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Abstract: Modern telecommunication networks face an increas-
ing demand for services. Among these, an increasing number are
services that can adapt to available bandwidth, and are therefore
referred to as elastic traffic. Nominal network design for elastic traf-
fic becomes increasingly significant.

Typical resource allocation methods are concerned with the al-
location of limited resources among competing activities so as to
achieve the best overall performance of the system. In the network
dimensioning problem for elastic traffic, one needs to allocate band-
width to maximize service flows and simultaneously to reach a fair
treatment of all the elastic services. Thus, both the overall efficiency
(throughput) and the fairness (equity) among various services are
important.

In such applications, the so-called Max-Min Fairness (MMF) so-
lution concept is widely used to formulate the resource allocation
scheme. This approach guarantees fairness but may lead to signifi-
cant losses in the overall throughput of the network. In this paper
we show how the concepts of multiple criteria equitable optimization
can be effectively used to generate various fair resource allocation
schemes. We introduce a multiple criteria model equivalent to equi-
table optimization and we develop a corresponding reference point
procedure to generate fair efficient bandwidth allocations. The pro-
cedure is tested on a sample network dimensioning problem and its
abilities to model various preferences are demonstrated.

Keywords: multiple criteria optimization, efficiency, fairness,
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1. Introduction

Resource allocation decisions are concerned with the allocation of limited re-
sources so as to achieve the best system performance. This paper deals with
problems of bandwidth allocation within telecommunication networks. The de-
velopment of the Internet has led to an increased role of the traffic carried by the
IP protocol in telecommunication networks. Due to the use of packet switching,
the IP protocol can provide greater network utilization (the so-called multiplex-
ing gain). For these reasons, network management can be interested in designing
networks which have a high throughput for the IP protocol. Moreover, a fair
way of distribution of the bandwidth (or other network resources) among com-
peting demands becomes a key issue in computer networks (Denda et al., 2000)
and telecommunications network design, in general (Pióro and Medhi, 2004).
Therefore, we focus on the approaches that, while allocating resources, attempt
to provide a fair (equal) treatment of all the activities (Luss, 1999; Ogryczak
and Śliwiński, 2002).

Note that data traffic carried by the TCP protocol (which is the most fre-
quently used transport protocol in IP networks) has a unique characteristic.
The TCP protocol will adapt its throughput to the amount of available band-
width. It is therefore capable to use the entire available bandwidth, but it will
also be able to reduce its throughput in the presence of contending traffic. This
type of network traffic has been called elastic traffic. Network design today
often considers the problem of designing networks that carry elastic traffic. The
network design problem reduces to a decision about link capacities and possibly
flow routing. Flow sizes are an outcome of the design problem, since it can be
assumed that flows adapt to given network resources on a chosen path.

If the network is also used for other types of communication that require
guaranteed quality of service, the network design problem can be decomposed
into two parts: first, design the network to carry non-elastic traffic in such a
way that all demands for that communication are satisfied. Next, use the spare
capacity to carry elastic traffic of the IP protocol. Resource allocation models
may be used to help to solve such network design problems.

Within a telecommunication network the data traffic is generated by a huge
number of nodes exchanging data. In such a network, a relatively small subset of
nodes are chosen to serve as hubs which can be used as intermediate switching
points or to define the so-called backbone network (Pióro and Medhi, 2004).
The hub-based network organization allows the data traffic to be consolidated
on the inter-hub links. The problem of network dimensioning with elastic traffic
arises when there is a need to design the (inter-hub) link capacities to carry
as much traffic as possible between a set of network nodes. This can occur in
the case described above, when the network capacity available after considering
all non-elastic demands has to be used for elastic traffic, or in another case:
when the network capacity is insufficient to carry all non-elastic demands. In
such a case, the problem is to determine how much traffic of the non-elastic
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demands can be admitted into the network. To do so, the demands can be
treated as elastic traffic. The outcome of network design will also specify the
limits of traffic to be admitted into the network for each demand (Pióro and
Medhi, 2004).

Network management must stay within a budget of expenses for purchasing
link bandwidth. Network management will want to have a high throughput of
the IP network, to increase the multiplexing gains. This traffic is offered only a
best-effort service, and therefore network management is not concerned with of-
fering guaranteed levels of bandwidth to the traffic. Network dimensioning with
elastic traffic can therefore be thought of as a search for such network flows that
will maximize the network throughput (the sum of all flows in the network)
while staying within a budget constraint for the costs of link bandwidth. How-
ever, such a problem formulation would lead to the starvation of flows between
certain network nodes. Looking at the problem from the user perspective, the
network flows between different nodes should be treated as fairly as possible.
The users may be interested in high available bandwidth between any two nodes
of the network, or in high available bandwidth from all other network nodes to
the user’s node, or in high available bandwidth from the user’s node to all other
nodes. Whatever the user preference, it would be expressed in terms of fair-
ness for a certain set of criteria which depend on individual flows. Let us first
consider providing fairness for all flows between any two network nodes. Such
a goal would clearly lead to lower levels of throughput, since resources must be
allocated to distant nodes, which is more expensive than using the entire budget
to purchase a high capacity for close nodes.

