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Scope and Purpose--In the great majority of real-life mixed integer programming models most of integer 
variables represent some multiple choice requirements. A multiple choice requirement is usually modeled 
with a generalized upper bound on a set of zero one variables thus creating the so-called Special Ordered 
Set (SOS). During the past decade powerful microcomputers with friendly optimization software have 
become standard productivity tools for businessmen and other decision makers. Unfortunately, the branch 
and bound algorithms implemented there, usually, do not support the special treatment of SOS constraints. 
Therefore, one may face enormously long computation time while solving quite small problems including 
several multiple choice requirements. To overcome these difficulties we propose another algebraic model of 
multiple choice requirements. While using the proposed modeling technique, the standard branch and 
bound algorithm generates a balanced branching on the set of options included in the multiple choice 
requirement. It results usually in a significant shortening of the solution process. 

Abstract--This note introduces the Special Ordered Inequalities (SOl) as a new technique for integer 
programming modeling of multiple choice requirements and piecewise linear functions. The standard 
modeling technique based on the use of Special Ordered Set (SOS) structure requires a branch and bound 
solver to be armed with the special tools for SOS processing. Otherwise, the standard branching rule applied 
on individual SOS variables may lead to enormously long computation process thus making impossible to 
solve quite small problems in a reasonable time. The proposed SO1 modeling technique allows us to 
eliminate the necessity of the special branching rule for handling SOS structure. The standard branching on 
individual variables of SO1 is equivalent to the special SOS branching. Thus the proposed modeling 
technique seems to be very attractive for users of simple mixed integer programming solvers as well as for 
those who want to build solver independent mathematical programming models. 

1. I N T R O D U C T I O N  

In the great majority of real-life mixed integer programming models most of integer variables 
represent some multiple choice requirements [1]. There is a variety of  applications leading to models 
with this structure (cf. Martin and Sweeney [2]; Hummeltenberg [3] and references therein). In 
particular, one may consider multi-item production scheduling [4,5,6], sales resource allocation [7], 
menu planning [8], and catalog space planning [9]. A multiple choice requirement is usually modeled 
with a generalized upper bound on a set of  zero-one variables [10], thus creating the so-called 
Special Ordered Set (SOS). For instance, the multiple choice requirement 

Z E  { a l , a 2 , . . . , a r }  (1) 
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where aj represent several options (like facility capacities), may be modeled as follows 

z = a l x  I + a 2 x  2 + . . .  + a r X  r 

x l + x 2 + ' " + X r =  1 (2) 

x j > ~ O ,  x j  integer for j = 1 , 2 , . . . , r  (3) 

where xj ( j  = 1 ,2 , . . . , r )  are zero-one variables corresponding to several options aj. The xj 
variables with constraints (2)-(3) create the SOS which is an algebraic representation of the logical 
multiple choice requirement (1). If  the multiple choice includes the null option a0 = 0, then the 
corresponding variable x o is usually omitted and the SOS constraint (2) takes the inequality form. 

Problems with the SOS structure may, of course, be solved by using the standard branch and 
bound algorithm for mixed integer programming. However, the standard branching rule 

x k = 0  or x k =  1 (4) 

applied on an SOS variable leads to the dichotomy 

Xl  + X2 + . . . + X k _  l + Xk  + l + . . . + Xr = l o r  X k  = l 

thus creating an extremely unbalanced branching on the set of the original alternatives (any option 
different from ak is selected or option ak is selected). This causes a low effectiveness of the branch 
and bound algorithm. Therefore Beale and Tomlin [11] (see also Tomlin [12]) proposed a special 
version of the branch and bound algorithm to handle SOSs. An SOS was there treated as a single 
entity with branching based on the dichotomy 

x l  + x 2  + . . . + x k  = O or 

thus splitting the SOS into two smaller SOSs 

X k + l + X k + 2 + ' " + X r =  1 

X k  + 1 - 1 - X k +  2 - 1 - ' ' " - ] - X  r ~- 0 (5) 

or x~ + x2 + • .. + xk = 1. 

