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Abstract. A mathematical model of portfolio optimization is usually quantified with mean-risk models offering
a lucid form of two criteria with possible trade-off analysis. In the classical Markowitz model the risk is measured
by a variance, thus resulting in a quadratic programming model. Following Sharpe’s work on linear approximation
to the mean-variance model, many attempts have been made to linearize the portfolio optimization problem. There
were introduced several alternative risk measures which are computationally attractive as (for discrete random
variables) they result in solving linear programming (LP) problems. Typical LP computable risk measures, like the
mean absolute deviation (MAD) or the Gini’s mean absolute difference (GMD) are symmetric with respect to the
below-mean and over-mean performances. The paper shows how the measures can be further combined to extend
their modeling capabilities with respect to enhancement of the below-mean downside risk aversion. The relations
of the below-mean downside stochastic dominance are formally introduced and the corresponding techniques to
enhance risk measures are derived. The resulting mean-risk models generate efficient solutions with respect to
second degree stochastic dominance, while at the same time preserving simplicity and LP computability of the
original models. The models are tested on real-life historical data.
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1. Introduction

Following the seminal work by Markowitz [14], the portfolio selection problem is modeled
as a mean-risk bicriteria optimization problem where the mean, representing the expected
outcome, is maximized and the risk, a scalar measure of the variability of outcomes, is min-
imized. The classical Markowitz model uses the variance as the risk measure, but several
other risk measures have been later considered thus creating the entire family of mean-risk
(Markowitz type) models. While the original Markowitz model forms a quadratic program-
ming problem, following the initial works on its linear programming (LP) approximation
[23, 27], many attempts have been made to linearize the portfolio optimization procedure
(c.f., [26] and references therein). The LP solvability is very important for applications to
real-life financial decisions where the constructed portfolios have to meet numerous side
constraints (including the minimum transaction lots [13]) and take into account transaction
costs [11].
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The risk measures, although nonlinear, can be LP computable in the case of discrete
random variables, i.e., in the case of returns defined by their realizations under the finite
number of specified scenarios. This applies, in particular, to the mean absolute deviation
from the mean. The mean absolute deviation was very early considered in the portfolio anal-
ysis ([24] and references therein) while quite recently Konno and Yamazaki [10] presented
and analyzed the complete portfolio optimization model based on this risk measure—the
so-called MAD model. Yitzhaki [29] introduced the mean-risk model using Gini’s mean
(absolute) difference as the risk measure (hereafter referred to as the GMD model).

The Markowitz mean-variance model provided the main theoretical background for the
modern portfolio theory. Nevertheless, the optimization model itself is frequently criticized
as not consistent with the stochastic dominance rules. The relation of stochastic dominance
is one of the fundamental concepts of the decision theory (c.f. [12, 28]). Taking into account
the axiomatic models of preferences for choice under risk, it introduces a partial order in the
space of real random variables. While theoretically attractive, stochastic dominance order
is computationally difficult, as a multiobjective model with a continuum of objectives. If
the rates of return are multivariate normally distributed, then the MAD and the most of LP
solvable mean-risk models are equivalent to the Markowitz mean-variance model which in
this specific case is consistent with the stochastic dominance rules. However, the LP solvable
mean-risk models do not require any specific type of return distributions. Opposite to the
mean-variance approach, for general random variables some consistency with the second
degree stochastic dominance (SSD) rules were shown for the Gini’s mean difference [29]
and for the MAD model [17].

The variance used as a risk measure causes that the variability of rate of return above
the mean is penalized while the investors concern of an underperformance rather than
the overperformance of a portfolio. This led Markowitz [15] to propose (below-mean)
downside risk measures such as (downside) semivariance to replace variance as the risk
measure. Many authors pointed out that the MAD model opens up opportunities for more
specific modeling of the downside risk [3, 26]. Actually, the MAD model may easily be
extended with some piece-wise linear penalty (risk) functions to provide opportunities for
more specific modeling of the downside risk [9, 16]. In this paper we generalize the concept
of recursive MAD measure [16] to introduce a construction which can be applied to various
LP computable risk measures in order to extend their modeling capabilities with respect to
enhancement of the below-mean downside risk aversion. This allows us to introduce a new
risk measure representing the downside version of the Gini’s mean difference.

The paper is organized as follows. In the next section we recall the basics of the stochastic
dominance and mean-risk approaches. We also specify the meaning of consistency results
for these two different approaches and discuss the specific consistency results for the MAD
and GMD models. In Section 3 we analyze how the MAD and GMD risk measures can
be further combined to enhance the below-mean downside risk aversion while preserving
the SSD consistency of the original measures. For this purpose, we formally introduce the
relations of the below-mean downside stochastic dominance and derive the corresponding
techniques to enhance risk measures. The appropriate constructions are shown to be valid
for various LP computable and SSD consistent risk measures but we focus our detailed
analysis on the MAD and GMD measures. Section 4 provides a computational analysis
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of the our LP computable models comparing their performances on the asset allocation
problem while using historical values of 81 sectorial S&P500 indices.

2. Stochastic dominance and mean-risk models

2.1. SD consistency concepts

The portfolio optimization problem considered in this paper follows the original Markowitz
formulation and it is based on a single period model of investment. At the beginning
of a period, an investor allocates the capital among various securities, thus assigning a
nonnegative weight (share of the capital) to each security. During the investment period,
a security generates a random rate of return. This results in a change of capital invested
(observed at the end of the period) which is measured by the weighted average of the
individual rates of return.

Let J = {1, 2, . . . , n} denote a set of securities considered for an investment. For each
security j ∈ J , its rate of return is represented by a random variable R j with a given
mean µ j = E{R j }. Further, let x = (x j ) j=1,2,...,n denote a vector of decision variables
x j expressing the weights defining a portfolio. To represent a portfolio, the weights must
satisfy a set of constraints that form a feasible set P . The simplest way of defining a feasible
set is by a requirement that the weights must sum to one, i.e.

∑n
j=1 x j = 1 and x j ≥ 0 for

j = 1, . . . , n. An investor usually needs to consider some other requirements expressed as
a set of additional side constraints. Hereafter, it is assumed that P is a general LP feasible
set given in a canonical form as a system of linear equations with nonnegative variables.

Each portfolio x defines a corresponding random variable Rx = ∑n
j=1 R j x j that repre-

sents a portfolio rate of return. The mean rate of return for portfolio x is given as:

µ(x) = E{Rx} =
n∑

j=1

µ j x j

Following Markowitz [14], the portfolio optimization problem is modeled as a mean-risk
bicriteria optimization problem

max{[µ(x), −�(x)] : x ∈ P} (1)

where the mean µ(x) is maximized and the risk measure �(x) is minimized. A feasible
portfolio x0 ∈ P is called the efficient solution of problem (1) or the µ/�-efficient portfolio
if there is no x ∈ P such that µ(x) ≥ µ(x0) and �(x) ≤ �(x0) with at least one inequality
strict.

In the original Markowitz model [14] the risk is measured by the standard deviation or
variance: σ 2(x) = E{(µ(x) − Rx)2}. Several other risk measures have been later considered
thus creating the entire family of mean-risk models. We restrict our analysis to the class of
Markowitz-type mean-risk models where risk measures, similar to the standard deviation,
are translation invariant and risk relevant dispersion parameters. Thus the risk measures,
we consider, are not affected by any shift of the outcome scale and they are equal to 0 in the
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case of a risk-free portfolio while taking positive values for any risky portfolio. Moreover,
in order to model possible taking advantages of a portfolio diversification, risk measure
�(x) should be a convex function of x.

The Markowitz model is frequently criticized as not consistent with axiomatic models
of preferences for choice under risk [20]. Namely, except for the case of returns meeting
the multivariate normal distribution, the mean-variance model may lead to inferior conclu-
sions with respect to the stochastic dominance order. The concept of stochastic dominance
order [28] is based on an axiomatic model of risk-averse preferences [20]. In stochastic
dominance, uncertain returns (random variables) are compared by pointwise comparison
of some performance functions constructed from their distribution functions. The first per-
formance function F (1)

x is defined as the right-continuous cumulative distribution function:
F (1)

x (η) = Fx(η) = P{Rx ≤ η} and it defines the first degree stochastic dominance (FSD).
The second function is derived from the first as:

F (2)
x (η) =

∫ η

−∞
Fx(ξ ) dξ for real numbers η,

and it defines the (weak) relation of second degree stochastic dominance (SSD):

Rx′ �SSD Rx′′ ⇔ F (2)
x′ (η) ≤ F (2)

x′′ (η) for all η.