Therefore, network management must consider two goals: increasing
throughput and providing fairness. These two goals are clearly conflicting, if the
budget constraint is to be satisfied. Network management could therefore be in-
terested in finding compromise solutions that do not starve network flows, and
give satisfying levels of throughput. In particular, the so-called Proportional
Fairness method (Kelly et al., 1997) allows for finding solutions which are fair
with respect to flows in certain categories depending on the distance between
the source and destination of a flow. However, such methods give only one pos-
sible compromise solution. The purpose of this work is to show that there exists
a methodology that allows the decision maker to explore a set of solutions that
could satisfy his preferences with respect to throughput and fairness, and choose
the solution which the decision maker finds best. This interactive approach to
decision making is superior to a black box approach, when the decision maker
has only one solution and cannot express his preferences (Wierzbicki et al., 2000)

The problem of network dimensioning with elastic traffic can be formulated
as a Linear Programming (LP) resource allocation problem as follows. Given
a network routing topology G =< V, E >, consider a set of pairs of nodes as
the set I of services. For each service i ∈ I, the elastic flow from source us

i to
destination ud

i will be denoted by xi, which is a variable representing the model
outcome. For each service, we are given the information about the routing path
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in the network from the source to the destination. This information can be in
the form of a matrix ∆ = (δei)e∈E,i∈I , which satisfies the relation: δei = 1 if
link e belongs to the routing path connecting us

i with ud
i (the source and the

destination of service i, respectively), otherwise δei = 0. Further, for each link
e ∈ E, the cost of allocated bandwidth is defined.

In the basic model of network dimensioning it is assumed that any real
amount of bandwidth may be installed and marginal costs ce of link bandwidths
is given. Hence, the corresponding link dimensioning function expressing neces-
sary capacity (bandwidth) to meet a required link load (Pióro and Medhi, 2004)
is then a linear function (in fact identity function). In this basic model, the cost
of the entire path for service i can be directly expressed by the formula:

κi =
∑

e∈E

ceδei for i = 1, . . . , m. (1)

The network dimensioning problem depends on allocating the bandwidth
to several links in order to maximize flows of all the services while remaining
within available budget B for all link bandwidths. The decisions are usually
modeled with (decision) variables: ae – representing the bandwidth allocated to
link e ∈ E. They have to fulfill the following constraints:

∑

e∈E

ceae ≤ B (2)

∑

i

δeixi ≤ ae ∀e ∈ E (3)

where (2) represents the budget limit while (3) establishes the relation between
service flows and links bandwidth (the quantity

∑

i∈I δeixi is the load of link e).
Certainly, all the decision and outcome variables must be nonnegative: ae ≥ 0
for all e ∈ E and xi ≥ 0 for all i ∈ I.

Links modularity (bandwidth granulation) is a common feature in communi-
cations networks (Pióro and Medhi, 2004). Therefore, in more realistic models,
for each link e ∈ E, the minimum unit of bandwidth be is specified and the
installed capacity ae must satisfy additional equation:

ae = beze ∀e ∈ E (4)

where ze is an integer decision variable representing the number of bandwidth
units be installed at link e. In the case of modular links (discrete bandwidth units
be), ce represents the unit cost. The corresponding link dimensioning function
is then a step wise function. Note that one cannot now define directly any cost
κi of the path (similar to (1)), since this cost depends on possible sharing with
other paths of the surplus bandwidth arising due to links modularity.

Thus, in the basic (continuous) case, the model constraints define a linear
programming (LP) feasible set while for the case of modular links it turns into
a mixed integer linear programming (MILP) feasible set. Constraints (2) and
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(3) may be then treated as equations. Together with formula (1) they allow for
elimination of variables ae, thus formulating the problem as a simplified resource
allocation model with only one constraint:

m
∑

i=1

κixi = B (5)

and variables xi representing directly decisions. Such a simplification is, cer-
tainly, impossible for a modular case, due to additional discrete constraints (4).

The network dimensioning model could have various objective functions,
depending on the chosen approach. One may consider two extreme approaches.
The first extreme approach is the maximization of the throughput (the sum
of flows)

∑

i∈I xi. In the basic (continuous) case, due to possible alternative
formulation (5), it is apparent that this approach would choose one variable
xio which has the smallest marginal cost κio = min

i=1,...,m
κi and make that flow

maximal within the budget limit (xio = B/κio), while limiting all other flows to
zero. Alternatively, in the case of not unique io, one may give equal values to all
flows which have marginal costs equal to the minimal marginal cost. However, all
flows that have marginal costs larger than the minimum would have to be zero in
a solution that maximizes throughput. In the modular case, the direct formula
for a path cost is not available and the step wise link dimensioning function will
cause some flows diversification with more small flows. Nevertheless, the main
part of solution will be usually generated by one cheapest flow.

The so-called Max-Min Fairness (MMF) solution concept is widely used in
formulation of fair resource allocation schemes (Jaffe, 1980; Bertsekas and Gal-
lager, 1987). The worst performance (minimum flow) is there maximized and
additionally regularized, if necessary, with the lexicographic (sequential) max-
imization of the second worst performance, the third worst etc. The MMF
concept is consistent with Rawlsian theory of justice (Rawls, 1971; Rawls and
Kelly, 2001). Actually, in the basic model with an LP feasible set, due to pos-
sible alternative formulation (5), the MMF concept would lead us to a solution
that has equal values for all the flows (Ogryczak, 2001):

xMMF
i = B/

∑

i∈I

κi for i = 1, . . . , m.

