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Abstract. As an active participant of a competitive energy market, the generator (the energy supplier) chal-
lenges new management decisions being exposed to the financial risk environment. There is a strong need
for the decision support models and tools for energy market participants. This paper shows that the stochas-
tic short-term planning model can be effectively used as a key analytical tool within the decision support
process for relatively small energy suppliers (price-takers). A self-scheduling method for the thermal units
on the energy market is addressed. A schedule acquired for given preferences can be used as a desired
pattern for bidding process. The uncertainty of the market prices is modeled by a set of possible scenarios
with assigned probabilities. Several risk criteria are introduced leading to a multiple criteria optimization
problem. The risk criteria are well appealing and easily computable (by means of linear programming) but
they meet the formal risk aversion standards. The aspiration/reservation based interactive analysis applied
to the multiple criteria problem allows us to find an efficient solution (generation scheme) well adjusted to
the generator preferences (risk attitude).
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Introduction

Very complex systems are often beyond efficient direct control and management. There-
fore, in many countries various large scale technical systems, such as electric power
industry, or telecommunication sector, are undergoing unprecedented changes related to
deregulations. The trends are toward deregulating whole industries, that have tradition-
ally been a regulated monopoly, in order to allow for economic competition. On the
technical site, a whole industry sector, such as the electric power industry, is a large,
hierarchically coordinated system which has to provide various services to customers
and meet strict global performance objectives (power demand, frequency, voltage levels,
safety of delivery) and which has to manage various system-wide resources required to
assure proper operation of the system. These resources may belong to independent sub-
systems, which may be defined according to administrative divisions among particular
companies.
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Under deregulation, the elements of the system are undergoing drastic restructur-
ing and transformation from cost-conscious, regulated utilities to competitive market
participants. In the deregulated framework for control and management, instead of oper-
ating according to central rules and plans established by a hierarchical control structure
in a centralized system, the system operates through cooperative behavior of many in-
teractive subsystems which are organized as the competitive market participants. The
subsystems may have their own independent interests, values, different tasks, operations
and services.

The market mechanisms can be implemented through pool or bilateral arrange-
ments. A pool facilities the market by providing a forum for matching supply and de-
mand, where all transactions are cleared at the same price. These prices may be obtained
through some sort of iterative bidding process. In a bilateral market, supply and demand
are matched through individual contracts between buyer and seller, and each transaction
is cleared at a different price based on details agreed in the contract. A typical electric
power system may consist of one or many power pools that are operated at the same
level of hierarchy. Within each power pool the lower level of hierarchy may be formed
by independent utilities. Each utility owns some resources, such as generators (generat-
ing units) or transmission lines, it may enjoy some operating autonomy and may become
a competitive market participant. In this paper we focus on a generator (manager of a
power generation utility) as an active participant of the energy markets.

Bidding and clearing process is still a new phenomenon for the energy market par-
ticipants. Apart from the return maximization or the risk reduction, their operational
decisions must take into account various other objectives. A generator is then enforced
to serve as a decision maker (DM) dealing with new goals and decision processes as
well as new types of necessary information [16,38]. Under deregulation, the key obliga-
tion and responsibility of obtaining an optimal schedule of units, satisfying all the plants
technical requirements (unit commitment) is transferred from the Independent System
Operator to individual generators (decentralized unit commitment). The change in plan-
ning process enforces the generators to take into account various risk factors [39]. There
is a strong need for a decision support system (DSS) dedicated to electricity market par-
ticipants. An appropriate system should offer all the necessary functionality to support
decision processes in several energy market segments: long-term production planning
and contracts administration, as well as short-term planning and spot market bids prepa-
ration. Furthermore, the system should provide solutions consistent with the generator’s
preferences and risk attitude.

Various formal methods were introduced for strategic decisions related to the en-
tire power system including priority lists, dynamic programming, integer programming
(branch and bound methods), Benders decomposition, Lagrangian relaxation [6,8,12,
24,30,31,37,40]. Methods of stochastic optimization and multiple criteria programming
were applied to power generation planning with both supply-side [3] and demand-side
management [28]. Especially, decisions related to the environmental impact of the power
production were analyzed with the use of multiple criteria optimization and related de-
cision support techniques [15,50]. On the other hand, the single generator decisions
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considered for a long horizon are hard to formal modeling and effective optimization for
the sake of their mostly qualitative attributes as well as a strong uncertainty factor.

In the recent years various methods of scheduling and bidding in a competitive
market have been addressed. The main goal of the research is to provide methods max-
imizing suppliers profit from selling energy in the spot market and through bilateral
contracts. Paper [4] proposes mixed-integer linear programming approach that allows a
rigorous modeling of thermal unit technical constraints. Methods for price risk manage-
ment in hydropower systems are detailed in [12,29]. Decision analysis tools for genco
dispatchers are analyzed in [39]. Paper [17] presents method for solving the unit com-
mitment problem by simulation of a competitive market. Procedures for bidding and
market clearing are described under the assumption of perfect competition. Discussion
on long-term project valuation and power portfolio management in a competitive market
is presented in [42].

Self-scheduling and bidding strategies were analyzed under various specific model-
ing assumptions like, availability of the complete information about competitors [26], the
limited number of suppliers/buyers [23,47], the linear form of the supply function [5,43]
and many others [13,29,35,41,53]. One of the crucial assumption is related to the price
making capability of a single supplier. Typical game theory approaches [10,11] cover
price-making suppliers. However, while dealing with a perfectly competitive market of
relatively small suppliers one may accept the price-taker assumption. This assumption
allows one to simplify significantly the model. In particular, from the perspective of a
producer who does not influence significantly the market prices, the prices themselves
can be modeled as uncertain quantities with the scenarios approach. Under the price-
taker assumption self-scheduling problem can be decomposed by thermal units. But in
some circumstances, units cannot be considered independently, because of generation
and transmission constraints relating commitment decisions for several units.