It generated a complete analogy of SOS branching with direct branching on the set of multiple 
choice options (1) 

z E { a l , a z , . . . , a k }  or z E{a k + l , a k + 2 , . . . , a r } .  (6) 

After development of additional techniques for large-scale problems, like pseudocosts [13], the 
branching rule (5) has become a standard technique implemented in mainframe mixed integer 
programming codes (compare, Beale [14]; Land and Powell [15]; Powell [16]; Tomlin and Welch 
[171). 

During the past decade powerful microcomputers have become standard productivity tools for 
businessmen and other decision makers. It has caused growing use of PC mathematical program- 
ming systems. They provide users with a possibility to analyze, in a convenient form, linear 
programs up to a couple thousands of decision variables [18]. Most systems provide also mixed 
integer programming capability. Unfortunately, the branch and bound algorithms implemented 
there, usually, do not support the special treatment of SOS constraints [19]. Therefore one may face 
difficulties while solving quite small problems including several multiple choice requirements. To 
overcome these difficulties we propose another way of modeling multiple choice requirements. 
While using the proposed modeling technique, the standard branching rule applied on integer 
variables representing the multiple choice is equivalent to the dichotomy (6) thus increasing 
efficiency of the branch and bound search. 

2. S O I  M O D E L I N G  T E C H N I Q U E  

Let us consider a multiple choice requirement modeled with the SOS (2)-(3). One may introduce 
new integer zero-one variables defined as the corresponding partial sums in (2), i.e. 

Yl = Xl 

y j = y j _ l + X j  for j = 2 , 3 , . . . , r .  
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Note  that the standard branching on variable Yk 

y k = 0  or y k = l  

implies the dichotomy (5) thus emulating the special SOS branching rule and generating a complete 
analogy with binary branching (6) on the set of  original options. 

Variables Xk no longer need to be specified as integer and, in fact, they should not be specified as 
integer to avoid inefficient branching on them. Moreover,  they can be simply eliminated replacing 
the SOS model of  the multiple choice (1) with the following 

z = (a 1 - a2)y I + (a 2 - a3)y 2 + . . -  + (ar_ 1 - ar)Yr-  1 "]- ar 

Yl <<.Y2 <~ . . .  <~ Y r -  1 ~< 1 (7) 

yj>lO, yj  integer for j =  1 , 2 , . . . , r -  1 (8) 

where the original values of  xj are defined as the corresponding slacks in inequalities (7). Variable Yr 
does not arrive in (7)-(8) as by its definition it is constant and we directly put its value 1. The 
variables yj with constraints (7)-(8) will be referred to as Special Ordered Inequalities (SOI). 

Note  that use of  SOI instead of  SOS does not increase the number  of  variables (neither integer nor 
continuous). In fact, any SOI contains one integer (zero-one)  variable less than the corresponding 
SOS but it is not important  as one variable could be eliminated in the latter by using inequality form 
for constraint (2). SO1 modeling increases the number  of  constraints but additional constraints are 
very simple (network structure) and they do not cause a remarkable increase of  data entries. 

E x a m p l e  

In order to illustrate how branching would proceed with the SO1 model vs how it would proceed 
with the SOS model, let us consider the following simple maximum problem with one multiple 
choice requirement in the SOS form 

subject to 

max z 

z~< 1.6x0 + lXl + 2x2 + 2x3 + 2x4 

z~< 1.6x0 + 2Xl + lx2 + 2x3 + 2x4 

z~< 1.6Xo + 2Xl + 2x2 q- lx  3 q-- 2x4 

z~< 1.6Xo + 2Xl + 2x2 + 2x3 + lx4 

X 0 - ] - X  1 q - -X  z q - X  3 -~-X 4 = 1 

xj~>0, xj integer for j = 0 , 1 , . . . , 4 .  

One can easily notice that the problem has a unique optimal solution z = 1.6 based on x0 = 1 and 
xl = x2 = x3 = x4 = 0. However  while solving the corresponding linear program we get x0 = 0 and 
xl = x2 = x3 = x4 = 0.25. Thus, with the standard branching, one of  variables X l , X 2 , X  3 or x 4 is 
selected as the branching variable. Let say Xl is chosen. Hence, we get two subproblems with 
multiple choice constraints Xl = 1 and x0 + x2 + x3 + x4 = 1, respectively. The former has an 
integer solution (not optimal to the original problem). The latter has the continuous solution 
x0 = Xl = 0 and x2 = x3 = x4 = 0.33 thus requiring further branching on one of  variables x2, x3 or 
x4. Finally, after examination of  5 nodes (subproblems), we conclude with the optimal integer 
solution. 