Again, for the modular case some differentiation of flows usually occurs but for
larger budget B it is relatively small. Allocating the resources to optimize the
worst performances may cause a large worsening of the overall (mean) perfor-
mance. Particularly, in the basic model, the MMF throughput (mB/

∑m

i=1 κi)
might be considerably smaller than the maximal throughput (B/ min

i=1,...,m
κi).

In an example built on the backbone network of a Polish ISP, it turned out
that the throughput in a perfectly fair solution could be less than 50% of the
maximal throughput (Ogryczak, Śliwiński and Wierzbicki, 2003).
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Network management can be interested in seeking a compromise between
the two extreme approaches discussed above. The approach called Proportional
Fairness proposed in Kelly et al. (1997) maximizes the sum of logarithms of the
flows xi. Actually, it corresponds to the so-called Nash criterion (Nash, 1950)
which maximizes the product of additional utilities compared to the status quo.
The use of the logarithmic function makes it impossible to choose zero flows for
any pair of nodes, and, on the other hand, makes it not profitable to assign too
big flow to any individual demand. The optimization model of the PF method
takes the following form:

max

m
∑

i=1

log(xi) (6)

For the basic (continuous) model of network dimensioning with elastic traffic
and unbounded flows, the solution found by the PF method has an interesting
property (Pióro et al., 2002). The optimal flows xPF

i are given by the expression:

xPF
i = B/κi for i = 1, . . . , m. (7)

This property implies that the optimal flow in the PF model is inversely pro-
portional to the cost of the path that the flow travels in the network. Due
to this property, it is not necessary to solve nonlinear models in order to find
the PF optimal solution. On the other hand, in the case of modular model
one gets a complicated nonlinear optimization problem with integer variables.
Moreover, network management could be interested in choosing among a larger
set of compromise solutions in order to satisfy their preferences. In the fol-
lowing sections, we shall describe an approach that allows to search for such
compromise solutions with multiple linear criteria rather than the use nonlinear
objective functions.

2. Fair allocations and equitable efficiency

The generic resource allocation problem may be stated as follows. There is a
system dealing with a set I of m services. There is given a measure of services
realization within a system. In applications we consider, the measure usually
expresses the service flow. However, one may consider such measures as service
time, service costs, service delays as well as some more qualitative or subjective
measures. Further, there is also given a set A of allocation patterns (allocation
decisions). For each service i ∈ I, its measure of realization xi is a function
xi = fi(a) of the allocation pattern a ∈ A. This function, called the individual
objective function, represents the outcome (effect) of the allocation pattern for
service i. In typical formulations a larger value of the outcome means a bet-
ter effect (higher service quality or client satisfaction). Otherwise, the outcomes
can be replaced with their complements to some large number. Therefore, with-
out loss of generality, we can assume that each individual outcome xi is to be
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maximized, which allows us to view the generic resource allocation problem as
a vector maximization model:

max {(x1, x2, . . . , xm) : x ∈ Q} (8)

where Q = {(x1, . . . , xm) : xi = fi(a) for i = 1, . . . , m, a ∈ A} denotes the
attainable set for outcome vectors x. For the network dimensioning problems,
we consider, the set Q is an LP feasible set defined by constraints (2)–(3) in
the case of basic model, and a MILP feasible set (2)–(4) in the case of modular
model.

Model (8) only specifies that we are interested in maximization of all out-
comes xi for i ∈ I = {1, 2, . . . , m}. In order to make it operational, one needs to
assume some solution concept specifying what it means to maximize multiple
outcomes. The solution concepts are defined by properties of the corresponding
preference model within the outcome space. The preference model is completely
characterized by the relation of weak preference (Vincke, 1992), denoted here-
after with �. Namely, the corresponding relations of strict preference ≻ and
indifference ∼= are defined by the following formulas

x′ ≻ x′′ ⇔ (x′ � x′′ and not x′′ � x′) (9)

x′ ∼= x′′ ⇔ (x′ � x′′ and x′′ � x′) (10)

The preference model related to the standard Pareto–optimal solution con-
cept also assumes that the preference relation � is reflexive

x � x (11)

transitive

(x′ � x′′ and x′′ � x′′′) ⇒ x′ � x′′′ (12)

and strictly monotonic

x + εei ≻ x for ε > 0, i ∈ I (13)

where ei denotes the i–th unit vector in the outcome the space. The last as-
sumption expresses the fact that for each individual outcome the larger value
is better (maximization). The preference relations satisfying axioms (11)–(13),
called hereafter rational preference relations, allow us to formalize the Pareto-
efficient solution concept with the following definitions. An outcome vector x′

rationally dominates x′′ (x′ ≻r x′′), iff x′ ≻ x′′ for all rational preference rela-
tions �. In other words, an outcome vector x′′ is dominated by x′, if no rational
decision maker prefers x′′ to x′. If x = f(a) is rationally nondominated, then
the allocation pattern a ∈ A is called Pareto-efficient (Pareto-optimal).

