimension.

The paper is organized as follows. In the next

section we review properties of the OWA aggrega-
tion with the monotonic weights. In Section 3 we

introduce and discuss two alternative LP formu-

lations of the OWA optimization. Their compu-

tational efficiency is further analyzed in Section 4.

2. Equitable OWA aggregations

The ordering operator H causes that the OWA

optimization problem (8) is nonlinear and hard to

implement. Note that the quantity h1ðyÞ repre-
senting the worst outcome can be easily computed
directly by the LP maximization:

h1ðyÞ ¼ max r1
subject to

r16 yi for i ¼ 1; 2; . . . ;m

Following Yager [17], similar formula can be given

for any hkðyÞ although requiring the use of integer

variables. Namely, for any k ¼ 1; 2; . . . ;m the fol-
lowing formula is valid:

hkðyÞ ¼ max rk
subject to

rk � yi 6Mzki; zki 2 f0; 1g
for i ¼ 1; 2; . . . ;mXm

i¼1
zki 6 k � 1

ð9Þ

where M is a sufficiently large constant (larger

than any possible difference between various indi-

vidual outcomes yi). Note that for k ¼ 1 all the
binary variables z1i are enforced to 0 thus reducing
the optimization to the standard LP model for that

case.

The entire OWA optimization model (8) can be

formulated as the following mixed integer multiple

criteria problem:

max
Xm
k¼1

wkrk

subject to

rk � cix6Mzki for i ¼ 1; 2; . . . ;m k ¼ 1; . . . ;m
zki 2 f0; 1g for i ¼ 1; 2; . . . ;m k ¼ 1; . . . ;mXm
i¼1

zki 6 k � 1 for k ¼ 1; . . . ;m

x 2 Q ð10Þ

In this paper we focus our analysis on the OWA

aggregations with the monotonic weights satisfy-
ing

w1 > w2 > � � � > wm�1 > wm > 0 ð11Þ
The OWA aggregation (7) has then the property

of equitability (satisfies the principle of transfers)

aðy1; . . . ; yi0 � e; . . . ; yi00 þ e; . . . ; ymÞ
> aðy1; y2; . . . ; ymÞ for 0 < e < yi0 � yi00 ð12Þ

The equitability property guarantees that an eq-

uitable transfer of an arbitrarily small amount
from the larger outcome to a smaller outcome re-

sults in more preferred achievement vector. For

instance, when locating public facilities, we want

to consider all the clients impartially and equally.

Thus the distribution of distances (outcomes)
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among the clients is more important than the as-

signment of several distances (outcomes) to the

specific clients. In other words, a location pattern

generating individual distances: 4, 2 and 0 for cli-

ents 1, 2 and 3, respectively, should be considered

equally good as a solution generating distances 0, 2

and 4. Moreover, according to the requirement of

equal treatment of all clients a location pattern
generating all distances equal to 2 should be con-

sidered better than both the above solutions [11].

In the stochastic problems uniform objectives

represent various possible realizations of the same

(uncertain) outcome under several scenarios and

their equitability corresponds to the risk aversion

[1]. Actually, an achievement vector represents

then the discrete distribution of return defined as
m-dimensional lottery, more equal returns implies

a less risky lottery itself. In Section 4, we employ

such a model of the portfolio optimization prob-

lem [12] to generate computational tests.

Maximization of aggregation functions satisfy-

ing the properties of strict monotonicity (4), im-

partiality (6) and equitability (12) generates the

so-called equitably efficient solutions (cf. [7] for the
formal axiomatic definition). In the case of strictly

monotonic weights (11), every solution maximiz-

ing the OWA function is an equitably efficient

solution of the original multiple criteria problem.

Moreover, for linear multiple criteria problems, we

consider, every equitably efficient solution can be

found as an optimal solution to the OWA aggre-

gation with appropriate strictly decreasing positive
weights [7].

The OWA aggregation (7) is obviously a

piecewise linear function since it remains linear

within every area of the fixed order of arguments.