We say that portfolio x′ dominates x′′ under the SSD (Rx′ 	SSD Rx′′ ), if F (2)
x′ (η) ≤ F (2)

x′′ (η) for
all η, with at least one strict inequality. A feasible portfolio x0 ∈ P is called SSD efficient
if there is no x ∈ P such that Rx 	SSD Rx0 . If Rx′ 	SSD Rx′′ , then Rx′ is preferred to Rx′′

within all risk-averse preference models where larger outcomes are preferred. It is therefore
a matter of primary importance that a model for portfolio optimization be consistent with
the SSD relation, which implies that the optimal portfolio is SSD efficient.

The Markowitz model is not SSD consistent since its efficient set may contain SSD
inferior portfolios characterized by a small risk but also very low return (c.f. [17] and
references therein). Unfortunately, it is a common flaw of all Markowitz-type mean-risk
models where risk is measured with some dispersion measures. Although, the necessary
condition for the SSD relation is [5]

Rx′ �SSD Rx′′ ⇒ µ(x′) ≥ µ(x′′) (2)

this is not enough to guarantee the µ/� dominance, due to the lack of similar consistency
relation

Rx′ �SSD Rx′′ ⇒ �(x′) ≤ �(x′′)

for the risk measures. For dispersion type risk measures �(x), it may occur that Rx′ �SSD Rx′′

and simultaneously �(x′) > �(x′′). In order to overcome this flaw of the Markowitz model,
already Baumol [1] suggested to consider a safety measure, he called the expected gain-
confidence limit criterion, µ(x) − λσ (x) to be maximized instead of the minimization of
σ (x) itself. Similar approach was introduced by Yitzhaki [29] with respect to the Gini’s
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mean difference used as a risk measure. Hereafter, for any dispersion type risk measure
�(x), the function s(x) = µ(x) − �(x) will be referred to as the corresponding safety
measure. Note that risk measures, we consider, are defined as translation invariant and risk
relevant dispersion parameters. Hence, the corresponding safety measures are translation
equivariant in the sense that any shift of the outcome scale results in an equivalent change
of the safety measure value (with opposite sign safety measures are maximized), or in other
words, the safety measures distinguish (and order) various risk-free portfolios (outcomes)
according to their values. The safety measures, we consider, are risk relevant but in the
sense that the value of a safety measure for any risky portfolio is less than the value for the
risk-free portfolio with the same expected returns. Moreover, when risk measure �(x) is a
convex function of x, then the corresponding safety measure s(x) is concave.

The SSD consistency of the safety measures may be formalized as follows. We say that
the safety measure µ(x)−�(x) is SSD consistent or that the risk measure �(x) is SSD safety
consistent if

Rx′ �SSD Rx′′ ⇒ µ(x′) − �(x′) ≥ µ(x′′) − �(x′′) (3)

The relation of SSD (safety) consistency is called strong if, in addition to (3), the following
holds

Rx′ 	SSD Rx′′ ⇒ µ(x′) − �(x′) > µ(x′′) − �(x′′) (4)

The following assertion [19] explains the safety consistency in terms of the bicriteria opti-
mization.

Theorem 1. If the risk measure �(x) is SSD safety consistent (3), then except for portfolios
with identical values of µ(x) and �(x), every efficient solution of the bicriteria problem

max{[µ(x), µ(x) − �(x)] : x ∈ P} (5)

is an SSD efficient portfolio. In the case of strong SSD safety consistency (4), every portfolio
x ∈ P efficient to (5) is, unconditionally, SSD efficient.

Following Theorem 1, one may consider the mean-safety bicriteria model (5) as a reason-
able alternative to the corresponding mean-risk model (1). Note that a portfolio dominated
in the mean-risk model (1) is also dominated in the corresponding mean-safety model (5).
Hence, the efficient portfolios of problem (5) form a subset of the entire µ/�–efficient set.
The minimum risk portfolio (MRP), defined as the solution of minx∈P �(x), limits the curve
to the mean-risk efficient frontier. Similar, the maximum safety portfolio (MSP), defined as
the solution of maxx∈P [µ(x)−�(x)], distinguishes a part of the mean-risk efficient frontier,
which is also mean-safety efficient. By virtue of Theorem 1, in the case of a SSD safety
consistent risk measure, this part of the efficient frontier represents portfolios which are
SSD efficient.
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2.2. Basic LP computable risk measures

While the original Markowitz model forms a quadratic programming problem, following
Sharpe [23], many attempts have been made to linearize the portfolio optimization proce-
dure (c.f., [26] and references therein). Certainly, to model advantages of a diversification,
risk measures cannot be linear function of x. Nevertheless, the risk measure can be LP com-
putable in the case of discrete random variables, i.e., in the case of returns defined by their
realizations under the specified scenarios. We will consider T scenarios with probabilities
pt (where t = 1, . . . , T ). We will assume that for each random variable R j there is known
its realization r jt under the scenario t . Typically, the realizations are derived from historical
data treating T historical periods as equally probable scenarios (pt = 1/t). The realizations
of the portfolio returns Rx are given as

yt = rt (x) =
n∑

j=1

r jt x j (6)

and the expected value µ(x) can be computed as:

µ(x) =
T∑

t=1

yt pt =
T∑

t=1

[

pt

n∑

j=1

r jt x j

]

Similarly, several risk measures can be expressed as convex piece-wise linear functions of
yt . Such measures are then LP computable with respect to the realizations yt and, due to
(6), with respect to x.

Function F (2)
x , used to define the SSD relation can also be presented as follows [17]:

F (2)
x (η) = P{Rx ≤ η}E{η − Rx|Rx ≤ η} = E{max{η − Rx, 0}}

Hence, the SSD relation is the Pareto dominance for mean below-target deviations from
infinite number (continuum) of targets. As a convex piece-wise linear function, it is LP
computable for returns represented by their realizations yt . Consequently, one can observe
the growing popularity of the mean return—downside risk portfolio selection models [7]
using various Lower Partial Moments for specific return targets. There is no universal risk
measure equally good for all broad categories of risk and thus there is a need for caution
while using one [25]. The below-target deviations are very useful in investment situations
with clearly defined minimum acceptable returns (e.g. bankruptcy level) [4]. However, they
do not represent any dispersion-type risk measure to be considered in the Markowitz-type
mean-risk model. In particular, the below-target deviation may be equal to 0 for various
risky portfolios thus violating the risk relevance requirement.

The simplest dispersion-type LP computable risk measures may be viewed as some
approximations to the variance itself generated by the use of absolute values replacing the
squares. In particular the mean absolute deviation from the mean is defined as:

δ(x) = E{|Rx − µ(x)|} (7)
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For a discrete random variable represented by its realizations yt , the mean absolute deviation
(7) is a convex piece-wise linear function of x and thereby it is LP computable. Konno and
Yamazaki [10] presented and analyzed the complete portfolio optimization model (MAD
model) based on the risk measure defined as mean absolute deviation. Earlier, Yitzhaki
[29] introduced the mean-risk model using Gini’s mean (absolute) difference as the risk
measure. For a discrete random variable represented by its realizations yt , the Gini’s mean
difference

�(x) = 1

2

T∑

t=1

T∑

t ′=1

|yt ′ − yt |pt ′ pt (8)

is obviously LP computable (when minimized). Note that formula (8) is similar to the
alternative formula for variance σ 2(x) = 1

2

∑T
t=1

∑T
t ′=1 (yt ′ − yt )2 pt ′ pt .

The mean absolute deviation is closely related to the function F (2)
x . Namely, the use of

the mean expected return as an argument results in the risk measure known as the downside
mean semideviation from the mean

δ̄(x) = E{max{µ(x) − Rx, 0}} = F (2)
x (µ(x)) (9)

The downside mean semideviation is always equal to the upside one [26] and, therefore, we
will call it simply the mean semideviation. Certainly, the mean semideviation is a half of the
mean absolute deviation from the mean, i.e. δ(x) = 2δ̄(x). Hence the corresponding mean-
risk model is equivalent to the MAD model. For a discrete random variable represented by
its realizations yt , minimization of the mean semideviation

δ̄(x) = 1

2

T∑

t=1

∣
∣
∣
∣
∣

T∑

t ′=1

yt ′ pt ′ − yt

∣
∣
∣
∣
∣
pt =

T∑

t=1

max

{
T∑

t ′=1

yt ′ pt ′ − yt , 0

}

pt (10)

may be implemented with the LP models [3, 26].
As shown in [17], the mean semideviation is SSD safety consistent, i.e.