The relation of weak rational dominance �r may be expressed in terms of
the vector inequality : x′ �r x′′ iff x′

i ≥ x′′
i for all i ∈ I. This leads to the

commonly used definition of the Pareto-optimal solutions as feasible solutions
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for which one cannot improve any criterion without worsening another (Steuer,
1986). However, the axiomatic definition of the rational preference relation
allows us to introduce additional properties of the preferences related to fairness
concepts. The concept of fairness has been studied in various areas beginning
from political economics problems of fair allocation of consumption bundles to
abstract mathematical formulation (Steinhaus, 1949). In order to ensure fairness
in a system, all system entities have to be equally well provided with the system’s
services. This leads to concepts of fairness expressed by the equitable rational
preferences (Ogryczak, 1997; Kostreva and Ogryczak, 1999). First of all, the
fairness requires impartiality of evaluation, thus focusing on the distribution of
outcome values while ignoring their ordering. This means that in the multiple
criteria problem (8) we are interested in a set of outcome values without taking
into account which outcome is taking a specific value. Hence, we assume that
the preference model is impartial (anonymous, symmetric). In terms of the
preference relation this may be written as the following axiom

(xτ(1), xτ(2), . . . , xτ(m)) ∼= (x1, x2, . . . , xm) (14)

for any permutation τ of I. Further, fairness requires equitability of outcomes
which causes that the preference model should satisfy the (Pigou–Dalton) prin-
ciple of transfers. The principle of transfers states that a transfer of any small
amount from an outcome to any other relatively worse–off outcome results in
a more preferred outcome vector. As a property of the preference relation, the
principle of transfers takes the form of the following axiom

xi′ > xi′′ ⇒ x − εei′ + εei′′ ≻ x for 0 < ε < xi′ − xi′′ (15)

The preference relations satisfying all axioms (11)–(15) will be called hereafter
fair (equitable) rational preference relations. Note that according to any fair
rational preference relation a solution generating all three outcomes equal to
2 is considered better than any solution generating individual outcomes: 4, 2
and 0 (due to principle of transfers), while it remains worse than a solution
generating one outcome 4 and two other equal to 2 (due to the monotonicity).

The fair rational preference relations allow us to define the concept of fairly
(equitably) efficient solution, similar to the standard efficient (Pareto–optimal)
solution defined with the rational preference relations. We say that outcome
vector x′ fairly dominates x′′ (x′ ≻e x′′), iff x′ ≻ x′′ for all fair rational pref-
erence relations �. An allocation pattern a ∈ A is called equitably efficient if
x = f(a) is fairly nondominated. Note that each fairly efficient solution is also
Pareto-efficient, but not vice verse.

Typical solution concepts for multiple criteria problems are defined by ag-
gregation functions g : Y → R to be maximized. Thus the multiple criteria
problem (8) is replaced with the maximization problem

max {g(x) : x ∈ Q} (16)
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In order to guarantee the consistency of the aggregated problem (16) with the
fair (equitable) maximization of all individual outcomes in the original multiple
criteria problem, the preference relation induced by the aggregation function
maximization

x′ �g x′′ ⇔ g(x′) ≥ g(x′′)

must be a fair rational preference relation.
The simplest aggregation functions commonly used for the multiple criteria

problem (8) are defined as the sum of outcomes

g(x) =

m
∑

i=1

xi (17)

or the worst outcome

g(x) = min
i=1,...,m

xi. (18)

In the network dimensioning problem, the former represents throughput max-
imization while the latter corresponds to the (simplified) MMF model. Both
functions are symmetric and thereby their relations �g satisfy the impartiality
requirement (14) but they do not satisfy the equitability requirement (15) (al-
though satisfying the weak form of this requirement; Ogryczak, 1997). Hence,
these aggregations do not guarantee the fairness of solutions. It turns out, how-
ever, that for any strictly concave, increasing function s : R → R, the function
g(x) =

∑m

i=1 s(xi) generates the fair rational preference relation �g. This
defines a family of the fair aggregations according to the following corollary
(Kostreva and Ogryczak, 1999):

Corollary 2.1 For any strictly concave, increasing function s : R → R, the
optimal solution of the problem

max {
m

∑

i=1

s(xi) : x ∈ Q} (19)

is a fair solution for resource allocation problem (8).

In the case of the outcomes restricted to positive values, one may use loga-
rithmic function thus resulting in the proportional fairness model (6) or various
root functions:

g(x) =

m
∑

i=1

(xi)
α for 0 < α < 1.

For a common case of upper bounded outcomes xi ≤ u∗ one may use power
functions:

g(x) = −

m
∑

i=1

(u∗ − xi)
p for 1 < p,
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which corresponds to the minimization of of the well-known Hölder p-norm
distances from the upper bound. Various other concave functions s can be used
to define fair aggregations (19) and the resulting resource allocation schemes.
However, the problem of network dimensioning we consider is originally an LP
model and a MILP in the case of link modularity. Therefore, it is important if
various fair allocation schemes can be generated with LP tools.

The theory of majorization (Marshall and Olkin, 1979) includes the results
which allow us to express the relation of fair (equitable) dominance as a vec-
tor inequality on the cumulative ordered outcomes (Kostreva and Ogryczak,
1999). This can be mathematically formalized as follows. First, introduce the
ordering map Θ : Rm → Rm such that Θ(x) = (θ1(x), θ2(x), . . . , θm(x)), where
θ1(x) ≤ θ2(x) ≤ · · · ≤ θm(x) and there exists a permutation τ of the set I
such that θi(x) = xτ(i) for i = 1, . . . , m. Next, apply to ordered outcomes
Θ(x) a linear cumulative map thus resulting in the cumulative ordering map
Θ̄(x) = (θ̄1(x), θ̄2(x), . . . , θ̄m(x)) defined as

θ̄i(x) =
i

∑

j=1

θj(x) for i = 1, . . . , m. (20)

The coefficients of vector Θ̄(x) express, respectively: the smallest outcome, the
total of the two smallest outcomes, the total of the three smallest outcomes, etc.
The theory of majorization allow us to derive the following theorem (Kostreva
and Ogryczak, 1999):

Theorem 2.1 Outcome vector x′ fairly dominates x′′, if and only if θ̄i(x
′) ≥

θ̄i(x
′′) for all i ∈ I where at least one strict inequality holds.