Exactly, for any permutation s of I, within the area
of outcomes satisfying inequalities ysð1Þ 6 ysð2Þ 6

� � � 6 ysðmÞ, the following formula is valid:Xm
i¼1

wihiðyÞ ¼
Xm
i¼1

wiysðiÞ ¼
Xm
i¼1

ws�1ðiÞyi ð13Þ

where s�1 is the inverse of s, i.e. s�1ðsðiÞÞ ¼ i for
i ¼ 1; 2; . . . ;m. Moreover, if weights wi are de-

creasing then the following inequality holds:

Xm
i¼1

wiysðiÞ P
Xm
i¼1

wihiðyÞ

for any permutation s of I. Hence, for any

06 k6 1, one gets

Xm
i¼1

wihiðky0 þ ð1� kÞy00Þ

¼ k
Xm
i¼1

wiy 0�ssðiÞ þ ð1� kÞ
Xm
i¼1

wiy00�ssðiÞ

P k
Xm
i¼1

wihiðy0Þ þ ð1� kÞ
Xm
i¼1

wihiðy00Þ

where �ss denotes the permutation representing the
H ordering of vector ky0 þ ð1� kÞy00. Thus the

equitable OWA aggregations awðyÞ are concave
functions of y. While equal weights define the

linear aggregation, several decreasing sequences

of weights (11) lead us to various concave, piece-

wise linear, monotonic aggregation functions (see

Fig. 1).

When differences among weights (11) tend to

infinity, the OWA aggregation approximates the

leximin ranking of the ordered outcome vectors
[2,18]. That means, as the limiting case of the OWA

problem (8), we get the lexicographic problem:

lexmax fðh1ðCxÞ; h2ðCxÞ; . . . ; hmðCxÞÞ : x 2 Qg
ð14Þ

where first h1ðCxÞ is maximized, next h2ðCxÞ and
so on. Problem (14) represents the lexicographic

Fig. 1. Isoline contours for equitable OWA aggregations.
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maximin approach to the original multiple criteria

problem (1). It is a refinement (regularization) of

the standard maximin optimization, but in the

former, in addition to the smallest outcome, we

maximize also the second smallest outcome (pro-

vided that the smallest one remains as large as

possible), maximize the third smallest (provided

that the two smallest remain as large as possible),
and so on. Note that the lexicographic maximiza-

tion is not applied to any specific order of the

original criteria. Nevertheless, in the case of LP

problems, there exists a dominating objective

function which is constant on the entire optimal set

of the maximin problem [9]. Hence, having solved

the maximin problem, one may try to identify the

dominating objective and eliminate it to formulate
a restricted maximin problem on the former opti-

mal set. Therefore, the lexicographic maximin so-

lution to LP problems can be found by sequential

maximin optimization with elimination of the

dominating functions. This procedure is based,

however, on the preemptive nature of the lexico-

graphic optimization and cannot be extended to

the OWA aggregation where some compensation
between the ordered outcomes is allowed.

In the fuzzy methodologies the so-called �and-
ness� and �orness� properties of the aggregation of
the membership functions are considered [19] ra-

ther than the equitability. Note that the equit-

ability property, we consider, corresponds to the

�and-like� character of the aggregation operator.
Namely, taking into account the renumbering and
the normalization of the weights we introduced,

the andness measure (cf. [16]) takes the formPm
i¼1 ððm� iÞ=ðm� 1ÞÞwi=

Pm
i¼1 wi, and inequality

(11) guarantees that the measure is greater than

0.5.

3. LP formulations

3.1. Max–min model

The ordering operator H used in the OWA

aggregation is nonlinear and, in general, it is hard

to implement. However, with decreasing weights

(11), as a concave piecewise linear function (13) the

OWA aggregation can be expressed in the form:

awðyÞ ¼ min
s2P

Xm
i¼1

wsðiÞyi

 !
ð15Þ

where P denotes the set of all permutations s of I.
Thus the OWA problem (8) is a max–min LP

problem. This leads to the following LP formula-

tion:

max z ð16Þ
subject to

Ax ¼ b ð17Þ
y � Cx ¼ 0 ð18Þ

z�
Xm
i¼1

wsðiÞyi 6 0 for s 2 P ð19Þ

xj P 0 for j ¼ 1; 2; . . . ; n ð20Þ

This is an LP problem with nþ mþ 1 variables
and p þ mþ m! constraints. That means the num-
ber of constraints is much larger than the number

of variables. The huge number of constraints

makes the usefulness of problem (16)–(20) ques-

tionable. However, all the inequalities (19) are

defined by a single vector of weights wi and they

can be generated progressively during the solution

process.