Rx′ �SSD Rx′′ ⇒ µ(x′) − δ̄(x′) ≥ µ(x′′) − δ̄(x′′) (11)

Note that the corresponding safety measure can be expressed as

µ(x) − δ̄(x) = E{µ(x) − max{µ(x) − Rx, 0}} = E{min{Rx, µ(x)}} (12)

thus representing the mean downside underachievement.
The Gini’s mean difference may be also expressed as the integral of F (2)

x with respect
to the probability measure induced by Rx. In the case of discrete distributions we consider
one gets

�(x) =
T∑

t=1

[
∑

t ′:yt ′ <yt

(yt − yt ′ )pt ′

]

pt =
T∑

t=1

F (2)
x (yt )pt



140 KRZEMIENOWSKI AND OGRYCZAK

Hence,�(x) can be interpreted as the weighted sum of multiple mean below-target deviations
but both the targets and the weights are distribution dependent.

Both � and δ̄ are well defined characteristics in the dual (quantile) model of the stochastic
dominance [18, 19, 22]. However, the absolute semideviation is a rather rough measure
compared to the Gini’s mean difference. Note that δ̄(x) ≤ �(x) and δ̄(x) may be also
interpreted as the Gini’s mean difference of a two-point distribution approximating Rx in
such a way that µ(x) and δ(x) remain unchanged. The Gini’s mean difference is not only
SSD safety consistent [29] but it satisfies also the requirements of the strong SSD safety
consistency [18], i.e.

Rx′ 	SSD Rx′′ ⇒ µ(x′) − �(x′) > µ(x′′) − �(x′′) (13)

Note, that the corresponding safety measure

µ(x) − �(x) = E{Rx ∧ Rx} (14)

expresses the expectation of the minimum of two i.i.d.r.v. Rx [29] thus representing the
mean worse return. Actually, formula (14) provides an alternative way to compute the
Gini’s mean difference.

In multiple criteria optimization, the weighted sum is the simplest combination of several
criteria. The weighted sum may be also used to combine dispersion type risk measures.
Consider a set, say m, risk measures �k(x) and their linear combination:

�(m)
w (x) =

m∑

k=1

wk�k(x),
m∑

k=1

wk ≤ 1, wk > 0 for k = 1, . . . , m (15)

Note that

µ(x) − �(m)
w (x) = w0µ(x) +

m∑

k=1

wk(µ(x) − �k(x))

where w0 = 1 − ∑m
k=1 wk ≥ 0. Hence, the following assertion is valid.

Theorem 2. If all risk measures �k are SSD safety consistent, then every combined risk
measure (15) is also SSD safety consistent in the sense that

Rx′ �SSD Rx′′ ⇒ µ(x′) − �(m)
w (x′) ≥ µ(x′′) − �(m)

w (x′′)

Moreover, if at least one measure �ko is strongly SSD safety consistent, then every combined
risk measure (15) is strongly SSD safety consistent.

Theorem 2 allows us to combine various risk measure preserving their SSD consistency
properties. Note that the combined risk measure (15), as a positive linear combination, is
a convex piece-wise linear function of portfolio x whenever all the original risk measures
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�k(x) are such functions. Hence, in the case of returns represented by their realizations yt ,
the weighted combination of LP computable risk measures remains LP computable.

The weighted combination allows us to regularize any SSD (safety) consistent risk mea-
sure to achieve the strong consistency. Recall that the Gini’s mean difference satisfies the
strong SSD (safety) consistency. According to Theorem 2, combining any risk measure with
the Gini’s mean difference results in a new measure satisfying the strong SSD consistency.

Theorem 3. For any SSD safety consistent risk measure �(x) and any 0 < ε < 1, the
combined risk measure

�ε(x) = (1 − ε)�(x) + ε�(x) (16)

is strongly SSD safety consistent in the sense that

Rx′ 	SSD Rx′′ ⇒ µ(x′) − �ε(x′) > µ(x′′) − �ε(x′′)

Note that the weight ε corresponding to �(x) within combination (16) may be arbitrarily
small which means that the Gini’s mean difference may be used like a regularization term
to refine another risk measure. For instance, δ̄ε(x) = (1 − ε)δ̄(x) + ε�(x) with arbitrarily
small positive parameter ε represents the regularized mean semideviation which is strongly
SSD safety consistent.

3. Enhanced below-mean downside risk measures

3.1. Below-mean downside stochastic dominance

The mean (downside) semideviation from the mean, used in the MAD model, is formally
a downside risk measure. However, due to the symmetry of mean semideviations from the
mean [26],

δ̄(x) = E{max{µ(x) − Rx, 0}} = E{max{Rx − µ(x), 0}}

it is equally appropriate to interpret it as a measure of the upside risk. Similar, the Gini’s
mean difference is a symmetric risk measure (in the sense that for Rx and −Rx it has exactly
the same value). To illustrate these properties, consider two finite random variables Rx′ and
Rx′′ defined as [9]:

P{Rx′ = ξ} =






0.2, ξ = 0

0.1, ξ = 1

0.4, ξ = 2

0.3, ξ = 7
0, otherwise

and P{Rx′′ = ξ} =






0.3, ξ = −1

0.4, ξ = 4

0.1, ξ = 5

0.2, ξ = 6

0, otherwise

(17)
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where Rx′′ = µ(x′) − (Rx′ −µ(x′)). Note that µ(x′) = µ(x′′) = 3 and E{max{Rx′ − η, 0} =
E{max{η − Rx′′ , 0}. Hence, δ̄(x′) = δ̄(x′′) = 1.2 , σ 2(x′) = σ 2(x′′) = 7.4 and �(x′) =
�(x′′) = 1.42. In other words, two random variables are identical from the viewpoint of
the Markowitz as well as the MAD and the GMD models. One may notice that neither Rx′

dominates Rx′′ nor Rx′′ dominates Rx′ under the SSD rules but F (2)
x′ (η) ≤ F (2)

x′′ (η) for all
η ≤ 3 and the inequality is strict for all −1 < η < 3. Thus Rx′ is preferred to Rx′′ in a
downside risk aversion context.

For better modeling of the risk averse preferences one may enhance the below-mean
downside risk aversion in various measures. The below-mean risk downside aversion is a
concept of risk aversion assuming that the variability of returns above the mean should not
be penalized since the investors concern of an underperformance rather than the overper-
formance of a portfolio [15]. This can be implemented by focusing on the distribution of
below-mean downside underachievements min{Rx, µ(x)} instead of the original distribu-
tion of returns Rx. For general distributions, with not necessarily equal mean values, the
below-mean downside stochastic dominance can be formulated as follows.

For any random variable Rx we introduce its below-mean downside underachievements

Rd
x = min{Rx, µ(x)} (18)

It allows us to define the (weak) relation of below-mean (downside) SSD (BMSSD):

Rx′ �B M SSD Rx′′ ⇔ Rd
x′ �SSD Rd

x′′

Similarly, one may define the (weak) relation of below-mean (downside) FSD (BMFSD):

Rx′ �B M F SD Rx′′ ⇔ Rd
x′ �F SD Rd

x′′

The strict dominance relations are defined in the standard way. This means, we say that
portfolio x′ dominates x′′ under the BMSSD (Rx′ 	B M SSD Rx′′ ), if Rx′ �B M SSD Rx′′ while
Rx′′ ��B M SSD Rx′ . A feasible portfolio x0 ∈ P is called BMSSD efficient if there is no x ∈ P
such that Rx 	B M SSD Rx0 .

Note that

P
{

Rd
x ≤ η

} =
{

P{Rx ≤ η}, for η < µ(x)

1, for η ≥ µ(x)
(19)

while, according to (18) and (12),

µd (x) = E
{

Rd
x

} = E{min{Rx, µ(x)}} = µ(x) − δ̄(x) (20)

Hence, the second performance function F (2)
xd for the random variable Rd

x coincides with
F (2)

x (η) for η ≤ µ(x) and takes the form of a straight line η − (µ(x) − δ̄(x)) for η > µ(x)
(see figure 1).
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Figure 1. Function F (2)
xd for the below-mean downside distribution Rd

x .