Vector Θ̄(y) can be viewed graphically with the absolute Lorenz curve which
can be mathematically formalized as follows. First, we introduce the right-
continuous cumulative distribution function:

Fx(ξ) =

m
∑

i=1

1

m
δi(ξ) where δi(ξ) =

{

1 if xi ≤ ξ
0 otherwise

which for any real value ξ provides the measure of outcomes smaller or equal to

ξ. Next, we introduce the quantile function F
(−1)
x as the left-continuous inverse

of the cumulative distribution function Fx:

F (−1)
x

(ν) = inf {ξ : Fx(ξ) ≥ ν} for 0 < ν ≤ 1

By integrating F
(−1)
x one gets F

(−2)
x (0) = 0 and

F (−2)
x

(ν) =

∫ ν

0

F (−1)
x

(α)dα for 0 < ν ≤ 1.

Graphs of functions F
(−2)
x (ν) (with respect to ν) take the form of con-

vex curves (Fig. 1), the absolute Lorenz curves. In our case of m outcomes,
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F
(−2)
x (i/m) = 1

m
θ̄i(x) for i = 1, . . . , m and the absolute Lorenz curve is a

piece wise linear curve connecting point (0,0) and points (i/m, θ̄i(x)/m) for i =

1, . . . , m. The fair dominance x′ �e x′′ means then that F
(−2)
x
′ (ν) ≥ F

(−2)
x
′′ (ν)

for all 0 ≤ ν ≤ 1. We will use absolute Lorenz curves to demonstrate and
compare various allocations patterns.

6
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Figure 1. Vectors Θ̄(x) as the absolute Lorenz curves.

Note that Theorem 2.1 permits one to express fair solutions of problem (8) as
Pareto-efficient solutions to the multiple criteria problem with objectives Θ̄(x)

max {(η1, η2, . . . , ηm) : ηi = θ̄i(x) for i = 1, . . . , m, x ∈ Q}. (21)

Moreover, the multiple criteria problem (21) may serve as a source of fair
allocation schemes. Although the definitions of quantities θ̄k(x), used as cri-
teria in (21), are very complicated, the quantities themselves can be modeled
with simple auxiliary variables and constraints. It is commonly known that
the worst (smallest) outcome may be defined by the following optimization:
θ̄1(x) = max {t : t ≤ xi for i = 1, . . . , m}, where t is an unrestricted vari-
able. It turns out that this approach can be generalized to provide an effective
modeling technique for quantities θ̄k(x) with arbitrary k (Ogryczak and Tamir,
2003). Namely, for a given outcome vector x the quantity θ̄k(x) may be found
by solving the following linear program:

θ̄k(x) = max kt −

m
∑

i=1

di

s.t. t − xi ≤ di, di ≥ 0 for i = 1, . . . , m

(22)
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where t is an unrestricted variable while nonnegative variables di represent, for
several outcome values xi, their downside deviations from the value of t.

Formula (22) allows us to formulate problem (21) as the following multiple
criteria optimization problem:

max (η1, η2, . . . , ηm) (23)

subject to x ∈ Q

ηk = ktk −

m
∑

i=1

dik for k = 1, . . . , m (24)

tk − dik ≤ xi, dik ≥ 0 for i, k = 1, . . . , m. (25)

Note that problem (23)–(25) adds only linear constraints to the original attain-
able set Q. Hence, for the basic network dimensioning problems with the set
Q defined by constraints (2)–(3), the resulting formulation (23)–(25) remains in
the class of (multi-criteria) linear programs. Certainly, the problem becomes a
MILP for the modular dimensioning model with the attainable set (2)–(4).

3. Multiple criteria analysis

Theorem 2.1 allows one to generate fairly efficient solutions of (8) as efficient
solutions of problem (21). The aggregation maximizing the sum of outcomes,
corresponds to maximization of the last (m–th) objective in problem (21). Si-
milarly, the maximin scalarization corresponds to maximization of the first ob-
jective in (21). For better understanding of the multiple criteria problem (21),
one may consider normalized objective functions:

M k

m

(x) =
1

k
θ̄k(x), for k = 1, . . . , m (26)

thus representing for each k the mean outcome of the k worst-off services,
called the worst conditional mean. Note that for k = 1, M 1

m

(x) = θ̄1(x) =

θ1(x) = M(x) thus representing the minimum outcome, and for k = m,
M m

m
(x) = 1

m
θ̄m(x) = 1

m

∑m

i=1 θi(x) = 1
m

∑m

i=1 xi = µ(x) which is the mean
outcome. Formula (22) allows us to maximize the worst conditional means for
various intermediate values k and it can be effectively applied to network traffic
engineering problems (Ogryczak and Śliwiński, 2002).