While solving an LP problem with the simplex
method we prefer smaller number of constraints

than variables since it results in a smaller dimen-

sion of basis and thereby in the lower computa-

tional complexity. Therefore, for the simplex

approach it is much better to deal with the dual of

(16)–(20) than with the original problem itself.

Introducing the dual variables: u ¼ ðu1; . . . ; upÞ,
v ¼ ðv1; . . . ; vmÞ and t ¼ ðtsÞs2P corresponding to
the constraints (17), (18) and (19), respectively, we

get the following dual:

min ub ð21Þ
subject to

uA � vC = 0 ð22Þ
vi �

X
s2P

wsðiÞts ¼ 0 for i ¼ 1; 2; . . . ;m ð23Þ
X
s2P

ts ¼ 1 ð24Þ

ts P 0 for s 2 P ð25Þ
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The dual problem (21)–(25) has m! columns
corresponding to variables ts. However, these col-
umns can be handled implicitly with the column

generation scheme. Note that each column corre-

sponding to ts has the unit coefficient in row (24)
and coefficients �wsðiÞ in rows (23). Thus there is

no reason to keep them explicitly. We only need to

identify the best column during the pricing and to

generate the selected column for pivoting.
During the course of the simplex method, hav-

ing the current basis B we have defined the current

primal basic solution ðu0; v0; t0Þ and the current
dual basic solution (the dual multipliers) ðx0; y0;
z0Þ. The reduced cost for variable ts is given by the
formula

dðtsÞ ¼
Xm
i¼1

wsðiÞy0i � z0 for s 2 P

Due to (15), the solution to the pricing problem

mins2P dðtsÞ is given by permutation �ss such that its
inverse �ss�1 orders nondecreasingly y0, i.e.

y0�ss�1ð1Þ 6 y0�ss�1ð2Þ 6 � � � 6 y0�ss�1ðmÞ ð26Þ

where �ss�1ð�ssðiÞÞ ¼ i for i ¼ 1; 2; . . . ;m. In the case
of all different coefficients in vector y0, there is a

unique such a permutation �ss and the uniquely
defined incoming column. When some coefficients

are equal, then (26) defines a group of columns

where the weights are permuted within the subsets

of indices corresponding to equal coefficients y0i .
Any such a single column (permutation) can be

selected as the incoming one.
In the case of multiple permutations �ss solving

(26), one may try to increase the simplex method

efficiency by consideration of linear combinations

(with positive scaling factors) of the columns cor-

responding to the alternative permutations. Such a

combination may be used as an auxiliary incoming

column. This approach is justified since the com-

bined column corresponds to the combination of
inequalities (19) that can be added to the primal

without affecting the solution. However, in our

initial computational testing we have not analyzed

this modification.

When differences among weights (11) become

large enough, then the OWA aggregation repre-

sents the leximin ranking of the ordered outcome

vectors [18]. Implementation of such weights may
cause, however, serious numerical difficulties. The

max–min model can be extended to handle di-

rectly a limiting case of the lexicographic maximin

problem (14). The resulting problem contains,

however, a set of lexicographic inequality con-

straints replacing (19). Dual approach to such a

problem is still possible [6], but it does not offer

any simplification of the existing solution method
[9].

3.2. Deviational model

An alternative LP formulation of the OWA

optimization problem uses the cumulative or-

dered achievement vectors. Applying to ordered

achievement vectors HðyÞ a linear cumulative map
one gets

�hhkðyÞ ¼
Xk
i¼1

hiðyÞ for k ¼ 1; 2; . . . ;m ð27Þ

The quantities �hhkðyÞ for k ¼ 1; 2; . . . ;m express,

respectively: the worst (smallest) outcome, the

total of the two worst outcomes, the total of the

three worst outcomes, etc. When normalized by k

the quantities �hhkðyÞ=k can be interpreted as the
worst conditional means.