High volatility of energy market forces participants to be able to make tactical
and operational decisions repeatedly in a short time under risk. Mathematical models
and formal methods are necessary to achieve satisfactory results on time. Therefore,
while designing models and algorithms for a DSS to be used by a single generator, we
especially focus on the short-term planning problems for the energy market. Other mar-
kets, e.g., ancillary service market are not addressed. We also assume the supplier is a
price-taker, small producer with few generators, which are technically related. The pa-
per shows that the stochastic short-term planning model can be effectively used as a key
analytical tool within the decision support process concerning self scheduling task. As a
result of presented model optimization, one obtains the best generation schedule in the
meaning of provided preferences. The schedule can be used as a basis for the construc-
tion of a bidding strategy. It is a complex and hardly formalized process, although there
are some initial results in its formalization [46]. Therefore, we leave this issue out of the
scope of our paper assuming that the schedule is used by the decision maker (analyst) to
develop the bidding strategy. The latter assumption is consistent with the basic decision
support paradigm of avoiding any attempts to replace a decision maker with any (stiff)
automatic optimization tool [50].
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There are two basic short-term planning decision problems: unit commitment and
generation dispatch. Unit commitment is the process of deciding when and which gen-
erating units to start-up and to shut-down [1]. Generation dispatch is the process of
deciding what the individual power outputs should be of the scheduled generating units
at each time point. The short-term self-scheduling planning model, we consider, covers
both types of decision processes simultaneously. One needs to find out the start-up and
shut-down schedule as well as the hourly production of each unit. Nevertheless, such
a deterministic planning model can be applied only to search for an optimal schedule
of the units operations when the final results of the bidding process are known and the
generator needs to maximize profit while providing a reliable supply of the agreed load
and fulfilling all the technical constraints. To make the planning model capable to sup-
port operational decisions including the bids preparation process, uncertainty of market
prices is introduced to the model thus transforming it into a stochastic one. The uncer-
tainty is modeled by a set of possible scenarios with assigned probabilities which allow
us to build several risk criteria leading to a multiple criteria optimization problem. The
aspiration/reservation based interactive analysis is applied to the multiple criteria prob-
lem thus allowing to find an efficient solution (generation schedule) well adjusted to the
generator preferences (risk attitude). This “optimal” generation schedule may be used
while dealing with operational decisions.

The paper is organized as follows. In the next section the short-term planning
model is formulated. The technical constraints result in a mixed-integer linear program
while the market price uncertainty leads to the stochastic objective function. Section 3
introduces the risk measures to be used as multiple criteria for modeling the generator’s
risk attitude. Apart from typical dispersion measures some extreme events risk mea-
sures are available. In section 4 the aspiration/reservation based interactive technique to
handle multiple criteria is described. It is followed by an illustrative example analyzed
in section 5. Finally, in section 6 we outline the structure of the entire DSS, we are
developing, for active participants of the energy market.

1. Short-term planning model

The short-term planning and scheduling problems are considered for a horizon corre-
sponding to a few cycles of the market auction (typically a few days). The generator
seeks an optimal schedule of the units operation while the decisions on the units opera-
tion may strongly affect the financial result (the return). The main scheduling decisions
are related to the units commitment in a sense that it must be decided when and which
generating units to start-up and to shut-down. Opposite to the traditional unit commit-
ment problem where the generator has no option beside of providing a reliable supply
of the required load, the decentralized unit commitment decisions assume the generator
to be responsible for meeting all the technical constraints. The failure of completing of
any technical requirement may result in infeasible schedules and severe financial losses.
Hence, in the planning model they are implemented as stiff constraints for the optimiza-
tion process [16].
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The unit commitment problem can be modeled as a mixed-integer linear pro-
gram [9]. It covers some number of generation units j ∈ J scheduled for several time
units (hours) h ∈ H within the horizon. To model the main scheduling (commitment)
decisions we introduce two set of binary (integer 0/1) variables vjh and rjh defined for
each generation unit and for each hour (time unit) within the horizon:

vjh =
{

1, if unit j is committed at hour h,
0, otherwise,

rjh =
{

1, if unit j is concluded start-up at hour h,
0, otherwise.

To preserve the logic of running and start-up changes the binary variables have to satisfy
the following constraints:

vjh − vj,h−1 � rjh � vjh ∀j, h, (1)

vj,h−1 +
Tj∑
t=0

rj,h+t � 1 ∀j, h, (2)

T 0
j∑

h=0

rjh = 0 ∀j, h, (3)

where Tj – start-up time of unit j , T 0
j – the earliest time when unit j can be committed.

Inequalities (1) guarantee that vjh − vj,h−1 = 1 (unit j committed at hour h while
not being committed at hour h− 1) implies rjh = 1 (start-up of unit j concluded at hour
h), and rjh = 1 implies vjh = 1 (unit j is committed at hour h). Constraints (2) enforce
the minimum start-up time while inequalities (3) define the initial conditions by intro-
ducing the earliest time after the beginning of the planning horizon, when unit j can be
committed. Inequalities (1)–(3) represent only basic unit commitment constraints [16]
but the discrete variables enable easy modeling of various additional requirements. For
instance, the requirement that unit 1 and unit 2 are allowed to work only when at least
one of units 3 or 4 is working can be modeled with the following inequality [51]:
v1,h + v2,h � 2v3,h + 2v4,h.

To model the generation dispatch decisions, we introduce (continuous) variables
Pjh representing power output of unit j at hour h. The power output (if not equal to 0)
need to be always between the minimum and the maximum power output of the corre-
sponding unit. This is enforced by the constraints:

P l
j vjh � Pjh � P u

j vjh ∀j, h, (4)

where P u
j – maximum power output of unit j , P l

j – minimum power output of unit j .
Again, inequalities (4) represent only the simplest constraints related to the gener-

ating units characteristics. Nevertheless, they can be extended to take into account more
specific generation characteristics.
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Finally, we need to model the generation costs corresponding to various generation
schedules. The generation costs are defined by the following quantities:

• K0 – overall fixed cost of the generator;

• bj – start-up cost of unit j ;

• Kjh – (variable) generation cost of unit j at hour h.

While quantities K0 and bj represent some constant data, the generation cost Kjh is
a variable representing the cost depending on the scheduled generation level at unit j .
That means, Kjh = Kj(Pjh) where Kj is a function representing variable generation
costs of unit j . We assume piecewise linear convex functions:

Kj(Pjh) =
{

0, if Pjh = 0,
Ak

jPjh + Bk
j , if Pjh ∈ I k,

where Ak
j – slope of the kth linear segment of variable cost, Bk

j – intercept of the kth
linear segment of variable cost, I k – power output interval for the kth linear segment.

Due to its convexity, the variable cost function can be expressed as

Kj(Pjh) = max
k

{
Ak

jPjh + Bk
j vjh

}
.