For modeling larger gamut of fair preferences one may use some combinations
of criteria in model (21). In particular, for the weighted sum on gets

m
∑

i=1

wiηi =
m

∑

i=1

wiθ̄i(x), wi > 0 for i = 1, . . . , m. (27)

Note that due to the definition of map Θ̄ with (20), the above function can be
expressed in the form with weights vi =

∑m

j=i wj (i = 1, . . . , m) allocated to
coordinates of the ordered outcome vector. Such an approach to aggregation of
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outcomes was introduced by Yager (1988) as the so–called Ordered Weighted
Averaging (OWA). The OWA aggregation is obviously a piece wise linear func-
tion since it remains linear within every area of the fixed order of arguments.
If weights vi are strictly decreasing and positive (as for strictly positive wi in
(27)), then the OWA problem

max {

m
∑

i=1

viθi(x) : x ∈ Q} (28)

is LP solvable with respect to given values xi (Ogryczak and Śliwiński, 2003).
When differences among weights tend to infinity, the OWA aggregation ap-

proximates the lexicographic ranking of the ordered outcome vectors. That
means, as the limiting case of the OWA problem (28), we get the lexicographic
problem:

lexmax {(θ1(x), θ2(x), . . . , θm(x)) : x ∈ Q} (29)

which represents the MMF (lexicographic maximin) approach to the original
resource allocation problem (8). Problem (29) is a regularization of the standard
maximin optimization, but in the former, in addition to the worst outcome, we
maximize also the second worst outcome (provided that the smallest one remains
as large as possible), maximize the third worst (provided that the two smallest
remain as large as possible), and so on.

If weights vi are strictly decreasing and positive, i.e., the corresponding
weights wi in (27) are strictly positive, then each optimal solution of the OWA
problem (28) is a fair solution of (8). Moreover, in the case of LP models, as
the basic network dimensioning one, every fair allocation scheme can be identi-
fied as an optimal solution to some OWA problem with appropriate monotonic
weights (Kostreva and Ogryczak, 1999). While equal weights define linear ag-
gregation, several decreasing sequences of weights provide us with various piece
wise linear aggregations. Indeed, our earlier experience with application of the
OWA criterion to the basic (continuous) problem of network dimensioning with
elastic traffic (Ogryczak, Śliwiński and Wierzbicki, 2003) showed that we were
able to generate easily allocations representing the classical fairness models. On
the other hand, in order to find a larger variety of new compromise solutions
we needed to incorporate some scaling techniques originating from the reference
point methodology. Actually, it is a common flaw of the weighting approaches
that they provide poor controllability of the preference modeling process and
in the case of multiple criteria problems with discrete (or more general noncon-
vex) feasible sets, they may fail to identify several compromise efficient solutions
(Steuer, 1986). Better controllability and the complete parameterization of non-
dominated solutions can be achieved with the direct use of the reference point
methodology.

The reference point method was introduced by Wierzbicki (1982) and
later extended leading to efficient implementations of the so-called aspira-
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tion/reservation based decision support (ARBDS) approach with many success-
ful applications (Lewandowski and Wierzbicki, 1989; Wierzbicki et al., 2000).
The ARBDS approach is an interactive technique allowing the DM to specify the
requirements in terms of aspiration and reservation levels, i.e., by introducing
acceptable and required values for several criteria. Depending on the specified
aspiration and reservation levels, a special scalarizing achievement function is
built which may be directly interpreted as expressing utility to be maximized.
Maximization of the scalarizing achievement function generates an efficient so-
lution to the multiple criteria problem. The solution is accepted by the DM
or some modifications of the aspiration and reservation levels are introduced
to continue the search for a better solution. The ARBDS approach provides
a complete parameterization of the efficient set to multi-criteria optimization.
Exactly, all properly efficient solutions with bounded trade-offs can be identi-
fied with this approach (Kaliszewski, 1994), while in LP and MILP problems
with bounded feasible sets that we consider, the approach covers the entire ef-
ficient set (Ogryczak, 1997). Further, when applying the ARBDS methodology
to the ordered cumulated criteria in (21), one may generate all (fairly) equitably
efficient solutions of the original resource allocation problem (8).

While building the scalarizing achievement function the following properties
of the preference model are assumed. First of all, for any individual outcome ηi

more is preferred to less (maximization). To meet this requirement the function
must be strictly increasing with respect to each outcome. Second, a solution
with all individual outcomes ηi satisfying the corresponding reservation levels is
preferred to any solution with at least one individual outcome worse (smaller)
than its reservation level. Next, provided that all the reservation levels are
satisfied, a solution with all individual outcomes ηi equal to the correspond-
ing aspiration levels is preferred to any solution with at least one individual
outcome worse (smaller) than its aspiration level. That means, the scalarizing
achievement function maximization must enforce reaching the reservation levels
prior to further improving of criteria. In other words, the reservation levels
represent some soft lower bounds on the maximized criteria. When all these
lower bounds are satisfied, then the optimization process attempts to reach the
aspiration levels.

The generic scalarizing achievement function takes the following form
(Wierzbicki, 1982):

σ(η) = min
1≤i≤m

{σi(ηi)} + ε

m
∑

i=1

σi(ηi) (30)

where ε is an arbitrary small positive number and σi, for i = 1, 2, . . . , m, are
the partial achievement functions measuring actual achievement of the individ-
ual outcome ηi with respect to the corresponding aspiration and reservation
levels (ηa

i and ηr
i , respectively). Thus, the scalarizing achievement function is,

essentially, defined by the worst partial (individual) achievement but addition-



Multi-criteria bandwidth allocation 441

ally regularized with the sum of all partial achievements. The regularization
term is introduced only to guarantee the solution efficiency in the case when
the maximization of the main term (the worst partial achievement) results in a
non-unique optimal solution.