The optimization formula (9) for hkðyÞ can
easily be extended to define �hhkðyÞ. Namely, for any
k ¼ 1; 2; . . . ;m the following formula is valid:

�hhkðyÞ ¼ max krk �
Xm
i¼1

dki

subject to

rk � yi 6 dki; dki P 0 for i ¼ 1; 2; . . . ;m
dki 6Mzki; zki 2 f0; 1g for i ¼ 1; 2; . . . ;m
Xm
i¼1

zki 6 k � 1

ð28Þ

where M is a sufficiently large constant. However,

the optimization problem defining the cumulated

ordered outcome can be dramatically simplified
since all the binary variables (and the related

constraints) turns out to be redundant as shown in

the following theorem.
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Theorem 1. For any given vector y 2 Rm, the cu-
mulated ordered coefficient �hhkðyÞ can be found as
the optimal value of the following LP problem:

�hhkðyÞ ¼ max krk �
Xm
i¼1

dki

subject to

rk � yi 6 dki; dki P 0 for i ¼ 1; 2; . . . ;m

ð29Þ

Proof. In order to prove the theorem we will show

that the optimal value of problem (29) is the same

as that of problem (28). First of all, let us notice

that any feasible solution of (28) (when ignoring

variables zki) is also feasible to problem (29).

Moreover, such a solution has not more than k � 1
positive values of variables dki. Opposite, every
feasible solution of problem (29) corresponds to a

feasible solution of problem (28), provided that it

contains not more than k � 1 positive values of
variables dki. On the other hand, for any feasible
solution to (29) which contains sP k positive

values of variables dki one can show an equally

good or better alternative feasible solution with at

most s� 1 positive values of variables dki. Namely,
by setting ~rrk ¼ rk � D and ~ddki ¼ dki � D for dki > 0,
where D ¼ mindki>0 dki one gets

k~rrk �
Xm
i¼1

~ddki ¼ krk �
Xm
i¼1

dki þ ðs� kÞDPkrk �
Xm
i¼1

dki

Hence, the optimal value of problem (29) is the

same as that of problem (28) which completes the

proof. �

It follows from Theorem 1 that

�hhkðCxÞ ¼ max krk

(
�
Xm
i¼1

dik : x 2 Q; cixP rk

� dik; dik P 0; for i ¼ 1; 2; . . . ;m
)

or in a more compact form:

�hhkðCxÞ ¼ max krk

(
�
Xm
i¼1

ðcix � rkÞþ : x 2 Q

)

where ð:Þþ denotes the nonnegative part of a

number and rk is an auxiliary (unbounded) vari-

able. The latter, with the necessary adaptation to

the minimized outcomes in location problems, is

equivalent to the computational formulation of

the k-centrum model introduced in [13]. Hence,

Theorem 1 provides an alternative proof of that

formulation.

The ordered outcomes can be expressed as dif-

ferences hiðyÞ ¼ �hhiðyÞ � �hhi�1ðyÞ for i ¼ 2; . . . ;m
and h1ðyÞ ¼ �hh1ðyÞ. Hence, the OWA problem (8)

with weights wi can be expressed in the form:

min
Xm
i¼1

w0
i
�hhiðCxÞ : x 2 Q

( )

where coefficients w0
i are defined as w

0
m ¼ wm and

w0
i ¼ wi � wiþ1 for i ¼ 1; 2; . . . ;m� 1. If the origi-
nal weights wi are monotonic (11), then w0

i > 0
for i ¼ 1; 2; . . . ;m. This leads us to the following
LP formulation of the OWA problem:

max
Xm
k¼1

kw0
krk �

Xm
k¼1

Xm
i¼1

w0
kdik ð30Þ

subject to

Ax ¼ b ð31Þ
y � Cx ¼ 0 ð32Þ
dik P rk � yi for i; k ¼ 1; 2; . . . ;m ð33Þ
dik P 0 for i; k ¼ 1; 2; . . . ;m
xj P 0 for j ¼ 1; 2; . . . ; n ð34Þ

It is an LP problem with m2 þ 2mþ n variables
and m2 þ mþ p constraints. Thus, for many prob-
lems with not too large number of criteria m, say
up to m representing a few dozens, problem (30)–
(34) can be solved directly.