Hence, under the natural assumption on the cost minimization, the variable generation
cost Kjh can be defined in the model by the following inequalities:

Kjh � Ak
jPjh + Bk

j vjh ∀j, k, h. (5)

While we have introduced constant start-up cost, one may easily consider start-up
cost as function of the boiler temperature. Our model can be also extended to consider
various costs for cold, warm and hot start-ups, respectively.

For better modeling of thermal units, nonconvex (piecewise linear) cost functions
may be introduced by the use of some auxiliary binary variables [4,51], thus preserving
the mixed integer structure of the entire model.

When the auction cycle is completed and the market-clearing prices are known it is
possible to calculate the total return of the generator implementing a specific generation
schedule:

z =
∑
h

∑
j

(chPjh − Kjh − bj rjh) − K0, (6)

where z – variable representing the total return, ch – market-clearing price at hour h.
Formula (6) represents the return from selling the generated power over the entire

planning horizon at market-clearing prices. It includes revenues from selling reduced by
the costs of production and start-ups.

Formula (6) can be applied to search for an optimal schedule of the units opera-
tions when the final results of the bidding process are known and the generator needs to
maximize profit while providing a reliable supply of the agreed power supply (load) and
fulfilling all the technical constraints. The corresponding optimization problem depends



MULTIPLE CRITERIA DECISION SUPPORT 85

on maximization of z subject to generation constraints (1)–(5) and the load requirements
which in the simplest form can be written as

∑
j

Pjh = Dh, (7)

where Dh denotes the required power load at hour h. Such a short term planning model is
a Linear Programming (LP) problem including some integer decision variables (Mixed-
Integer LP). When considered for the entire power system it leads to a large-scale prob-
lems requiring special techniques [6] to be solved. However, the problems related to
a single generator managing several generation units can be effectively solved with a
standard general purpose Mixed-Integer LP solvers.

The short-term planning model, formulated above, is based on maximization of
the overall return z as a function of the generation decisions. All the model parameters
(data) have been assumed to be known in advance. In particular, the energy prices have
been assumed known leading to the deterministic return. In the decision process, we
consider, all the data are related to the future which causes their uncertainty. Uncertainty
of the energy prices is crucial while supporting decisions of a market participant since it
directly introduces the risk factor into the return measurement. Therefore, we suggest,
the stochastic planning model with uncertain energy prices as an optimization kernel of
the decision support system.

We use the scenario analysis approach [3,36] for incorporating uncertainty into the
model. One can consider a set S of possible energy price scenarios. Each scenario s ∈ S

has assigned the weight ps that reflects the probability of its occurrence. Hence, the
overall return is a discrete random variable Z defined by its realizations zs under several
scenarios s ∈ S. That means zs represents the overall return under a given scenario
of energy prices. It is a function of the generation decisions given by the deterministic
return formula (6) with the price coefficients defined according to the specific scenario s,
i.e.,

zs =
∑
h

∑
j

(
cshPjh − Kjh − bj rjh

) − K0 ∀s ∈ S, (8)

where csh denotes the energy price in hour h under scenario s while all the other parame-
ters are given as in the deterministic model.

Although the number of all price scenarios can be potentially extremely huge, in
practice, a limited number of scenarios can be used as a representative set [29]. In most
of historical demand scenarios there are time zones, where demand trends are similar,
e.g., peak demand, increasing demand curve zone. We can even group all hours in a day
into few demand time zones, so that the number of reasonably and remarkably different
demand scenarios can be reduced. Moreover, when experts deal with scenarios, they
consider rather limited number of demand scenarios.
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2. Risk and criteria

A common approach to optimize uncertain return is to focus on its expected value (the
mean). In the case of our scenario analysis the expected return

z̄ = E{Z} =
∑
s∈S

zsps (9)

can easily be used as a combined optimization criterion. Such a simple deterministic
equivalent of the stochastic decision problem melds scenarios corresponding to all de-
grees of return (or loss) and probability of occurrence. Due to the nature of mathematical
averaging the mean value criterion equally treats a guaranteed return as well as a lottery
of possible high losses or high returns resulting in the same expectation. In other words,
the mean value criterion (9) itself is not capable to model typical risk attitudes.

Following the seminal work by Markowitz [27], the problem of optimization under
risk is modeled as a mean–risk bicriteria optimization problem where the mean z̄ is max-
imized and some risk measure ρ(Z) is minimized. In the original Markowitz model [27]
the risk is measured by the standard deviation or variance: σ 2(Z) = E{(z̄−Z)2}. Several
other risk measures have been later considered thus creating the entire family of mean–
risk (Markowitz-type) models. While the original Markowitz model forms a quadratic
programming problem, many attempts have been made to linearize the optimization pro-
cedure (cf. [44] and references therein). The LP solvability is very important for our
application where the feasible set of generation decisions is defined by the mixed integer
LP constraints (1)–(5).

The mean–variance model is frequently criticized as not consistent with axiomatic
models of preferences for choice under risk. Namely, except for the case of returns meet-
ing the multivariate normal distribution, the mean–variance model may lead to inferior
conclusions with respect to the stochastic dominance order. The concept of stochastic
dominance order [48] is based on an axiomatic model of risk-averse preferences. In
stochastic dominance, uncertain returns (random variables) are compared by pointwise
comparison of functions constructed from their distribution functions. The first function
F

(1)
Z is given as the right-continuous cumulative distribution function of the rate of return

F
(1)
Z (η) = FZ(η) = P{Z � η}. The second function is derived from the first as

F
(2)
Z (η) =

∫ η

−∞
FZ(ξ) dξ for real numbers η,

and defines the (weak) relation of second degree stochastic dominance (SSD)

Z′ SSD Z′′ ⇐⇒ F
(2)
Z′ (η) � F

(2)
Z′′ (η) for all η.

If Z′ SSD Z′′, then Z′ is preferred to Z′′ within all risk-averse preference models where
larger outcomes are preferred. It is therefore a matter of primary importance that a model
for the uncertain return optimization be consistent with the SSD relation, in the sense that
Z′ SSD Z′′ implies that the performance measure of Z′ takes a value not worse than
that of Z′′.
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Function F
(2)
Z used to define the SSD relation, can also be presented as follows [33]:

F
(2)
Z (η) = P{Z � η}E{η − Z|Z � η} = E

{
max{η − Z, 0}} (10)

thus expressing the mean below-target deviations (the expected shortages) for each tar-
get return η. Hence, the SSD relation can be seen as a multidimensional (continuum-
dimensional) risk measurement scheme. It is consistent with a very intuitive understand-
ing of the notion of risk as a possible failure of achieving some targets.