With the SOI approach,  constraints of  our problem takes the following form 

z~<O.6yo - Y l  + 2  

z~< - 0.4y o + y l  -Y2  + 2 

z" ~< - -  0 . 4 y  0 -+- Y2 - -  Y3 + 2 

z~< -- 0.4y 0 +Y3 + 1 
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Y0 ~<Yl ~<Y2 ~<Y3 ~< I 

))>~0, yj integer for j = 0 , 1 , 2 , 3  

where the original variables xj are defined as 

Xo = YO 

x / = ) ! j - £ / _ l  for j =  1,2,3 

x4 = 1 - Y3. 

The optimal solution z = 1.6 is now based on Y0 = Yl = Y2 = Y3 = 1 and the cont inuous  solution is 
Y0 = 0, Yl = 0.25, Y2 = 0.5 and Y3 = 0.75. Thus with the s tandard branching strategy (maximum 
integer infeasibility) variable Y2 is selected as the branching one. Hence, we get two subproblems 
with SOI constraints  Y0 ~<Yl ~<Y2 = Y3 = 1 and 0 = Yo = Yl = Y2 ~<Y3 ~< 1, respectively. Note  that  this 
branching is better balanced than that  made  in the SOS model,  as the corresponding SOS 
constraints  would take the form of  Xo + Xl + x2 = 1 and x3 + x4 = 1, respectively. One can easily 
notice that  the first subproblem generates Yo = Yl = Y2 = Y3 = 1, which is the opt imal  integer 
solution for the original problem, whereas the second subproblem can be fa thomed with this solution. 
Thus  we complete the branch and bound  process having examined 3 nodes. [] 

The SOI technique allows us to model  easily various extensions and modifications o f  multiple 
choice requirements.  For  instance, in many  real-life problems, one may face a multiple choice with 
the null opt ion and a fixed charge connected with use of  any other  option. In the SOS methodo logy  
it would be modeled as follows [20] 

X I + X 2 + ' ' ' + X r ~ I  

xj>lO, xj integer for j =  1 , 2 , . . . , r  

xj<~w for j = l , 2 , . . . , r  

where w is the z e r o - o n e  fixed charge variable. In the corresponding SO1 model  

Yl  <~Y2 <~ " '"  <-Yr <- 1 
yj<.O, yj integer for j =  1 , 2 , . . . , r  

variable Yr can be directly used as the fixed charge variable. 

3. C O M P U T A T I O N A L  E X P E R I M E N T S  

In principle, the efficiency of  the proposed  modeling technique does not  need any p r o o f  as it can 
be considered as an emulat ion o f  the SOS branch and bound  a lgor i thm [11] which efficiency has 
been proven in many  commercial  mixed integer p rogramming  systems. However,  to demonst ra te  
the impor tance  o f  the use o f  the proposed  remodeling technique, when the s tandard branch and 
bound  a lgor i thm is used, we present results o f  some computa t iona l  experiments in Table 1. 

All the problems in Table 1 are connected with the water quality management  [21]. Problem size is 

Table 1. Results of tests for SOI vs SOS model comparison 

Problem SOS model SOI model 

name m n c nodes pivots CPU s nodes pivots CPU s 

t5p0 21 41 5 260 625 0.60 16 46 0.05 
t5np0 21 41 5 42 84 0.10 10 52 0.07 
t7p0 29 57 7 1383 3502 4.83 72 254 0.42 
t7np0 29 57 7 203 473 0.65 36 181 0.26 
tl0p0 41 81 10 34255 86592 151.36 68 211 0.74 
tl0np0 41 81 10 3734 7808 16.05 84 374 0.98 
tl5p0 61 121 15 571603 1490064 4108.10 65534 294874 1241.32 
tl5np0 61 121 15 161710 351037 831.48 845 4213 11.54 
t20p0 81 161 20 >>1000000 >>2510204 >>6955.24 10448 50511 297.21 
t20np0 81 161 20 >>1000000 >>1857975 >>7429.50 17012 86660 363.18 