The number of constraints in problem (30)–(34)

is similar to the number of variables. Nevertheless,

for the simplex approach it may be better to deal

with the dual of (30)–(34) than with the original

problem. Note that variables dik in the primal are
represented with singleton columns. Hence, the

corresponding m2 rows in the dual represent only
simple upper bounds.

Introducing the dual variables: u ¼ ðu1; . . . ; upÞ,
v ¼ ðv1; . . . ; vmÞ and q ¼ ðqikÞi;k¼1;...;m corresponding
to the constraints (31), (32) and (33), respectively,

we get the following dual:
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min ub

subject to

uA � vC= 0

vi �
Xm
k¼1

qik ¼ 0 for i ¼ 1; 2; . . . ;m

Xm
i¼1

qik ¼ kw0
k for k ¼ 1; 2; . . . ;m ð35Þ

06 qik 6w0
k for i; k ¼ 1; 2; . . . ;m

The dual problem (35) contains: 2mþ n structural
constraints, p þ m unbounded variables and m2

bounded variables. Hence, the dual can be directly

solved for a quite large number m.
One may notice that the columns corresponding

to m2 variables qik forms the transportation/as-
signment matrix. This opens an opportunity to

employ special techniques of the simplex SON

algorithm [4] for implicit handling of these vari-
ables. Such techniques increase dramatically effi-

ciency of the simplex method but they require a

special tailored implementation. Therefore, we

have not tested this approach within our initial

computational experiments based on the use of a

general purpose LP code.

An additional advantage of the deviational

model is related to its capability of direct appli-
cation to the limiting case representing the leximin

ranking of the ordered outcome vectors [2,18].

Due to the preemptive nature of the lexicographic

optimization, maximization of the second smallest

outcome can be replaced by maximization of the

total of two smallest outcomes (provided that the

smallest one remains as large as possible), and so

on. Hence, by (27), the lexicographic maximin
problem (14) is equivalent to the problem

lexmax fð�hh1ðCxÞ; �hh2ðCxÞ; . . . ; �hhmðCxÞÞ : x 2 Qg

Following Theorem 1, the above leads us to a

standard lexicographic optimization problem with

predefined linear criteria:

lexmax r1

 
�
Xm
i¼1

di1;2r2�
Xm
i¼1

di2; . . . ;mrm�
Xm
i¼1

dim

!

subject to: ð31Þ–ð34Þ

Note that this direct lexicographic formulation

remains valid for nonconvex (e.g. discrete) feasible

sets Q, where the standard sequential approaches
[8,9] are not applicable [10].

4. Computational tests

We have run initial tests to analyze the com-

putational performances of the max–min and the

deviational models. For this purpose we have

solved randomly generated problems with varying

number of decision variables n and number of
criteria m while the basic LP feasible set has been

defined by a single knapsack-type constraint. Such

problems may be interpreted as portfolio selection
decisions according to the (discrete) scenario anal-

ysis approach [12] as described in the following

example.

Example 1. Consider a simple problem of port-

folio optimization. Let J ¼ f1; 2; . . . ; ng denote the
set of securities in which one intends to invest a

capital. We assume, as usual, that for each security
j 2 J there is given a vector of data ðcijÞi¼1;2;...;m,
where cij is the observed (or forecasted) rate of
return of security j under scenario i (hereafter re-
ferred to as outcome). We consider discrete dis-

tributions of returns defined by the finite set I ¼
f1; 2; . . . ;mg of equally probable scenarios. The
outcome data forms an m� n matrix C ¼
ðcijÞi¼1;...;m; j¼1;...;n which columns correspond to se-
curities while rows ci ¼ ðcijÞj¼1;2;...;n correspond to
outcomes. Further, let x ¼ ðxjÞj¼1;2;...;n denote the
vector of decision variables defining a portfolio.