The simplest scalar risk measure induced by the stochastic dominance is the mean
below-target deviation for the specific target value τ :

δ̄τ (Z) = E
{

max{τ − Z, 0}} = F
(2)
Z (τ ). (11)

In the case of returns represented by their realizations under several scenarios, as we deal
with, the mean below-target deviation is a convex piecewise linear function of realiza-
tions zs: δ̄τ (Z) = ∑

s∈S max{τ−zs, 0}ps . Hence, for any target τ , the mean below-target
deviation is LP computable with respect to values zs .

The mean below-target deviations are very useful for decisions with clearly de-
fined minimum acceptable returns. In the energy planning problem, we consider, such a
critical target is defined by the zero return level. We use the mean below-zero deviation

δ̄0(Z) = E
{

max{−Z, 0}} (12)

as a risk criterion expressing the mean loss.
Certainly one may consider some other specified return levels as possible targets to

define risk criteria with the corresponding mean below-target deviations. Alternatively,
when the expected return is already used as a performance measure, then one may con-
sider extending the concept of shortage by using the mean itself as a target. This results
in the risk measure known as the downside mean semideviation from the mean

δ̄(Z) = E
{

max{z̄ − Z, 0}} = F
(2)
Z (z̄). (13)

The downside mean semideviation from the mean is always equal to the upside one [33]
(E{max{z̄−Z, 0}} = E{max{Z− z̄, 0}}) and we will call it simply the mean semidevia-
tion. Actually, the mean semideviation is a half of the mean absolute deviation from the
mean (the MAD measure), δ̄(Z) = (1/2)E{|z̄ − Z|}. Hence, the corresponding mean–
risk approach is equivalent to the so-called MAD model [21] which is an LP computable
Markowitz-type model. For returns given with a discrete random variable represented
by its realizations zs , the mean semideviation (13) is LP computable.

The expected value of risk does not accentuate the extreme events and their conse-
quences, thus misrepresenting what would have been a perceived unacceptable risk [14].
The expected value of shortage to a specific target or to the mean return when used as a
risk measure assumes the decision maker to have a constant trade-off for a unit deviation
from the target. This assumption does not allow for the distinction of risk associated
with larger losses. Therefore, we need to introduce additional risk criteria to emphasize
consequences of more pessimistic scenarios [14].
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For a discrete random variable Z represented by its realizations zs , the worst real-
ization

M(Z) = min
s∈S

zs (14)

is a well-appealing extreme scenario performance measure. Maximization of the worst
realization corresponds to a common approach to multiple deterministic outcomes. The
so-called maximin (or minimax) approaches are crucial solution concepts in multiple
criteria optimization [45]. Recently, the measure M(z) was applied to portfolio opti-
mization [52]. The worst realization although expressing the notion of risk is not a
typical (dispersion type) risk measure as its larger values are preferred. The maximum
(downside) semideviation "(Z) = z̄ − M(Z) = maxs∈S(z̄ − zs) may be considered
the corresponding (dispersion) risk measure. The worst realization can easily be intro-
duced to our decision model as additional risk criterion z = M(Z) defined by the LP
computable formula:

z = max y s.t. y � zs, for s ∈ S, (15)

where y is an auxiliary (unbounded) variable.
A natural generalization of the measure M(Z) is the worst conditional expectation

defined as the mean of the specified size (quantile) of worst realizations. For the simplest
case of equally probable scenarios (ps = 1/|S|), one may define the worst conditional
expectation Mk/|S|(Z) as the mean return under the k worst scenarios. In general, for
any tolerance level 0 < β � 1 (replacing the quotient k/|S|) the worst conditional
expectation is defined as

Mβ(Z) = 1

β

∫ β

0
F

(−1)
Z (α) dα for 0 < β � 1, (16)

where F
(−1)
Z (p) = inf{η: FZ(η) � p} is the left-continuous inverse of the cumulative

distribution function FZ . Note that M1(Z) = E{Z} and Mβ(Z) tends to M(Z) for β

approaching 0.
By the theory of convex conjugent (dual) functions, the worst conditional expecta-

tion may be defined by optimization [32]:

Mβ(Z) = max
η∈R

(
η − 1

β
F

(2)
Z (η)

)
= max

η∈R

(
η − 1

β
E

{
max{η − Z, 0}}

)
, (17)

where η is a real variable taking the value of β-quantile Qβ(Z) = F
(−1)
Z (β) at the opti-

mum. For any 0 < β � 1 the conditional worst realization Mβ(Z) is an SSD consistent
measure. Actually, the conditional worst expectations provide an alternative character-
ization of the SSD relation [32]. Similar to the worst realization, the worst conditional
expectation although expressing the notion of risk is not a typical (dispersion type) risk
measure as its larger values are preferred. The conditional (downside) semideviation
"β(Z) = z̄ − Mβ(Z) may be considered the corresponding (dispersion type) risk mea-
sure.
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While the value of β-quantile Qβ(Z) = F
(−1)
Z (β) is commonly called Value-at-

Risk (VaR) measure, the worst conditional expectation is closely related to the so-called
Conditional Value-at-Risk (CVaR) or Expected Shortfall which may be expressed as
CVaRβ(Z) = E{Z|Z � Qβ(Z)}. Exactly, Mβ(Z) = CVaRβ(Z) in the case of continu-
ous distributions of returns, while they can take different values for discrete distributions.
For instance, with returns Z given as

P{Z = ξ } =




0.03, ξ = −10,
0.05, ξ = −4,
0.90, ξ = 10,
0.02, ξ = 25,
0, otherwise,

for tolerance level β = 0.05 we get M0.05(Z) = (−10 · 0.03 − 4 · 0.02)/0.05 = −7.6
while Q0.05(Z) = −4 and CVaR0.05(Z) = (−10 · 0.03 − 4 · 0.05)/0.08 = −6.26. Nev-
ertheless, recently considered models for portfolio optimization [2] use formula (17) for
the worst conditional expectation as a computational approximation to CVaR for contin-
uous distributions. Therefore, the maximization of the worst conditional expectation we
will refer to as the CVaR criterion optimization.