Directly from (19), it follows the equivalence:

Rx′ �B M F SD Rx′′ ⇔ µ(x′) ≥ µ(x′′) and Fx′ (η) ≤ Fx′′ (η) ∀η ≤ µ(x′′) (21)

However, the relation BMSSD turns out to be more subtle since only the following impli-
cation is valid:

µ(x′) ≥ µ(x′′) and F (2)
x′ (η) ≤ F (2)

x′′ (η) ∀η ≤ µ(x′′) ⇒ Rx′ �B M SSD Rx′′ (22)

As a counterexample to the equivalence in (22) one may consider

P{Rx′ = ξ} =
{

1.0, ξ = 3

0, otherwise
and P{Rx′′ = ξ} =






0.5, ξ = 0

0.5, ξ = 10
0, otherwise

(23)

where Rx′ 	B M SSD Rx′′ despite µ(x′) = 3 < 5 = µ(x′′). Hence, opposite to the standard
SSD relation (compare (2)), the below-mean SSD allows a portfolio with a smaller expected
return to dominate some more risky portfolios with larger expectations.

The relations (21) and (22) are sufficient to justify the implication:

Rx′ �B M F SD Rx′′ ⇒ Rx′ �B M SSD Rx′′

Moreover, the below-mean stochastic dominance relations are consistent with the corre-
sponding SD relations as stated in the following assertion.

Theorem 4. The following implications are valid:

Rx′ �F SD Rx′′ ⇒ Rx′ �B M F SD Rx′′ (24)

Rx′ �SSD Rx′′ ⇒ Rx′ �B M SSD Rx′′ (25)

Proof: Either Rx′ �F SD Rx′′ or Rx′ �SSD Rx′′ imply µ(x′) ≥ µ(x′′). Hence, implications
(24) and (25) follow from (21) and (22), respectively.
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Note that, according to (18) and (12), the SSD safety consistency for the mean semide-
viation (11) follows from the implications (2) applied to the distributions of downside
underachievements. Hence, Theorem 4 generalizes Proposition 1 from [16].

Similar to the SSD consistency (3), the BMSSD consistency of the safety measures may
be formalized. We will say that the safety measure µ(x) −�(x) is BMSSD consistent or that
the risk measure �(x) is BMSSD safety consistent if

Rx′ �B M SSD Rx′′ ⇒ µ(x′) − �(x′) ≥ µ(x′′) − �(x′′) (26)

Certainly, if the risk measure�(x) is BMSSD safety consistent (26), then except for portfolios
with identical values of µ(x) and �(x), every efficient solution of the bicriteria problem (5)
is an BMSSD efficient portfolio.

By virtue of Theorem 4, every risk measure BMSSD safety consistent is also SSD safety
consistent in the sense of (3). We will use this relation to extend LP computable risk
measures allowing them to focus on below-mean downside risk while preserving their SSD
safety consistency. Exactly, we will build BMSSD safety consistent measures. Note that
Rx′ 	B M SSD Rx′′ for (17), and therefore any BMSSD consistent risk measure must properly
distinguish these distributions (opposite to δ̄(x) and �(x)).

3.2. Below-mean downside risk measures

The simplest idea to build a below-mean SSD consistent risk measure is to apply the
basic measure to the below-mean downside underachievements Rd

x instead of the original
distribution Rx. Let �d (x) denote a risk measure defined as the result of application of the
risk measure � to the random variable Rd

x . In particular, applying the mean semideviation
(9) to Rd

x one gets

δ̄d (x) = E
{

max
{
µd (x) − Rd

x , 0
}} = E{max{µ(x) − δ̄(x) − Rx, 0}}

Similarly, applying the Gini’s mean difference to the distribution of downside underachieve-
ments Rd

x , according to (14), we get

�d (x) = µd (x) − E
{

Rd
x ∧ Rd

x

}

For a discrete random variable represented by its realizations yt , the above formulas take
the forms:

δ̄d (x) =
T∑

t=1

max

{
T∑

t ′=1

yd
t ′ pt ′ − yd

t , 0

}

pt (27)

�d (x) = 1

2

T∑

t=1

T∑

t ′=1

∣
∣yd

t ′ − yd
t

∣
∣pt ′ pt (28)
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respectively, where yd
t denote the realizations of the downside distribution Rd

x :

yd
t = rd

t (x) = min

{

yt ,

T∑

t ′=1

yt ′ pt ′

}

= min

{
n∑

j=1

r jt x j ,

n∑

j=1

µ j x j

}

(29)

Recall that in our initial example (17) of Rx′ �B M SSD Rx′′ we have µ(x′) = µ(x′′) = 3,
δ̄(x′) = δ̄(x′′) = 1.2 and �(x′) = �(x′′) = 1.42. Similar, µd (x′) = µd (x′′) = 1.8 but
δ̄d (x′) = 0.44 < δ̄d (x′′) = 0.84 and �d (x′) = 0.58 < �d (x′′) = 0.84 thus properly
distinguishing these two distributions. Unfortunately, in general, the measures δ̄d and �d

are neither SSD safety consistent nor LP computable. According to (27) and (28), both
the measures are convex and piece-wise linear functions of realizations yd

t . However, re-
alizations of the downside distribution (29) are (not linear) concave functions of original
realizations yt or portfolio shares x j . Therefore, the measures δ̄d (x) and �d (x), in general,
are not convex functions of portfolio x and therefore, (despite piece-wise linear) they are
not LP computable. To overcome this weakness, one need to extend the measures �d as
shown in the following theorem.

Theorem 5. Let �d (x) denote a risk measure defined as the result of application of the
risk measure � to the random variable Rd

x . If � is an LP computable SSD safety consistent
risk measure, then the enhanced downside risk measure

�(2)(x) = �d (x) + δ̄(x) (30)

is also LP computable and BMSSD safety consistent, i.e.

Rx′ �B M SSD Rx′′ ⇒ µ(x′) − �(2)(x′) ≥ µ(x′′) − �(2)(x′′) (31)

Proof: The original risk measure � is SSD safety consistent. Hence, the measure �d (x)
satisfies the following consistency relation

Rd
x′ �SSD Rd

x′′ ⇒ µd (x′) − �d (x′) ≥ µd (x′′) − �d (x′′)

By definition of the enhanced downside risk measure (30) and (20), one gets

µd (x) − �d (x) = µ(x) − δ̄(x) − �d (x) = µ(x) − �(2)(x)

which completes the proof of the BMSSD safety consistency (31).
In the case of discrete random variable represented by its realizations yt , the risk measure

is obviously piece-wise linear. In order to show its LP computability we need to prove its
convexity. Note that the SSD safety consistency of measure � guarantees that the corre-
sponding safety measure s is concave and (weakly) increasing function of the realizations
of the random variable. While applying it to the realizations of the downside distribu-
tion (29) we get a superposition of concave and (weakly) increasing functions. Hence,
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sd (x) = µd (x) − �d (x) is a piece-wise linear concave function and �(2)(x) = µ(x) − sd (x)
is a piece-wise linear convex function (thus LP computable when minimized).

Recall that, by virtue of Theorem 4, Rx′ �SSD Rx′′ implies Rx′ �B M SSD Rx′′ . Thus,
Theorem 5 provides us with a construction which preserve the SSD safety consistency
of original risk measures while enhancing them to meet the requirements of the BMSSD
consistency.

Applying (30) to the mean semideviation allows us to define the enhanced risk measure
for the original distribution of returns Rx as

δ̄(2)(x) = δ̄(x) + δ̄d (x) = δ̄(x) + E{max{µ(x) − δ̄(x) − Rx, 0}} (32)

Actually, the measure can be interpreted as a single mean semideviation (from the mean)
applied with a penalty function: δ̄(2)(x) = E{u(max{µ(x) − Rx, 0})} where u is increasing
and convex piece-wise linear penalty function with brakepoint b = δ̄(x) and slopes: 1 and
2, respectively. Therefore, the risk measure δ̄(2)(x) we will refer to as the mean penalized
semideviation. The corresponding enhanced below-mean safety measure takes the form

µ(x) − δ̄(2)(x) = µ(x) − δ̄(x) − δ̄d (x)

It follows from Theorems 2 and 5 that the the following assertion is valid.

Corollary 1. The mean penalized semideviation is an BMSSD safety consistent risk
measure, i.e.

Rx′ �B M SSD Rx′′ ⇒ µ(x′) − δ̄(2)(x′) ≥ µ(x′′) − δ̄(2)(x′′)

The penalized mean semideviation (32) was already introduced in connection with the
so-called m-MAD model [16]. Theorem 5 provides the enhancement technique applicable
for various risk measures. In particular it allows us to define the downside Gini’s mean
difference. Following (30), we get the downside Gini’s mean difference defined as the
enhanced risk measure:

�(2)(x) = �d (x) + δ̄(x) (33)

The corresponding enhanced safety measure takes the form:

µ(x) − �(2)(x) = µ(x) − δ̄(x) − �d (x) = E{min{Rx ∧ Rx, µ(x)}} (34)

Due to Theorem 5, the following assertion is valid.