Each variable xj expresses the portion of the cap-
ital invested in the corresponding security. Port-

folio x generates outcomes

y ¼ Cx ¼ ðc1x; c2x; . . . ; cmxÞ

The portfolio selection problem can be considered

as an LP optimization problem with m uniform

objective functions fiðxÞ ¼ cix ¼
Pn

j¼1 cijxj to be
maximized [12]:

max Cx :
Xn
j¼1

xj

(
¼ 1; xj P 0 for j ¼ 1; 2; . . . ; n

)
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Hence, our portfolio optimization problem can be

considered a special case of the multiple criteria

problem (1) and one may seek an optimal portfolio

with the OWA aggregation

max
Xm
i¼1

wihiðCxÞ :
Xn
j¼1

xj

(
¼ 1;

xj P 0 for j ¼ 1; 2; . . . ; n
)

ð36Þ

Note that the aggregation must be equitable to

model risk averse preferences [1]. Hence, the

weights wi have to be monotonic in the sense of

(11).

Our computational tests were based on the

randomly generated problems (36). The generation

procedure worked as follows. First, for each se-
curity j the maximum rate of return rj was gener-
ated as a random number uniformly distributed in

the interval [0:05, 0.15]. Next, this value was used
to generate specific outcomes cij (the rate of return
under scenarios i) as random variables uniformly

distributed in the interval [�0:75rj, rj]. Further,
strictly decreasing and positive weights wi (11)

were generated. The weights were not normalized
which allowed us to define them by the corre-

sponding increments di ¼ wi � wi�1. The latter

were generated as uniformly distributed random

values in the range of [1.0, 2.0], except from a few

(5 on average) possibly larger increments ranged

from 1.0 to m=3.

We tested solution times for different size pa-
rameters m and n. For each number of decision
variables (securities) n and number of criteria

(scenarios) m we solved 20 randomly generated

problems (36). All computations were performed

on a PC with the Pentium 200 MHz processor

employing the CPLEX 6.0 package [5]. The 500

seconds time limit was used in all the computa-

tions.
Table 1 presents the solution times for the max–

min model solved by the column generation tech-

nique. Exactly, the max–min dual model (21)–(25)

was first simplified by eliminating variables v and
thus making it less dependent on the number of

criteria (scenarios) m. The resulting problem was

solved by the column generation technique with

the use of the CPLEX callable library [5]. The
solution times report the averages of 20 randomly

generated problems. Numbers in parentheses, next

to the time values, show the numbers of tests

among 20 that ended up either with numerical

difficulties or with timeout (of 500 seconds). The

empty cell (minus sign) shows that the timeout

occurred for all 20 instances to be solved. One may

notice that despite the tremendous problem size
with respect to m (m! columns), the column gen-
eration technique allowed us to solve quite large

instances with m up to 300 in a reasonable time,

provided that the number of structural variables n
was rather limited.

In Tables 2 and 3 we show the solution times

for the primal (30)–(34) and the dual (35) forms

of the deviational model, respectively. Both forms

Table 1

Solution times for the max–min model: the column generation approach

Number of

criteria (m)

Number of variables (n)

5 10 20 40 60 100 140 200

10 0.05 0.10 0.10 0.20 0.20 0.40 0.50 1.00

20 0.10 0.15 0.30 0.55 0.90 1.60 (1) 2.50 3.75

30 0.15 0.25 0.45 1.60 2.55 4.55 (1) 7.15 11.45

40 0.15 0.35 0.75 2.35 4.65 9.70 14.25 28.70

60 0.15 0.60 1.85 5.25 10.05 20.15 (1) 34.60 (1) 73.80 (3)

100 0.30 1.10 3.75 15.45 22.35 60.80 (2) 80.15 (9) 175.50 (12)

140 0.40 1.65 5.15 25.50 (2) 48.20 (2) 68.90 (9) – –

200 0.50 1.95 9.50 36.25 (4) 50.20 (8) – – –

300 0.65 4.55 16.75 78.35 (4) – – – –
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were directly solved by the CPLEX code without

taking advantages of the constraints structure

specificity. One can see the primal model per-

forming very well for problems with a limited

number of criteria (m up to 60). While increasing
m, the solution times raise even faster than one
may expect according to m2 impact on the prob-
lem size. On the other hand, in contrary to the

max–min model, the deviational model is not very

much sensitive on the number of structural vari-

ables n. The solution times for the deviational
model turn out to be much more stable among 20

instances randomly generated for each table cell.
In particular, we have not noticed specific in-

stances ending with the numerical difficulties or

the solution times much longer than the average

(reported in the tables).