For a discrete random variable represented by its realizations zs , problem (17) be-
comes an LP. This allows us to extend the decision model with the CVaR risk criterion
zβ = Mβ(Z) defined by the LP computable formula:

zβ = max

(
yβ − 1

β

∑
s∈S

zβs ps

)
s.t. yβ − zβs � zs, zβs � 0 for s ∈ S, (18)

where yβ is an auxiliary (unbounded) variable.
Although well defined for any 0 < β � 1, the CVaR criterion with a relatively

small value of the tolerance level β is interesting as a potential measure of extreme risk.
In our system we use the tolerance level 0.05 to define the CVaR criterion. Certainly
one may consider a different value or to introduce a few CVaR criteria related to several
tolerance levels.

Finally, for our stochastic power generation decision problem we are able to for-
mulate a deterministic equivalent which is based on multiple criteria optimization of the
following performance measures:

• the mean return to be maximized;

• the mean loss to be minimized;

• the mean semideviation below the mean return to be minimized;

• the worst return realization to be maximized;

• the CVaR criterion to be maximized.

While the first criterion is focused on the expected return maximization, all other four
criteria are risk related. The risk criteria represent quite different risk measures and,
therefore, they allow us to model various risk attitudes of a DM.
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In order to keep the multiple criteria model consistent we unify all the criteria to
be maximized. Instead of the mean loss δ̄0(Z) minimization we will rather maximize its
complement criterion

z− = 0 − δ̄0(Z) = E
{
min{Z, 0}} (19)

expressing the mean loss-effected underachievement. In the scenario analysis approach
the latter is LP computable as

z− = max

(
−

∑
s∈S

z−
s ps

)
subject to z−

s � −zs, z−
s � 0 for s ∈ S. (20)

Similarly, we replace the mean semideviation δ̄(Z) minimization with maximization of
its complement criterion

z̄u = z̄ − δ̄(Z) = E
{
min{Z, z̄}} (21)

expressing the mean below-mean underachievement. The latter is LP computable with
respect to the realizations zs as:

z̄u = max
∑
s∈S

zu
sps subject to zu

s � zs, zu
s � z̄ for s ∈ S. (22)

With these modified criteria we get the multiple criteria maximization model

max
{
q = (q1, q2, . . . , qm) | q ∈ Q

}
, (23)

where q1 = z̄, q2, . . . , qm represent the risk criteria, and Q represents the set of attainable
values when taking into account the generation constraints and the price scenarios. We
essentially focus on the case of m = 5 and q2 = z−, q3 = z̄u, q4 = z, q5 = zβ .
However, some risk criteria may be not used in the model or one may consider more
criteria, like a few CVaR criteria for various tolerance levels. Due to the use multiple
risk criteria, model (23) provides tools for modeling various risk attitudes in connection
with the overall return maximization. It is important to notice that the model preserves
risk-averse preferences since it is consistent with the SSD relation. Exactly, from the
properties of the risk criteria used in the model [32,33], the multiple criteria model (23)
is SSD consistent in the sense that Z′ SSD Z′′ implies q ′

i � q ′′
i for all i = 1, . . . , m.

Note that all the criteria used in model (23) are LP computable with respect the
return realizations zs . Hence, the multiple criteria model maintains the original structure
of the deterministic planning model. Exactly, due to LP computable formulas (9), (20),
(22), (15) and (18), the set Q of attainable outcomes in model (23) can be expressed in
the following form:

q1 =
∑
s∈S

zsps,

q2 � −
∑
s∈S

z−
s ps,
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z−
s � −zs, z−

s � 0, for s ∈ S,

q3 �
∑
s∈S

zu
sps,

zu
s � zs, zu

s � q1, for s ∈ S,

q4 � zs, for s ∈ S,

q5 � yβ − 1

β

∑
s∈S

zβs ps,

yβ − zβs � zs, zβs � 0, for s ∈ S,

zs =
∑
h

∑
j

(
cshPjh − Kjh − bj rjh

) − K0, for s ∈ S,

and generation constraints (1)–(5).

3. Interactive multiple criteria analysis

In the previous section we formulated our decision problem under uncertainty as
multiple criteria optimization model (23). In the model, an outcome vector q =
(q1, q2, . . . , qm) evaluates a corresponding generation scheme with respect to the speci-
fied criteria of mean return and four risk measures. It is clear that an outcome vector is
better than another if all of its individual outcomes are better or at least one individual
outcome is better whereas no other one is worse. Such a relation is called domination
of outcome vectors. Unfortunately, there usually does not exist an outcome vector that
dominates all others with respect to all the criteria. Thus in terms of strict mathemati-
cal relations we cannot distinguish the best outcome vector. The nondominated vectors
are incomparable on the basis of the specified set of criteria. The decisions that gener-
ate nondominated outcome vectors are called efficient or Pareto-optimal solutions to the
multiple criteria problem.

In theory, one may consider a multiple criteria optimization as a problem depending
on identification of the entire set of efficient solutions. We are interested, however, in an
operational use of multiple criteria analysis as a DSS module to help the decision maker
to select one efficient solution for implementation. Certainly, the original criteria do not
allow one to select any efficient solution as better than any other one. Therefore, the
decision support process must depend on additional preference information gained from
the DM. This can be achieved with the so-called quasi-satisficing approach to multiple
criteria decision problems. The best formalization of the quasi-satisficing approach to
multiple criteria optimization was proposed and developed mainly by Wierzbicki [49]
as the reference point method. The reference point method was later extended and,
eventually, led to efficient implementations of the so-called aspiration/reservation based
decision support (ARBDS) approach with many successful applications [25,50].

The ARBDS approach is an interactive technique. The basic concept of the inter-
active scheme is as follows. The DM specifies requirements in terms of aspiration and
reservation levels, i.e., by introducing acceptable and required values for several crite-
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ria. Depending on the specified aspiration and reservation levels, a special scalarizing
achievement function is built which may be directly interpreted as expressing utility to be
maximized. Maximization of the scalarizing achievement function generates an efficient
solution to the multiple criteria problem. The computed efficient solution is presented to
the DM as the current solution in a form that allows comparison with the previous ones
and modification of the aspiration and reservation levels if necessary.