The partial achievement function σi can be interpreted as a measure of the
DM’s satisfaction with the current value (outcome) of the i-th criterion. It is
a strictly increasing function of outcome ηi with value σi = 1 if ηi = ηa

i , and
σi = 0 for ηi = ηr

i . Thus, the partial achievement functions map the outcomes
values onto a normalized scale of the DM’s satisfaction. Various functions can
be built meeting those requirements (Wierzbicki et al., 2000). We use the piece
wise linear partial achievement function introduced in Ogryczak (1997). It is
given by

σi(ηi) =







γ(ηi − ηr
i )/(ηa

i − ηr
i ), for ηi ≤ ηr

i

(ηi − ηr
i )/(ηa

i − ηr
i ), for ηr

i < ηi < ηa
i

β(ηi − ηa
i )/(ηa

i − ηr
i ) + 1, for ηi ≥ ηa

i

(31)

where β and γ are arbitrarily defined parameters satisfying 0 < β < 1 < γ.
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Figure 2. Partial achievement function σi and fuzzy membership function µi

For outcomes between the reservation and the aspiration levels, the partial
achievement function σi can be interpreted as a membership function µi for a
fuzzy target. However, such a membership function would be neither strictly
monotonic nor concave. In the partial achievement function (31), parameter β
represents additional increase of the DM’s satisfaction over level 1 when a cri-
terion generates outcomes better than the corresponding aspiration level, while
parameter γ > 1 represents dissatisfaction connected with outcomes worse than
the reservation level. Hence, the partial achievement function can be viewed
as an extension of the fuzzy membership function to a strictly monotonic and
concave utility function (Fig. 2). In other words, maximization of the scalariz-
ing achievement function (30) is consistent with the fuzzy methodology in the
case of not attainable aspiration levels and satisfable all reservation levels while
modeling a reasonable utility for any values of aspiration and reservation levels.
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Under the assumption that the parameters β and γ satisfy inequalities 0 <
β < 1 < γ, the partial achievement function (31) is strictly increasing and
concave. Hence, it can be expressed in the form:

σi(ηi) = min

{

γ
ηi − ηr

i

ηa
i − ηr

i

,
ηi − ηr

i

ηa
i − ηr

i

, β
ηi − ηa

i

ηa
i − ηr

i

+ 1

}

which guarantees LP computability with respect to outcomes ηi. Finally, maxi-
mization of the entire scalarizing achievement function (30) can be implemented
by the following auxiliary LP constraints:

max s + ε

m
∑

i=1

si

s.t. si ≥ s for i = 1, . . . , m
si ≤ γ (ηi − ηr

i )/(ηa
i − ηr

i ) for i = 1, . . . , m
si ≤ (ηi − ηr

i )/(ηa
i − ηr

i ) for i = 1, . . . , m
si ≤ β (ηi − ηa

i )/(ηa
i − ηr

i ) + 1 for i = 1, . . . , m

where si for i = 1, . . . , m and s are unbounded variables introduced to represent
values of several partial achievement functions and their minimum, respectively.

Recall that in our model outcomes ηk represent cumulative ordered flows xi,
i.e. ηk =

∑k

i=1 θi(x). Hence, the reference vectors (aspiration and reservation)
represent, in fact, some reference distributions of outcomes (flows). Moreover,
due to the cumulation of outcomes, while considering equal flows xi = α for
i = 1, . . . , m as the reference (aspiration or reservation) distribution, one needs
to set the corresponding levels as ηi = iα.

4. Computational results

The methods described in preceding sections have been tested on a sample net-
work dimensioning problem with elastic traffic. Recall that in the case of elastic
traffic, the outcome of the network dimensioning procedure are the capacities of
links in a given network, and that the flows will adapt to the bandwidth avail-
able on the links in the designed network. The input to a network dimensioning
problem with elastic traffic consists of a network topology (without specified
link capacities), of pairs of nodes that specify sources and destinations of flows,
of sets of network paths that could be used for each flow, and of optional con-
straints on the capacities of links or on flow sizes. The user must also specify
a budget for purchasing link capacity, prices of a unit of link capacity (possibly
different for each link), and may specify module sizes and prices for a link.

The network topology of the presented problem (Fig. 3) is patterned after
the backbone network of a Polish ISP (Ogryczak, Śliwiński and Wierzbicki,
2003). The network consists of 12 nodes and 18 links. Flows between any pair
of different nodes have been considered (therefore, there can be 144− 12 = 132



Multi-criteria bandwidth allocation 443

Figure 3. Sample network topology.

flows), and all flows use the shortest network path for transport. All links have
unit costs equal to one, and the budget for link bandwidth is B = 1000. Since
all links have equal costs of one, path costs are equal to the path length (1, 2, 3
or 4 in the illustrative topology). All flows are unbounded. However, it is clear
that due to the budget constraint no flow can exceed B.

The presented problem has been studied without additional constraints and
with equal link costs, since in such a case it was simple to understand the
best choices with respect to fairness and overall throughput. The fairest out-
come would have all flows of equal sizes. On the other hand, the best network
throughput could be achieved by purchasing link capacity only for the cheapest
flows (with path costs equal to 1), at the expense of starvation of some other
flows.