Multiple choice requirements for simple mixed integer programming solvers 203 

described with three numbers m, n and c, where m denotes number of constraints, n number of 
variables, and c number of multiple choice requirements. Each multiple choice requirement covers 
six options (including the null option). Thus problem t5p0 contains 25 binary variables, problem 
t7p0--35 binary variables, etc. All the other variables are continuous and n represents the total of 
variables with the standard modeling of  multiple choice requirements [i.e. SOS model (2)-(3)]. 

The problems were solved with the standard branch and bound algorithm (without special SOS 
handling) using LIFO node selection strategy, maximal integer infeasibility for branching variable 
selection and penalties on the branching variable. Thus the algorithm was quite typical for simple 
mixed integer programming solvers. The computation were made with the MOMIP code [22] on a 
DEC 5000/240 workstation. Table 1 provides total of  nodes examined (subproblems solved) and 
total of simplex steps (pivots) during the course of  the branch and bound algorithm for both SOS 
and SOI model. There are also given the corresponding CPU times for the branch and bound 
process (excluding initial LP solution). One can easily notice a dramatic improvement achieved by 
use of  the SO1 model. Improvement in the number of  pivots is less than in the number of nodes since 
we rebuilt problems automatically without elimination of  original xj variables from the SO1 model 
(thus increasing the linear problems size). Due to long computation we abandoned branch and 
bound search after examination of  a million nodes. It caused that the two largest SOS models left 
unsolved. More precisely, in one of  them the optimality proof  was not completed and in one case 
(t20np0) the optimal solution was not even identified (the best integer solution found was about 5% 
worse than the optimal one). When modeled with SOI, both the problems were completely solved 
(with optimality proof) in less than 18,000 nodes. 

Improvement in the effectiveness caused by the use of  SO1 model may be even greater for another 
branch and bound strategy. For  instance, when we tried to solve the problem tl0p0 with CPLEX 
[23], using its default strategy, it turned out to take 2796 nodes and 4157 pivots for the SOI model 
comparing to 734,491 nodes and 492,158 pivots for the SOS model. The latter took over 16h 
(60858.90 s) of  Sun Sparc 2 CPU time whereas the former took only about 1 min (64.60 s). The SOS 
model of  t7p0 required 29,650 nodes, 19,920 pivots and 381.80 s, whereas the corresponding SO1 
model was solved in 5.24 s with 747 nodes and 482 pivots. 

4. A P P L I C A T I O N  T O  P I E C E W I S E  L I N E A R  F U N C T I O N S  

Apart  from direct use of  multiple choice requirements, they arise also while modeling piecewise 
linear functions [24,10]. Suppose, we have a piecewise linear function v = f ( s )  specified by the 
breakpoints 

(sj, vj), vj =f(s j )  for j = 1 , 2 , . . . , r .  (9) 

Such a function is, usually, modeled on the interval [Sl, st] as follows 

v = AlVl + A2v2 + . . .  + ArVr 

s = AlSl + A2s2 + . . .  + ArSr 

A 1 "[-A2 "q-' "" 7t-Ar = 1 

Aj~>0 for j =  1 , 2 , . . . , r  

where at most two subsequent Aj are allowed to be positive. The latter is transformed into algebraic 
conditions using the SOS technique 

~1 ~ Xl 

Aj<~Xj_l+Xj for j = 2 , 3 , . . . , r - 1  

Ar <~ Xr- 1 

X 1 - + - X 2 - ' [ - ' ' ' " [ - X  r = 1 

xj~>0, xj integer for j =  1 , 2 , . . . , r .  
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In this formulation, SOS of  variables xj represents the multiple choice of  one segment of  the 
piecewise linear function. While applying SOS branching rule (5), one gets a partition of  the entire 
interval [sl, st] into two smaller intervals 

s E [Sk,Sr] or s E [Sl,Sk]. (10) 