While building the scalarizing achievement function the following properties of
the preference model are assumed. First of all, for any individual outcome qi more is
preferred to less (maximization). To meet this requirement the function must be strictly
increasing with respect to each outcome. Second, a solution with all individual outcomes
qi satisfying the corresponding reservation levels is preferred to any solution with at
least one individual outcome worse (smaller) than its reservation level. Next, provided
that all the reservation levels are satisfied, a solution with all individual outcomes qi
equal to the corresponding aspiration levels is preferred to any solution with at least one
individual outcome worse (smaller) than its aspiration level. That means, the scalarizing
achievement function maximization must enforce reaching the reservation levels prior
to further improving of criteria. In other words, the reservation levels represent some
soft lower bounds on the maximized criteria. When all these lower bounds are satisfied,
then the optimization process attempts to reach the aspiration levels. Thus, similar to
the goal programming approaches [7], the aspiration levels are then treated as the targets
but following the quasi-satisficing approach they are interpreted consistently with basic
concepts of efficiency in the sense that the optimization is continued even when the target
point has been reached already.

The generic scalarizing achievement function takes the following form [49]:

a(q) = min
1�i�m

{
ai

(
qi, q

a
i , q

r
i

)} + ε

m∑
i=1

ai
(
qi, q

a
i , q

r
i

)
, (24)

where ε is an arbitrary small positive number and ai : R
3 → R, for i = 1, 2, . . . , m,

are the partial achievement functions measuring actual achievement of the individual
outcome qi , with respect to the corresponding aspiration and reservation levels (qa

i and
qr
i , respectively). Thus the scalarizing achievement function is, essentially, defined by

the worst partial (individual) achievement but additionally regularized with the sum of
all partial achievements. The regularization term is introduced only to guarantee the
solution efficiency in the case when the maximization of the main term (the worst partial
achievement) results in a non-unique optimal solution.

The partial achievement function ai , can be interpreted as a measure of the DM’s
satisfaction with the current value of outcome of the ith criterion. It is a strictly increas-
ing function of outcome qi with value ai = 1 if qi = qa

i , and ai = 0 for qi = qr
i . Thus

the partial achievement functions map the outcomes values onto a normalized scale of
the DM’s satisfaction. Various functions can be built meeting those requirements [50].
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We use the piecewise linear partial achievement function introduced in [34]. It is given
by

ai
(
qi, q

a
i , q

r
i

) =




γ (qi − qr
i )

qa
i − qr

i

, for qi � qr
i ,

qi − qr
i

qa
i − qr

i

, for qr
i < qi < qa

i ,

α(qi − qa
i )

qa
i − qr

i

+ 1, for qi � qa
i ,

(25)

where α and γ are arbitrarily defined parameters satisfying 0 < α < 1 < γ . Parameter
α represents additional increase of the DM’s satisfaction over level 1 when a criterion
generates outcomes better than the corresponding aspiration level. On the other hand,
parameter γ > 1 represents dissatisfaction connected with outcomes worse than the
reservation level.

For outcomes between the reservation and the aspiration levels, the partial achieve-
ment function ai , can be interpreted as a membership function µi for a fuzzy target [54].
However, such a membership function remains constant with value 1 for all outcomes
greater than the corresponding aspiration level, and with value 0 for all outcomes below
the reservation level (figure 1). Hence, the fuzzy membership function is neither strictly
monotonic nor concave thus not representing typical utility for a maximized outcome.
The partial achievement function (25) can be viewed as an extension of the fuzzy mem-
bership function to a strictly monotonic and concave utility. One may also notice that
the aggregation scheme used to build the scalarizing achievement function (24) from
the partial ones may also be interpreted as some fuzzy aggregation operator [50]. In
other words, maximization of the scalarizing achievement function (24) is consistent
with the fuzzy methodology in the case of not attainable aspiration levels and satisfiable
all reservation levels while modeling a reasonable utility for any values of aspiration and
reservation levels.

Under the assumption that the parameters α and γ satisfy inequalities 0 < α <

1 < γ , partial achievement function (25) is strictly increasing and concave. Hence, it

Figure 1. Partial achievement function ai and corresponding fuzzy membership function µi .
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can be expressed in the form:

ai
(
qi, q

q

i , q
r
i

) = min

{
γ
qi − qr

i

qa
i − qr

i

,
qa
i − qr

i

qa
i − qr

i

, α
qi − qa

i

qa
i − qr

i

+ 1

}

which guarantees LP computability with respect to outcomes qi . Finally, maximization
of the entire scalarizing achievement function (24) can be implemented by the following
auxiliary LP constraints:

max a + ε

m∑
i=1

ai

s.t. ai � a, for i = 1, . . . , m,

ai � γ
qi − qr

i

qa
i − qr

i

, for i = 1, . . . , m,

ai � qi − qr
i

qa
i − qr

i

, for i = 1, . . . , m,

ai � α
qi − qa

i

qa
i − qr

i

+ 1, for i = 1, . . . , m,

where ai for i = 1, . . . , m and a are unbounded variables introduced to represent values
of several partial achievement functions and their minimum, respectively.

4. Illustrative example

In order to show an outline of the interactive multiple criteria analysis performed with
the ARBDS methodology, we consider a small sample problem. The data for short-term
planning model considered in this example are based on real-life characteristics of a
generator owning four coal-fired 180 MW units. The variable cost function of each unit
is considered to be convex and it is approximated by 3 linear pieces. The mean variable
cost is about 10.75 USD/MWh and start-up cost is 875 USD (for simplicity no shut-down
cost and constant start-up cost is considered). The units have quite elastic characteristics
(minimum power output is 60 MW), and their minimum up time is 5 hours. At the
beginning of the planning horizon all units have been off, but they could be committed
immediately at hour 0.

The planning horizon lasts for 48 hours which corresponds to two cycles of the
market auction. It is assumed that energy spot prices forecast over planning horizon
consists of 100 equally probable different scenarios. The scenarios have been generated
under the assumption that prices fluctuate over a day within specified probability distri-
bution. The price forecast distribution profiles are selected that the minimum price is
at least 8 USD (at night hours), the maximum price is at most 40 USD (at peak hours),
and the daily average price over all the scenarios is 19 USD. Hourly values of prices are
drawn at random from those distributions thus they may be considered to be correlated
as they are in historical data. Besides, a few distinctive scenarios are modeled. Hence,
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Table 1
The pay-off table with the utopia and the nadir vectors.

Optimized criteria Efficient solutions

z̄ z− z zβ z̄u

Mean return z̄ 239 757 5 038 −88 630 −72 358 170 319
Mean loss z− 124 704 0 0 5 630 100 580
Worst return z 71 315 0 13 238 15 115 57 193
CVaR zβ 77 558 0 12 371 15 901 62 233
Underachievement z̄u 233 406 3 147 −64 717 −50 436 174 410

Utopia 239 757 0 13 238 15 901 174 410
Nadir 71 315 5 038 −88 630 −72 358 57 193

we manage to limit strongly the set of scenarios while preserving its representative prop-
erties.