Corollary 2. The downside Gini’s mean difference (33) is an BMSSD safety consistent
risk measure, i.e.

Rx′ �B M SSD Rx′′ ⇒ µ(x′) − �(2)(x′) ≥ µ(x′′) − �(2)(x′′)
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Note that the enhanced measure �(2)(x) is no longer strongly SSD safety consistent
as it ignores the distribution of the overachievements. Nevertheless, it remains strongly
consistent with respect to the below-mean stochastic dominance in the sense that

Rx′ 	B M SSD Rx′′ ⇒ µ(x′) − �(2)(x′) > µ(x′′) − �(2)(x′′)

One may further combine the enhanced risk measures by application of the weighted sum
(15). In particular, one may reduce the below-mean downside risk aversion by considering
combinations �(2)

w (x) = w�(2)(x) + (1 − w)δ̄(x) = δ̄(x) + w�d (x) where 0 ≤ w ≤ 1. By
virtue of Theorem 2, such risk measures remain SSD safety consistent. Actually, due to
(12), one may easily show the following consistency results:

for any 0 ≤ w ≤ 1, the weighted penalized mean semideviation

δ̄(2)
w (x) = δ̄(x) + wδ̄d (x) (35)

is BMSSD safety consistent;
for any 0 < w ≤ 1, the weighted downside Gini’s mean difference

�(2)
w (x) = δ̄(x) + w�d (x) (36)

is strongly BMSSD safety consistent.

3.3. The LP models

We provide here the detailed LP formulations for the models we have analyzed. In order to
operationalize various portfolio optimization models, one needs to deal with specific investor
preferences expressed in the models. The commonly accepted approach to implementation
of the Markowitz-type mean-risk model is that based on the use of a specified lower bound
µ0 on expected returns which results in the following problem:

min{�(x) : µ(x) ≥ µ0, x ∈ P}. (37)

However, we need to consider explicitly a separate problem

max{µ(x) − �(x) : µ(x) ≥ µ0, x ∈ P} (38)

for the corresponding mean-safety model (5). Therefore, while describing a specific model,
the pair of minimum-risk maximum-safety problems can be stated as:

max{αµ(x) − �(x) : µ(x) ≥ µ0, x ∈ P} (39)

covering the minimization of risk measure �(x) for α = 0 while for α = 1 it represents
the maximization of the corresponding safety measure µ(x) − �(x). Both optimizations are
considered with a given lower bound on the expected return µ(x) ≥ µ0. The models are
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summarized for the case of the simplest feasible set

P =
{

x :
n∑

j=1

x j = 1, x j ≥ 0 for j = 1, . . . , n

}

. (40)

All the models (39) contain the following core LP constraints:

x ∈ P and z ≥ µ0 (41)
n∑

j=1

µ j x j = z (42)

n∑

j=1

r jt x j = yt for t = 1, . . . , T (43)

where z is an unbounded variable representing the mean return of the portfolio x and yt

(t = 1, . . . , T ) are unbounded variables to represent the realizations of the portfolio return
under the scenario t . In addition to these common variables and constraints, each model
contains its specific linear constraints to define the risk or safety measure.

MAD models. The standard MAD model, when implemented with the mean semideviation
as the risk measure (�(x) = δ̄(x)), leads to the following LP problem:

maximize αz − z1

subject to (41)–(43) and
T∑

t=1

pt d
(1)
t = z1 (44)

d (1)
t + yt ≥ z, d (1)

t ≥ 0 for t = 1, . . . , T (45)

where nonnegative variables d (1)
t represent downside deviations from the mean under several

scenarios t and z1 is a variable to represent the mean semideviation itself. The latter can
be omitted by using the direct formula for mean semideviation in the objective function
instead of Eq. (44). The above LP formulation uses T + 1 variables and T + 1 constraints
to model the mean semideviation.

In order to incorporate downside risk aversion by the use of the weighted penalized
mean semideviation (35), one needs to repeat constraints of type (44)–(45) for the second
deviation level. This leads to the following formulation of the DMAD model:

maximize αz − z1 − wz2

subject to (41)–(43), (44)–(45) and
T∑

t=1

pt d
(2)
t = z2

d (2)
t + z1 + yt ≥ z, d (2)

t ≥ 0 for t = 1, . . . , T

This LP formulation uses 2(T + 1) variables and 2(T + 1) constraints.
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GMD models. The model with risk measured by the Gini’s mean difference (�(x) = �(x)),
takes the form:

maximize αz −
T∑

t=1

∑

t ′ �=t

pt pt ′dt,t ′

subject to (41)–(43) and dt,t ′ ≥ yt − yt ′ , dt,t ′ ≥ 0 for t, t ′ = 1, . . . , T ; t �= t ′

which contains T (T − 1) nonnegative variables dt,t ′ and T (T − 1) inequalities to define
them. However, variables dt,t ′ are associated with the singleton coefficient columns. Hence,
while solving the dual instead of the original primal, the corresponding dual constraints
take the form of simple upper bounds (SUB) which are handled implicitly outside the LP
matrix. Such a dual approach may dramatically improve the LP model efficiency in the case
of large number of scenarios.

In order to incorporate downside risk aversion by the use of the weighted downside Gini’s
mean difference (36), one may apply the Gini’s measure to the downside deviations d (1)

t

from the MAD model. This results in the following DGMD model:

maximize αz − z1 − w

T∑

t=1

∑

t ′ �=t

pt pt ′dt,t ′

subject to (41)–(43), (44)–(45) and

dt,t ′ ≥ d (1)
t − d (1)

t ′ , dt,t ′ ≥ 0 ∀t, t ′ = 1, . . . , T ; t �= t ′

Again, while solving the dual instead of the original primal, the corresponding dual con-
straints take the form of simple upper bounds (SUB) which are handled implicitly outside
the LP matrix.

Dual GMD models. For the simplest form of the feasible set (40) the dual GMD model
takes the following form:

minimize v − µ0v0 (46)

subject to

v − µ jv0 −
T∑

t=1

r jt st ≥ αµ j for j = 1, . . . , n (47)

∑

t ′ �=t

ut,t ′ −
∑

t ′ �=t

ut ′,t + st = 0 for t = 1, . . . , T (48)

v0 ≥ 0, 0 ≤ ut,t ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t �= t ′ (49)

where original portfolio variables x j are dual prices to (47) inequalities while yt are dual
prices to (48). The dual model contains T (T −1) variables ut,t ′ but the number of constraints
(excluding the SUB structure) is proportional to T . Moreover, the constraints (48) take the
form of typical network flow thus allowing for a special algorithmic treatment within the
simplex method [6].
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The above dual formulation can be further simplified by introducing balance flow vari-
ables:

ūt,t ′ = ut,t ′ − ut ′,t for t, t ′ = 1, . . . , T ; t < t ′ (50)

which allows us to reduce the number of variables by replacing (48)–(49) with the following
constraints:

∑

t ′>t

ūt,t ′ −
∑

t ′<t

ūt ′,t + st = 0 for t = 1, . . . , T

v0 ≥ 0, −pt pt ′ ≤ ūt,t ′ ≤ pt pt ′ for t, t ′ = 1, . . . , T ; t < t ′

For the simplest form of the feasible set (40) the dual DGMD model takes the following
form:

minimize v − µ0v0 (51)

subject to

v − µ jv0 −
T∑

t=1

(r jt − µ j )st ≥ αµ j for j = 1, . . . , n (52)

v0 ≥ 0, st ≥ 0 for t = 1, . . . , T (53)
∑

t ′ �=t

ut,t ′ −
∑

t ′ �=t

ut ′,t − st ≥ −pt for t = 1, . . . , T (54)

0 ≤ ut,t ′ ≤ wpt pt ′ for t, t ′ = 1, . . . , T ; t �= t ′ (55)

where original portfolio variables x j are dual prices to inequalities (52) while d1
t are dual

prices to (54). The constraints (54) still take the form of network flow thus allowing for a
special algorithmic treatment within the simplex method.

The number of variables can be further reduced by introducing balance flow variables
(50) which replaces (54)–(55) with the following constraints:

∑

t ′>t

ūt,t ′ −
∑

t ′<t

ūt ′,t − st ≥ −pt for t = 1, . . . , T

−wpt pt ′ ≤ ūt,t ′ ≤ wpt pt ′ for t, t ′ = 1, . . . , T ; t < t ′

Moreover, a simple network structure of the constraints with respect to variables ūt,t ′ allows
one to treat effectively a very large number of those variables with the column generation
techniques. Although, our computational experiments shows that there is no such a need
for typical portfolio optimization problems with T below 200.