Table 3 shows that switching to the dual for-

mulations of the deviational model significantly

reduces the computational times. Problems with

up to 60 criteria are solved in less than 100 seconds
while problems with up to 100 criteria may be

solved within the time limit of 500 seconds. Simi-

larly to the primal formulation, the solution times

raise very fast with increasing number of criteria.

However, the number of 100 criteria seems to be

quite enough for most applications, including the

fuzzy aggregations and decisions under risk, while

Table 3 shows roughly linear dependence of the
solution times on the number of structural vari-

ables (n). Recall also that the problems have been
solved directly by the CPLEX code without taking

advantages of the constraints structure specificity.

Taking advantages of the LP embedded network

structure by the techniques of the simplex SON

algorithm [4] should further reduce the solution

times allowing to solve effectively larger problems
(35).

5. Concluding remarks

The problem of aggregating multiple criteria to

form overall objective functions is of considerable

importance in many disciplines. A primary factor
in the determination of the structure of such ag-

gregation is the relationship between the criteria

involved. There are several decision problems

Table 3

Solution times for the deviational model: the dual approach

Number of

criteria (m)

Number of variables (n)

5 10 20 40 60 100 140 200

10 0.05 0.10 0.10 0.15 0.15 0.20 0.25 0.30

20 0.30 0.35 0.40 0.60 0.75 1.00 1.20 1.70

30 0.80 1.00 1.55 2.15 2.65 3.35 4.30 6.20

40 1.95 2.35 3.20 5.25 6.75 9.50 11.80 16.80

60 7.30 8.80 10.95 20.75 31.30 44.95 55.70 65.25

100 49.05 54.60 65.40 104.15 173.10 278.80 – –

140 191.00 196.50 226.10 – – – – –

200 – – – – – – – –

Table 2

Solution times for the deviational model: the primal approach

Number of

criteria (m)

Number of variables (n)

5 10 20 40 60 100 140 200

10 0.10 0.15 0.15 0.15 0.20 0.20 0.25 0.35

20 0.70 0.80 1.00 1.20 1.25 1.45 1.65 2.35

30 3.20 3.80 4.05 4.80 4.95 6.05 6.50 7.55

40 9.70 11.90 13.70 15.90 18.00 20.00 20.05 23.60

60 58.05 69.35 80.95 90.35 106.55 113.95 127.05 139.25

100 – – – – – – – –
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where the multiple criteria are uniform and need
to be treated impartially. Moreover, the equity

among the criteria is an important issue.

The weighted sum aggregation violates the re-

quirement of impartiality as it assigns the weights

to the specific criteria. Yager [16] introduced the

so-called OWA aggregation where the weights are

assigned to the ordered values rather than to the

specific criteria. The equitability properties corre-
spond to the and-like character of the aggregation

operator and they are guaranteed by the mono-

tonic weights.

The ordering operator used to define the OWA

aggregation is, in general, hard to implement. We

have shown that the OWA aggregations with the

monotonic weights can be modeled by introducing

auxiliary linear constraints. Hence, an LP problem
with the OWA objective can be formed as a

standard linear program. Two alternative LP

formulations have been introduced. While the

max–min model requires the column generation

techniques to overcome its huge number of col-

umns, the deviational model can be solved directly

as introducing only m2 variables. Moreover, the
deviational model can be directly applied to the
lexicographic maximin optimization.

Initial computational experiments show that

both formulations enable to solve effectively me-

dium size problems. Actually, the number of 100

criteria covered by the dual approach to the de-

viational model seems to be quite enough for most

applications, including the fuzzy aggregations and

decisions under risk. The problems have been
solved directly by general purpose LP code while

taking advantages of the constraints structure

specificity may remarkably extend the solution

capabilities. In particular, the simplex SON algo-

rithm [4] may be used for exploiting the LP em-

bedded network structure in the dual form of the

deviational model. This seems to be a very pro-

mising direction for further research.
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