The generator is considered a DM who wants to schedule the units over the plan-
ning horizon, so that the energy can be sold to electricity market with the maximal return
taking into account uncertain spot prices. We emphasize that the spot prices are uncer-
tain at this moment since the auction process is still not completed. For this purpose, the
multiple criteria discussed in section 2 are introduced. Actually, the mean return is max-
imized, the mean loss is minimized while the worst return realization, the CVaR (with
tolerance level β = 5%) and the mean (below-mean) underachievement are maximized.
The example allows us to show the interactive process of the multiple criteria analysis
to identify the efficient solution, that meets the generator’s preferences the best.

Having defined all the generation units data and the spot prices scenarios, as the
first step of multiple criteria analysis the DM may examine the so-called pay-off table
(see table 1). It is computed by optimization of each criterion separately. Note that mean
loss is the only criterion to be minimized while all the other are maximized. Exactly,
the regularized criteria qi + ε

∑n
j=1 qj are optimized to guarantee efficiency of the com-

puted solution as well as proper reporting of unoptimized criteria values (which were
introduced with inequalities). The results form the pay-off table containing values of all
the criteria (columns) obtained while optimizing several individual criteria (rows). The
pay-off table is known to help to understand the conflicts between several criteria. It also
provides the DM with two reference vectors: the utopia and the nadir. The utopia vector
represents a collection of the best values of each criterion considered separately, and the
nadir vector expresses the worst values of each outcome noticed during optimization of
the other criteria. Coefficients of the utopia vector represent the best values of the corre-
sponding criteria over the entire efficient set, and the utopia vector itself is usually not at-
tainable. Coefficients of the nadir vector cannot be considered as the worst values of the
criteria over the efficient set but they usually may serve as first estimates of those bounds.

While analyzing table 1 we find out that the outcome values vary significantly
depending on selected optimization. One may get up to 239 757 USD mean return (when
this criterion is maximized) but it is achieved with a very risky generation schedule
which may result in losses of 88 630 USD under the worst scenario while the mean loss
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Table 2
An interactive search for a satisfying efficient solution.

Iteration Mean Mean Worst CVaR Below-mean
return z̄ loss z− return z zβ underach. z̄u

1 Reservation level 150 000 2 500 −37 500 −25 000 112 500
Aspiration level 250 000 0 13 250 16 250 175 000
Solution 181 689 596 −21 418 −11 928 142 009

2 Reservation level 150 000 0 −2 500 0 112 500
Aspiration level 250 000 −250 13 250 16 250 175 000
Solution 133 250 42 −2 680 3 330 107 438

3 Reservation level 150 000 0 −2 500 0 125 000
Aspiration level 250 000 250 13 250 16 250 175 000
Solution 137 375 70 −4 233 2 096 111 080

4 Reservation level 100 000 0 750 7 500 87 500
Aspiration level 137 500 −7 500 25 000 25 000 150 000
Solution 118 238 0 1 744 7 500 94 819

5 Reservation level 112 500 0 500 4 250 100 000
Aspiration level 137 500 −5 000 25 000 25 000 150 000
Solution 123 403 0 368 5 775 99 731

6 Reservation level 125 000 0 250 2 000 112 500
Aspiration level 200 000 −1 250 17 500 20 000 200 000
Solution 129 192 17 −1 380 4 442 104 229

is 5 038 USD. On the other hand, while maximizing the worst return, the generator may
get the guaranteed minimum 13 238 USD return but with the expected value of only
71 315 USD. One may easily notice that the mean return and the worst return realization
are the most conflicting criteria. Actually, the mean return maximization remains in a
conflict with all three extreme events risk criteria (the worst realization, the CVaR and
the mean loss) while it turns out to be quite a consistent with the mean underachievement
(representing some average events risk measure). Hence, we can distinguish two groups
of criteria: the first consisting of the mean return and the mean underachievement, the
second built of the worst realization, the CVaR and the mean loss. While a strong conflict
characterizes criteria from different groups, the criteria within the same group seem to
be quite consistent.

Having known the utopia vector one can start the interactive search for a satisfying
efficient solution. The DM uses aspiration and reservation levels to control the inter-
active analysis. The analysis is reported in table 2. At the beginning of the interactive
analysis the DM specifies the requirements starting from, in some sense reasonable neu-
tral requirements, which means that the aspiration levels for several criteria are close to
their utopia values and the reservation levels are set in the middle of attainable range
(see table 2, iteration 1). The efficient solution obtained in this step is better than the
specified reservation levels, with respect to all the criteria. The DM finds the solution
as too risky, especially in terms of the extreme events risk criteria. Therefore, stronger
reservation levels for those risk criteria are used in the next step. In the case of the mean
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loss criterion the reservation level is set at the corresponding utopia level (0) while the
aspiration level is advanced to an unattainable value (−250). This results in an efficient
solution (iteration 2) which is much more satisfying in terms of risk criteria but it is
more than 20% worse with respect to the mean return. Actually, both the mean return
and the mean underachievement are then below their reservation levels. Next, the DM
makes an attempt to improve a solution by focusing more on the average events risk cri-
terion. For this purpose, the reservation level for the mean underachievement is slightly
increased. Solution obtained in the third iteration brings a few percent improvement on
the mean return and the mean underachievement but significant worsening of the other
criteria.

Further, the DM wants to examine consequences of assuring a safe schedule which
can guarantee no losses to be suffered under any scenario. For this purpose, the aspira-
tion and reservation levels of the extreme events risk criteria are much more strengthen
while the ones corresponding to the mean return and the mean underachievement are
relaxed. Note that in order to stress the importance of some criteria the DM may set
levels which are not attainable. Iterations 4 and 5 results in solutions with the worst
return equal to 1 744 USD and 368 USD, respectively. However, the mean return in both
solutions is below 125 000 USD which makes the schedules not acceptable for our gen-
erator. Nevertheless, a strongly risk avert generator would probably select the solution
from iteration 4 as a very safe schedule for implementation.