Our preliminary analysis shows that the models can be effectively solved by standard
(simplex based) LP techniques. A PC with a 1.2 GHz AMD Athlon processor and 256 MB
RAM has been used to run an application written in C++ language by using the CPLEX
6.5 Callable Library [8]. Table 1 shows average solution times for the asset allocation
problem (discussed in the next section) with n = 81 and T = 52, 104, 156, respectively.
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Table 1. Average optimization time for different estimation periods (in seconds).

Mean-risk (α = 0) Mean-safety (α = 1)

Model T = 52 T = 104 T = 156 T = 52 T = 104 T = 156

MAD 6.3 6.4 6.7 6.3 6.4 6.7

DMAD 6.3 6.3 6.8 6.3 6.5 6.8

GMD 6.9 34.8 182.8 7.0 35.0 184.2

Dual GMD 6.3 6.5 7.1 6.4 6.4 7.2

DGMD 6.8 30.6 166.9 6.8 30.6 166.8

Dual DGMD 6.3 6.3 7.1 6.3 6.4 7.1

The computation time for the MAD and DMAD models has never exceeded 10 seconds.
However, while dealing with the (primal) GMD and DGMD models, the CPU time has
increased to above 30 sec. with T = 104 and even more than 180 sec. for T = 156. These
have been dramatically improved when using the above dual formulations which let us
reduce the optimization time below 10 seconds for the dual GMD and DGMD models.
Thus, the optimization time of each particular downside risk model has not exceed 10
seconds which demonstrates high computational efficiency of the approaches.

4. Experimental analysis

4.1. Experimental framework

The present section is devoted to an analysis and comparison of the discussed LP models on
real-life financial data. The models have been implemented and applied to investments in 81
S&P 500 sub-industries, defined according to the Global Industry Classification Standard
(GICS).1 In the following, we first describe the design of our experiments, then we present
and discuss the results of in-sample analysis. Finally, an out-of-sample comparison of the
models is provided.

We have tested and compared the MAD and GMD models with their downside enhance-
ments. For the DMAD model versus the DGMD model we have decided to consider them
with only one value of w equal to 1 (the maximal downside risk enhancement). Both mean-
risk and mean-safety approaches have been compared. Recall that, according to Theorem 1,
the latter have guaranteed the SSD efficiency.

For the experimental analysis we have prepared three sets of data, consisting of the weekly
rates of return over the period 1990–2003, for the sub-industries under consideration. Each
set of data was associated with the existing market trend on S&P 500 Index (figure 2).
Datasets are as follows:

• Period A (01/01/90 – 09/12/94, horizontal trend): 258 weekly observations;
• Period B (12/12/94 – 01/09/00, upward trend): 299 weekly observations;
• Period C (04/09/00 – 30/05/03, downward trend): 143 weekly observations.
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Figure 2. S&P 500 Index and the analyzed periods in 1990–2003.

We have chosen a weekly periodicity for the rates of return in order to reduce estimation
errors. The rates of return have been computed as relative changes of the index values Pjt ,

i.e. r jt = (Pj,t+1 − Pjt )/Pjt . However, while reporting the results, we convert the weekly
rates of return onto a yearly basis.

Each dataset, corresponding to one of the periods from A to C, has been used to find
the mean-risk/safety portfolios through solution of the described models. The target weekly
required return has been set to two different values per each period for comparison purposes,
i.e. corresponding to the yearly rates: 7.5%, 15% for Period A, 10%, 20% for Period B and
10%, 20% for Period C. The larger values were the highest ones for which it was possible
to solve all the analyzed models in the corresponding periods without facing infeasibility
problems (empty portfolios).

We have fixed the estimation (in-sample) period at 52 weeks (1 year). The ex-post behavior
of all the selected portfolios has been examined out-of-sample at the end of the 4-week
investment period following the portfolio selection date (the last date of the corresponding
in-sample period). This approach allows us to conduct 203, 244 and 88 estimations for
Period A, B and C, respectively.

4.2. In-sample analysis

For each dataset and all levels of the required rate of return, we have solved all the LP
problems defined in the previous section. General characteristics of the optimal portfolios
are shown in Table 2. All presented data are averages computed over the estimation periods.
Table 2 is divided into two parts: the first one corresponds to the problem formulated as
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Table 2. General characteristics of the optimal portfolios (average values).

Mean-risk models (α = 0) Mean-safety models (α = 1)

Shares Shares

Model Per.
µ0

(%)
obj.

×10−2
z

(%)
div.
(#) (min) (max)

obj.
×10−2

z
(%)

div.
(#) (min) (max)

MAD A 7.5 −0.298 9.84 15.39 0.005 0.296 0.168 54.94 7.37 0.026 0.375

15.0 −0.329 15.23 14.14 0.007 0.297 0.168 55.05 7.35 0.026 0.376

B 10.0 −0.380 11.56 13.40 0.006 0.321 0.159 59.48 7.64 0.025 0.334

20.0 −0.410 20.11 13.38 0.006 0.315 0.159 59.48 7.64 0.025 0.334

C 10.0 −0.467 10.45 14.48 0.008 0.198 −0.053 40.14 8.93 0.024 0.272

20.0 −0.524 20.02 13.82 0.006 0.212 −0.055 40.58 9.09 0.023 0.271

DMAD A 7.5 −0.484 9.44 15.00 0.005 0.305 −0.139 34.17 10.74 0.010 0.286

15.0 −0.530 15.08 13.94 0.007 0.299 −0.143 34.77 10.57 0.011 0.280

B 10.0 −0.611 11.25 13.43 0.005 0.323 −0.211 40.28 10.36 0.011 0.314

20.0 −0.661 20.07 13.14 0.005 0.311 −0.211 40.41 10.37 0.011 0.311

C 10.0 −0.767 10.44 13.84 0.006 0.206 −0.440 28.91 11.36 0.010 0.234

20.0 −0.854 20.00 13.34 0.006 0.215 −0.449 30.10 11.23 0.010 0.235

GMD A 7.5 −0.459 9.68 15.56 0.004 0.315 −0.084 40.08 10.15 0.012 0.289

15.0 −0.499 15.07 14.46 0.007 0.307 −0.087 40.44 10.04 0.014 0.287

B 10.0 −0.563 11.12 14.20 0.005 0.334 −0.136 43.96 10.25 0.011 0.301

20.0 −0.607 20.01 13.89 0.006 0.318 −0.136 44.01 10.25 0.011 0.300

C 10.0 −0.724 10.32 14.22 0.007 0.193 −0.377 33.38 11.35 0.010 0.227

20.0 −0.808 20.00 14.01 0.006 0.197 −0.385 34.37 11.16 0.010 0.232

DGMD A 7.5 −0.528 9.65 15.60 0.004 0.304 −0.199 30.75 11.48 0.008 0.290

15.0 −0.578 15.10 14.34 0.006 0.298 −0.204 31.51 11.35 0.009 0.281

B 10.0 −0.666 11.24 13.48 0.005 0.330 −0.282 37.29 10.73 0.010 0.314

20.0 −0.719 20.04 13.38 0.006 0.318 −0.282 37.44 10.77 0.010 0.312

C 10.0 −0.844 10.27 14.31 0.006 0.197 −0.528 27.67 11.60 0.011 0.218

20.0 −0.941 20.00 13.68 0.007 0.210 −0.540 29.09 11.52 0.011 0.225

the minimization of the risk measure (α = 0), while the second refers to the maximization
of the corresponding safety measure (α = 1). Each part consists of five columns showing:
the objective function value (obj.), the portfolio percent average return (z), the portfolio
diversification (div.) represented by the number of selected sub-industries, the minimum
and maximum share within the portfolio, respectively. The average return is reported as
converted onto a yearly basis. Rows of the table correspond to all the tested models over
the three periods for various levels of the required return (µ0).

The next table presents some more detailed characteristics. Table 3 shows ranges for the
mean returns, the diversification, the minimum and maximum share held by sub-industries
obtained for each model over all the periods for various required rates of return when α = 0
and α = 1, respectively.
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Table 3. Mean returns, diversification, minimal, and maximal shares of the optimal portfolios (ranges).