But while using a simple solver with the standard branching (4) on individual variables Xk one gets 

s C [sl,sl,] t3 [Sk+l,Sr] or s ~ [Sk, Sk+l] 

which is extremely unbalanced and thereby inefficient. 
For  efficient use of the standard branching rule one may remodel the SOS into the corresponding 

SOI as shown in the previous section. However, there is a way to get a much simpler algebraic 
formulation by modeling directly the piecewise linear function with SOI methodology. Namely, the 
piecewise linear function (9) can be modeled directly with SOI as follows 

V=Vl-~-('O2--Vl)b/1 ~-(V3 - -V2)UZq- ' ' ' q : - (Vr- - / ) r  l)Ur 1 (11) 

S=S1-F-($2--S1)t/1 ~-($3 --S2)Uzq-'''q-(Sr--Sr l)b/r 1 

I>~uI>~Yl>~Uz>~Y2 >~ . . .  >~Ur l~>Yr 1 (12) 

Uj~>0, yj>~0, yj integer for j = l , 2 , . . . , r - - 1 .  (13) 

SOI (12)-(13) differs from that discussed in Section 2 [compare (7)-(8)] as only every second 
variable is required to be integer. Nevertheless, it keeps the most important properties of the SOI 
structure. The standard branching on variable y~ 

Y k = 0  or Yk= 1 

implies the dichotomy (10) thus emulating efficiency of the special SOS branching rule (5) in the SOS 
model of the piecewise linear function. 

The SOI model of the piecewise linear function is simpler than that using SOS technique. Note 
that the problem to find a maximum (or minimum) of v = f ( s )  over the interval [Sl, Sr] is modeled 
with the SOI methodology as the problem with objective function (11) and constraints (12)-(13). 
The coefficient matrix of  this problem is totally unimodular [23] which means that the integrality 
requirements on variables yj can be simply dropped thus creating a simple linear programming 
model. This property is not valid for more complex problems containing more constraints on 
variable s. Nevertheless, it illustrates very well the simplicity and a potential power of the SOI 
modeling technique. 

5. C O N C L U D I N G  R E M A R K S  

An alternative technique of modeling multiple choice requirements in mathematical program- 
ming has been shown. The standard modeling technique based on the use of  Special Ordered Sets, 
essentially, requires a branch and bound solver to be armed with the special tools for SOS 
processing. Otherwise, the standard branching rule applied on individual variables may lead to 
enormously long computation process thus making impossible to solve quite small problems in a 
reasonable time. It may cause difficulties with efficient use of many friendly PC optimization 
software tools. The proposed modeling technique of  Special Ordered Inequalities allows us to 
eliminate the necessity of  the special branching rule for handling the SOS structure. The standard 
branching on individual variables of  SOI is equivalent to the special SOS branching. Thus the 
proposed modeling technique seems to be very attractive for users of simple mixed integer 
programming solvers as well as for those who want to build solver independent mathematical 
programming models. 

Recently, the great progress has been made in development of languages and software supporting 
building of mathematical programming models. Some typical relations, like multiple choice, can be 
there specified by the user in a direct form leaving to the software the task of  transformation into an 
algebraic form. For  instance, a piecewise linear function can be specified by a list of breakpoints and 
corresponding slopes [25] while the software builds the necessary algebraic relations. The proposed 
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m o d e l i n g  t e c h n i q u e s  o f  S O I  seems to  be  ve ry  a t t r a c t i v e  fo r  a p o t e n t i a l  use in m o d e l i n g  s o f t w a r e  as it  

d r a m a t i c a l l y  inc reases  the  so lver  i n d e p e n d e n c e  o f  the  g e n e r a t e d  m o d e l .  

S O I  m o d e l i n g  t e c h n i q u e  seems to  be  v e r y  in t e r e s t i ng  in c o n n e c t i o n  w i t h  r ecen t ly  d e v e l o p e d  m i x e d  

i n t ege r  p r o g r a m m i n g  a l g o r i t h m s  us ing  the  so-ca l l ed  c o n v e x i f i c a t i o n  p r o c e d u r e s  ([26] a n d  re fe rences  

there in) .  T h i s  requ i res ,  h o w e v e r ,  f u r t h e r  r e s e a r c h  a n d  ex tens ive  c o m p u t a t i o n a l  tests.  
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