Additionally, a modular version of the problem was considered. The size of
a link capacity module was set to 5 (typical outcomes had most link capacities
in the range of 20 to 40). For each link, an integer variable has been introduced
(thus there are 18 integer variables in the modular version of the model).

The final input to the model consisted of the reservation and aspiration
levels for the sums of ordered criteria. For simplicity, all aspiration levels were
set close to the optimum values of the criteria, and only reservation levels were
used to control the outcomes. One of the most significant parameters was the
reservation level for the sum of all criteria (the network throughput). This value
will be denoted by ηr

m.

The other reservation levels were chosen in such a way that they formed a
linearly increasing sequence with slope (step) r for the ordered criteria θi(x).
Hence, for the final criteria ηi = θ̄i(x) representing the sums of ordered outcomes
in model (23)–(25), the sequence of reservation levels increased quadratically.
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Proportional fairness

Figure 4. Varying throughput reservation for continuous link capacities.

Thus, only two parameters were used to control the outcomes: the reservation
level ηr

m for the total throughput and the slope r for the linearly increasing
sequence.

The first experiment consisted of a search for compromise solutions that
traded off fairness against efficiency. The throughput reservation was varied
from 450 to 1000. For values of ηr

m above 800, some flows were starved, and
therefore these outcomes were not considered further. The linear increase of the
other reservation levels was varied as well. For r = 0, all outcomes divided flows
into at most two groups (in one group, all flows were equal). For larger values
of r, some outcomes (especially for large throughput reservations) divided flows
into four groups that were determined by the prices of the shortest paths that
were used to transport the flows. The results of the experiment for r = 0.02
are shown in Fig. 4. For higher values of r, the increase of the throughput
reservation above 750 resulted in flow starvation.

Note that the throughput reservation was effectively used to find outcomes
with the desired network throughput. On the other hand, the optimization
procedure automatically found outcomes that divided flows into categories ac-
cording to their path costs. This shows that the presented methodology is
cost-aware, and that it is possible to guarantee fairness to all flows with the
same path cost. For the lowest throughput reservation of ηr

m = 450, the out-
come was a perfectly fair distribution. For comparison, the solution obtained
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Figure 5. Varying throughput reservation for modular link capacities.

by Proportional Fairness is also shown in Fig. 4. Note that the outcome for
ηr

m = 550 is very close to the outcome obtained by Proportional Fairness. Us-
ing the methodology described in this paper, the user can choose from a large
number of different outcomes and control the tradeoff between fairness and ef-
ficiency.

The second experiment repeated the search for compromise solutions for
modular link capacities using the same parameter configurations as in the first
experiment. Here the choice of the reference point methodology should allow the
user to find solutions closest to his preferences. Predictably, the introduction
of modular link capacities makes it more difficult to find fair solutions. The
results shown in Fig. 5 indicate that the excess capacities of modules were used
by the cheapest flows, leading to a higher network throughput than in the case
of a problem without modular link capacities. On the other hand the cheapest
flows were not equal for some outcomes. Note that in the second experiment,
the perfectly fair solution was not found for ηr

m = 450.

Overall, the experiments on the sample network topology demonstrated the
versatility of the described methodology for equitable optimization. The use of
reservation levels, controlled by a small number of simple parameters, allowed
to search for solutions best fitted to the preferences of a network designer. The
obtained solutions divided flows into categories determined by flow cost. For
modular solutions, the cheapest flows consumed the excess link capacity. These
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characteristics demonstrate that the model is cost-aware and fulfills the axioms
of equitable optimization.

5. Concluding remarks

While designing systems which serve many users, like the telecommunications
networks, there is a need to respect the fairness rules, i.e. to allocate resources
equitably among the competing services. Allocating the resources to optimize
the worst performance may cause a large worsening of the overall (mean) per-
formance. Therefore, several other fair allocation schemes are searched and
analyzed.

Our earlier computational experiments with application of the OWA crite-
rion to the basic (continuous) problem of network dimensioning with elastic
traffic (Ogryczak, Śliwiński and Wierzbicki, 2003) showed that we were able to
generate easily allocations representing the classical fairness models. On the
other hand, in order to find a larger variety of new compromise solutions we
needed to incorporate some scaling techniques originating from the reference
point methodology. Actually it is a common flaw of the weighting approaches
that they provide poor controllability of the preference modeling process and
in the case of multiple criteria problems with discrete (or more general noncon-
vex) feasible sets, they may fail to identify several compromise efficient solutions
(Steuer, 1986).

In standard multiple criteria optimization, good controllability and the com-
plete parameterization of nondominated solutions can be achieved with the di-
rect use of the reference point methodology. While looking for fairly efficient
bandwidth allocation the reference point methodology can be applied to the
cumulated ordered outcomes. Our initial experiments with such an approach
to the problem of network dimensioning with elastic traffic have confirmed the
theoretical advantages of the method. We were able able to generate easily
various (compromise) fair solutions for both continuous and modular problems.

The search for fairly efficient compromise solutions was controlled by only
two parameters. One of these parameters was a reservation level for network
throughput. The network designer could therefore specify how much throughput
was required, while the more expensive flows were treated as fairly as possible.
The second parameter allowed the network designer to control the difference in
throughputs of cheaper and more expensive flows. Still, flows with the same
cost were always treated fairly. Thus, the use of the reference point method
for equitably fair optimization can be made simplex for less experienced users,
while at the same time the model fully exploits the theoretical advantages of
these methods for network design.
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