Mean-risk models (α = 0) Mean-safety models (α = 1)

µ0 z div. min. share max. share z div. min. share max. share
Model Per. (%) % (#) ×10−4 ×10−2 (%) (#) ×10−4 ×10−2

MAD A 7.5 7.5–20.4 4–25 0.3–943.0 10.2–59.4 7.5–225.9 2–14 0.6–1262.2 15.2–96.6

15.0 15.0–20.4 3–23 0.6–1506.5 11.2–58.6 15.0–225.9 2–14 0.6–1506.5 15.3–96.6

B 10.0 10.0–33.3 7–23 0.1–664.7 13.4–68.3 20.3–118.6 4–15 0.6–1560.3 12.9–63.9

20.0 20.0–33.3 7–25 0.2–379.4 12.9–65.7 20.3–118.6 4–15 0.6–1560.3 12.9–63.9

C 10.0 10.0–21.7 7–23 0.2–852.6 12.5–38.2 12.7–81.6 4–14 2.1–1812.3 17.1–42.3

20.0 20.0–21.7 9–22 0.7–263.5 12.1–34.8 20.0–81.6 4–14 0.7–1812.3 17.1–42.3

DMAD A 7.5 7.5–18.0 5–23 0.4–391.4 12.0–57.5 7.5–131.2 5–18 0.1–569.7 13.1–60.5

15.0 15.0–18.0 3–23 0.1–1509.4 12.0–57.3 15.0–131.2 3–18 0.1–1509.4 13.1–60.5

B 10.0 10.0–25.3 8–21 0.3–309.3 13.9–67.6 15.2–99.8 6–18 0.2–864.2 14.4–60.8

20.0 20.0–25.3 9–22 0.2–239.9 11.1–61.9 20.0–99.8 6–18 1.2–864.2 14.4–60.0

C 10.0 10.0–16.2 9–21 0.6–259.5 12.0–36.2 10.0–54.3 8–16 1.2–599.8 14.7–35.2

20.0 20.0–20.0 9–19 0.4–406.6 12.9–33.8 20.0–54.3 8–16 0.6–599.8 15.0–35.2

GMD A 7.5 7.5–17.0 5–25 0.1–253.3 9.7–56.5 7.5–165.0 5–17 0.2–501.6 14.7–56.3

15.0 15.0–17.0 3–24 0.7–1654.8 11.4–56.0 15.0–165.0 3–17 0.2–1654.8 14.5–56.3

B 10.0 10.0–20.9 9–23 0.0–297.4 10.8–63.7 16.7–99.8 5–18 0.8–644.3 13.7–53.5

20.0 20.0–20.9 8–24 0.1–263.6 10.7–61.0 20.0–99.8 5–18 0.8–644.3 13.7–53.5

C 10.0 10.0–14.6 7–22 0.6–887.9 9.4–30.0 10.0–72.3 7–18 1.9–466.2 14.0–34.2

20.0 20.0–20.0 8–19 0.8–367.7 11.5–37.2 20.0–72.3 7–18 1.9–466.2 14.0–37.2

DGMD A 7.5 7.5–18.6 4–24 0.1–763.8 11.0–56.2 7.5–87.7 4–20 0.3–763.8 11.8–61.9

15.0 15.0–18.6 3–24 0.1–1506.5 11.4–57.9 15.0–87.7 3–20 0.3–1506.5 11.8–61.9

B 10.0 10.0–26.0 8–25 0.1–325.9 13.2–66.5 13.2–87.7 6–20 0.0–557.9 14.0–60.5

20.0 20.0–26.0 8–24 0.3–302.2 11.7–64.5 20.0–87.7 6–20 0.0–557.9 14.0–59.7

C 10.0 10.0–15.3 8–23 2.1–283.8 11.8–36.8 10.0–52.2 8–17 1.0–499.0 13.4–33.9

20.0 20.0–20.0 7–20 0.5–398.6 11.1–34.2 20.0–52.2 7–17 1.0–499.0 13.4–34.2

Having analyzed the results, we have observed that when the required return increases
the risk as well as the safety, both indicated by the objective function values, increases and
decreases, respectively (notice that the risk measures are represented with the negative sign
in the objective function of our general model (39)). The portfolio average returns tend to
go up with an increase in the required return. The diversification is quite stable for all the
tested models, however, the mean-safety models provide the lower diversification in terms
of average values and ranges as well. The efficient portfolios with respect to the mean-safety
measures consist of shares with the larger minimum share than the portfolios generated by
the mean-risk models.

In Table 4 we put together the mean returns of the minimum risk portfolio (MRP) and
the maximum safety portfolio (MSP) for all the tested models in each period. All data



EXTENDING THE LP COMPUTABLE RISK MEASURES 155

Table 4. MRP and MSP mean returns (average values).

MMAD DMAD GMD DGMD

Period MRP MSP MRP MSP MRP MSP MRP MSP

A 6.26 54.92 5.41 34.09 6.24 40.02 5.83 30.63

B 6.45 59.48 6.18 40.28 6.26 43.96 6.21 37.29

C 2.58 40.14 4.61 28.87 3.08 33.30 2.83 27.56

are average values computed over the estimation periods. Through the analysis of Table 4
some conclusions on the market trend can be drawn: the MRP return tends to increase from
Period A to Period B and then fall in Period C. It is worth noticing that by comparing
Table 4 with Tables 2 and 3 we can conclude that the mean-safety models have generated
the corresponding MSPs with the higher mean returns but with the lower diversification in
comparison with the mean-risk models.

As an additional insight into the models comparison, the efficient frontiers found by the
models over different periods can be presented (figure 3). We have generated the efficient
frontiers obtained by different models for Period A, B and C, respectively. Recall that
δ̄(x) ≤ �(x) as well as the enhanced downside risk measures are always larger (in terms
of absolute values) than the original ones. Therefore, the efficient frontiers corresponding

Figure 3. Efficient frontiers.
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to the downside risk measures (represented by the DMAD and DGMD models) are shifted
most to the right for all the periods. Except from this obvious shifts, the frontiers turn out
to be very similar with respect to the shape. It is interesting to notice that in all cases the
DMAD frontier tends to be located between those of GMD and DGMD thus justifying the
DMAD as quite a good approximation to GMD models (which is not true for the original
MAD).

4.3. Out-of-sample analysis

In a real life environment, model comparisons are usually done by means of the ex-post
analysis. We used the approach based on the representation of the ex-post returns of the

Table 5. Ex-post performance criteria average values of the mean-risk models (α = 0).

µ0 rmin rav rmax rmed r ≥ µ0 r ≥ z
Model Per. (%) (%) (%) (%) σ σ̄ (%) (%) (%)

MAD A 7.5 −61.03 16.64 244.81 0.3827 0.2226 11.43 57.14 50.25

15.0 −61.78 19.36 349.54 0.4740 0.2489 10.67 44.83 44.83

B 10.0 −61.92 18.70 217.28 0.5046 0.3085 7.87 48.36 46.31

20.0 −63.89 18.69 164.01 0.4929 0.3111 10.48 43.03 43.03

C 10.0 −91.41 13.85 247.56 0.5674 0.3556 7.75 46.59 45.45

20.0 −91.44 15.25 244.12 0.5799 0.3634 15.07 42.05 42.05

DMAD A 7.5 −59.06 15.36 201.51 0.3726 0.2220 9.22 50.74 47.78

15.0 −60.64 19.06 344.36 0.4756 0.2494 10.76 43.35 42.36

B 10.0 −64.32 18.78 232.02 0.5148 0.3169 9.66 49.59 47.54

20.0 −65.76 17.62 163.29 0.4979 0.3111 9.59 38.93 38.93

C 10.0 −91.59 16.87 221.99 0.5822 0.3704 10.90 50.00 50.00

20.0 −92.18 16.39 209.72 0.5938 0.3764 14.82 44.32 44.32

GMD A 7.5 −58.83 15.15 203.03 0.3663 0.2131 8.58 53.69 50.25

15.0 −63.81 17.27 341.86 0.4544 0.2365 10.14 44.83 44.83

B 10.0 −63.59 19.11 207.05 0.5032 0.3111 7.82 47.95 47.13

20.0 −64.89 18.45 167.14 0.4928 0.3080 10.74 42.62 42.62

C 10.0 −90.77 16.92 249.76 0.5825 0.3693 11.79 51.14 51.14

20.0 −91.57 14.04 181.24 0.5604 0.3661 12.84 42.05 42.05

DGMD A 7.5 −61.07 15.94 204.42 0.3740 0.2213 10.57 54.68 48.77

15.0 −62.35 18.18 346.58 0.4620 0.2413 10.18 44.34 44.34

B 10.0 −65.41 19.11 218.49 0.5130 0.3139 9.86 50.00 47.95

20.0 −63.97 17.99 163.29 0.4959 0.3104 9.92 41.39 40.98

C 10.0 −91.38 14.21 230.67 0.5708 0.3619 9.45 48.86 48.86

20.0 −91.69 16.42 254.23 0.5990 0.3772 6.37 42.05 42.05
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selected portfolios over a given period and on their comparison against the required levels
of return. One should bear in mind that the portfolio performances are usually affected by
market trends which makes very difficult to draw some uniform conclusions.

We have decided to use some performance criteria to compare different models in the out-
of-sample periods. For this purpose, we have computed the following ex-post parameters:

– the minimum, average and maximum portfolio return (rmin, rav and rmax, respectively),
– the standard deviation (σ ),
– the downside semi-standard deviation (σ̄ ),
– the median (rmed),
– the percentage ratio of the number of times the mean portfolio return is greater or equal

to the required return (r ≥ µ0),

Table 6. Ex-post performance criteria average values of the mean-safety models (α = 1).

µ0 rmin rav rmax rmed r ≥ µ0 r ≥ z
Model Per. (%) (%) (%) (%) σ σ̄ (%) (%) (%)

MAD A 7.5 −66.75 35.58 485.74 0.8329 0.4061 18.74 56.65 31.53

15.0 −66.75 36.70 485.74 0.8581 0.4134 18.22 52.71 31.53

B 10.0 −83.81 35.24 334.11 0.8258 0.4766 16.62 54.51 33.20

20.0 −83.81 35.24 334.11 0.8258 0.4766 16.62 47.95 33.20

C 10.0 −93.70 14.55 304.49 0.6095 0.3799 12.08 51.14 30.68

20.0 −93.70 15.49 304.49 0.6244 0.3841 12.08 40.91 29.55

DMAD A 7.5 −62.05 24.08 324.11 0.5298 0.2974 13.35 56.65 36.45

15.0 −62.05 26.73 344.36 0.5972 0.3163 14.22 49.26 36.95

B 10.0 −73.25 22.49 225.58 0.5736 0.3474 10.66 51.23 32.79

20.0 −73.25 22.24 210.60 0.5663 0.3458 10.66 44.67 32.79

C 10.0 −92.88 15.13 216.50 0.5693 0.3790 13.72 52.27 36.36

20.0 −92.88 15.98 216.50 0.5895 0.3823 14.10 43.18 36.36

GMD A 7.5 −63.95 27.22 458.48 0.6622 0.3222 13.26 55.17 36.45

15.0 −63.95 29.08 458.48 0.7057 0.3355 14.49 49.26 35.96

B 10.0 −74.83 25.07 237.66 0.5930 0.3645 15.70 53.28 32.79

20.0 −74.83 24.98 237.66 0.5913 0.3639 15.70 47.13 32.79

C 10.0 −93.76 11.06 196.86 0.5399 0.3652 10.48 52.27 34.09

20.0 −93.76 12.24 196.86 0.5621 0.3718 10.48 42.05 32.95

DGMD A 7.5 −63.32 23.04 219.62 0.4838 0.2843 12.43 56.16 37.93

15.0 −63.32 25.18 346.58 0.5480 0.3005 12.83 48.77 38.42

B 10.0 −72.12 21.38 229.33 0.5477 0.3317 12.19 52.87 31.15

20.0 −72.12 21.00 229.33 0.5396 0.3293 12.25 42.21 31.15

C 10.0 −93.89 15.24 287.02 0.5963 0.3749 10.76 51.14 38.64

20.0 −93.89 16.09 287.02 0.6118 0.3805 11.20 39.77 36.36
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Table 7. Model comparison with their downside extensions in terms of the ex-post portfolio returns.

Mean-risk models (α = 0) Mean-safety models (α = 1)

µ0 rDMAD ≥ rMAD rDGMD ≥ rGMD rDMAD ≥ rMAD rDGMD ≥ rGMD

Period (%) (%) (%) (%) (%)

A 7.5 45.81 55.67 48.77 56.16

15.0 48.77 53.69 49.75 56.16

B 10.0 48.77 46.72 44.26 40.16

20.0 47.95 43.44 45.08 39.34

C 10.0 56.82 34.09 55.68 68.18

20.0 51.14 54.55 54.55 67.05

– the percentage ratio of the number of times the mean portfolio return is greater or equal
to the in-sample return (r ≥ z).

The minimum, maximum, average and median ex-post portfolio returns have been converted
from monthly onto yearly basis. The standard deviation σ as well as the downside semi-
standard deviation σ̄ have been computed with respect to a given ex-post portfolio return.

In Tables 5–6 we present the average values of each criterion for the analyzed models
over the three periods for all levels of the required rate of return. The first corresponds to the
optimal portfolios of the mean-risk models (α = 0), while the second refers to the optimal
portfolios found by the mean-safety models (α = 1).

Both tables show that the average portfolio returns for all the models exceed the lower
required rate of return and in case of the mean-safety models also higher required rate of
return, if we exclude Period C. Moreover, the average portfolio returns for the mean-safety
models are higher with the exception for Period C. Furthermore, if we take into account
the ratio from the last but one column, it will turn out that the mean-safety models are
better than the corresponding mean-risk models. It is worth noticing that the DMAD and
DGMD models provide better average portfolio returns in Period C (downward trend) than
the MAD and GMD models, respectively. This can be clearly seen through the analysis of
Table 7, where we compare the MAD and GMD models with their downside extensions. In
Table 7 we put together percentage ratios of the number of times the mean portfolio return
generated by the MAD and GMD models is greater or equal to the mean portfolio return
of the corresponding downside enhancements. Those ratios are always grater than 50% in
Period C (with the only exception for the DGMD mean-risk model with µ0 of 10%) and also
in Period A for all the DGMD models. Hence, apart from the case of a definitely upward
trend, the DGMD mean-safety models seem to be reasonable portfolio optimization tools.

5. Concluding remarks

The Markowitz model of portfolio optimization quantifies the problem in a lucid form of only
two criteria: the mean, representing the expected outcome, and the risk—a scalar measure
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of the variability of outcomes. The classical Markowitz model uses the variance as the risk
measure, thus resulting in a quadratic optimization problem. There were introduced several
alternative risk measures which are computationally attractive as (for discrete random vari-
ables) they result in solving linear programming (LP) problems. The LP solvability is very
important for applications to real-life financial decisions where the constructed portfolios
have to meet numerous side constraints and take into account transaction costs.

Typical LP computable risk measures, like the mean semideviation (from the mean), used
in the MAD model, as well as the Gini’s mean difference are symmetric (in the sense that
for Rx and −Rx they have exactly the same values). For better modeling of the risk averse
preferences one may enhance the below-mean downside risk aversion in various measures.
The below-mean risk downside aversion is a concept of risk aversion assuming that the
variability of returns above the mean should not be penalized since the investors concern of
an underperformance rather than the overperformance of a portfolio. This can be formalized
with the below-mean downside stochastic dominance formulated for general distributions by
focusing on the corresponding distributions of downside underachievements. In particular,
the below-mean (downside) second degree stochastic dominance (BMSSD), opposite to
the standard SSD, allows a portfolio with a smaller expected return to dominate some
more risky portfolios with larger expectations. Thus, although consistent with the SSD
itself, the BMSSD significantly enriches the risk aversion modeling capabilities. While
applying these constructions to the LP solvable risk measures (or rather the safety measures
corresponding the original risk measures) we have managed to explain the risk measure of
the m–MAD model [16] and, more important, we have managed to introduce a new measure
of the downside Gini’s mean difference.

The theoretical results are valid for various LP computable risk measures. However, we
have focused on the analysis of the enhanced MAD and GMD models. Computer simulation
of the assets allocation problem built on historical values of 81 S&P500 sectorial indices
has shown that the mean-safety models performs on average better than the corresponding
mean-risk models. Moreover, in the case of stable or decreasing market, the below-mean
downside risk aversion enhancement has further improved average performances of the
mean-safety models. These promising results show a need for comprehensive experimen-
tal studies analyzing practical performances of the enhanced below-mean downside risk
measures within specific areas of financial applications.

Note

1. GICS is the industry classification structure used for Standard & Poor’s U.S. industry index calculations.
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18. W. Ogryczak and A. Ruszczyński, “Dual stochastic dominance and related mean-risk models,” SIAM J.

Optimization, vol. 13, pp. 60–78, 2002.
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