The DM makes a further attempt to find a solution assuring higher mean return,
while not causing significant losses if more pessimistic scenario would occur. For this
purpose, the parameters from iteration 5 are modified by strengthening the requirements
on the mean return and the mean underachievement and by simultaneous slight relaxing
of the requirements on the extreme events risk criteria (iteration 6). Now, again there are
some losses that may occur, but the mean loss is only 17 USD. All the extreme events
risk criteria take much better values than those in iterations 2 and 3 while the mean return
and the mean underachievement are only about 5% worse. As the mean return exceeds a
reasonably high level of 125 000 USD with relatively good risk measures, the generator
finally accepts this result and concludes the interactive analysis.

The final selection of an efficient solution depends on the DM’s preferences. Nev-
ertheless, the example illustrates how the interactive analysis allows the DM to learn
the decision problem and to search effectively for a satisfying solution. For the pre-
sented example covering 4 generation units scheduled over 48 hours under uncertainty
described with 100 scenarios, the average computing time of each iteration is about 100
seconds on a Pentium III processor using the CPLEX optimization package [18]. While
analyzing larger problems related to scheduling 12 generation units over a horizon of
one week (168 hours), we have noticed the computing times approaching 10 minutes.
It should be emphasized that the size of the problem depends mostly on the number of
generation units and hours within considered horizon. The number of price scenarios has
a relatively less impact on the resulting MILP problem size. Thus, the multiple criteria
model, we consider, can be effectively used as an on-line interactive analysis tool within
a DSS for the energy market participant.
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5. The DSS concept

In a competitive electricity market there are the physical, financial and risk-management
operations. On the physical site, the electricity is produced by generators and delivered
from generators to customers through transmission and distribution facilities. Moreover,
ancillary services are needed to assure reliable operation of the system. Such services
include installed capability, operable capability, spinning and nonspinning reserves, au-
tomatic generation control (AGC), transmission services, etc.

On the financial site, the contracts and payments specify planned and actual gener-
ation and consumption, terms for payment for electrical energy, and financial issues of
contracted services. The risk-management arrangements (such as futures markets and
long-term contracts) are used to manage risk, and they may or may not have any relation
to the physical delivery of electricity.

The deregulated power system may be operated and managed as an interactive
network of the following different types of energy markets:

• forward energy market (Power Exchange), which may be in the form of a day-ahead
energy auction (DAA);

• planned production market (PPM), a day-ahead (or hour-ahead) market for power
generation plan which should meet the demand forecasts, systems resource con-
straints and system-wide performance objectives;

• real-time production market (RTM), the market for real-time power generation which
meets the real demand for energy and assures safety delivery and others system-wide
performance objectives;

• ancillary services markets (ASM), which provide appropriate level of systems ser-
vices (installed and operable capabilities, AGC, spinning reserve, fast nonspinning
reserve, slow reserve, transmission capacities).

The stochastic short-term planning model and its multiple criteria interactive analy-
sis tool is used as a key analytic module of the I-enviser decision support system [19].
The system is developed for companies that operate within power production, physical
power transactions and distribution in several energy market segments. The decision
process supported by I-enviser may be divided into three main stages (figure 2):

1. Data preparation. In this initial stage all the necessary information and data are
specified. Input data are gained from outer sources, prepared by the user, as well as
acquired from other applications. The user needs to specify all technical parameters
of the power production and network units but this customization is usually made
once and rarely modified. The main responsibility of the user at this stage is to define
what elements and in which way need to be included. In particular, it is important
to select the outside forecasting software (and appropriate parameters) to generate
representative scenarios and assign them appropriate probabilities.

2. Strategic decision support. In this stage decisions in the long-term or medium-term
time horizon are supported. The following main activities are handled:
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Figure 2. Decision process scheme.

• Contracts planning. Most long-term or medium-term contracts have some flexibil-
ity in time or/and load realization over the specified horizon. The system supports
the disaggregation of long-term contracts into shorter periods, leading to detailed
realization schedules if required.

• Long-term resources planning. The availability of all the assets is determined over
the horizon with respect to planned repairs as well as financial aspects.

3. Tactical and operational decision support. Operational tasks such as spot market
production planning, trading planning specify an implementation of the long-term
strategy. They are supported in a short time resolution and may be defined in the
following areas:

• Short-term contracts planning. The contracts realization schedules obtained in
strategic decision stage are further dispatched among generating units within a
short-term horizon.

• Production planning. Taking into account the prices forecast and the DM’s prefer-
ences, an optimal production plan satisfying all the operating constraints is deter-
mined.
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• Bidding. Depending on the optimal production plan, production costs and the
DM risk attitudes, optimal bids are built to be submitted on several energy market
segments.

• Final dispatching. Typical deterministic unit commitment problem is solved to find
the optimal production schedule after all the market clearing processes have been
finished.

Short-term planning module is a key element of the I-enviser system. The entire
tactical and operational decision support is achieved by repeatedly use of the module.
The module itself implements the stochastic short-term planning model and the multiple
criteria interactive methodology described in this paper. Directly, the stochastic model
with multiple risk criteria is used for optimization of contract positions and genera-
tion plans for several generation units, thus allowing to support the short-term contracts
planning and the production planning decisions, respectively. The risk criteria are well
appealing and the ARBDS interactive analysis tool enables to find an efficient solution
(production plan) well adjusted to the generator preferences (risk attitude).

The criteria express the expected return and several risk measures including the
extreme events measures. Hence, the multiple criteria model well depicts the uncertainty
of market prices, thus allowing the optimal generation plan to be used as a background
for various operational decisions. In particular, it can be used in the bids preparation
process enabling an active participation in the market segments based on the clearing
process mechanisms. A bid to be submitted for a particular market segment must meet
specific technical requirements. Therefore, I-enviser is equipped with a special bids
preparation module with predefined technical requirements. The bids themselves are
built for each hour (auction time unit) of the horizon, according to the production cost
caused by the implementation of the optimal production plan.

When the final results of the auction process are already known, the generation
dispatch module is used to define the final production schedule for all the units. The
short-term planning model based on maximization of the overall return as a function
of the generation decisions. As all the model parameters, including the energy prices,
are known one needs to maximize the deterministic return (6) under the typical unit
commitment constraints (1)–(5) and (7).

The strategic decisions are typically related to the long-term resource planning and
long-term contracts management. The decisions considered for a long horizon are hard
to formal modeling and effective optimization for the sake of their mostly qualitative
attributes as well as a strong uncertainty (risk) factor. The stochastic programming model
can be built for the long-term resource planning [3]. Hence, there is a possibility to
extend our short-term planning methodology based on the multiple risk criteria analysis
to be applied to the resource planning. This is our goal, but currently I-enviser depends
on possible use of external software to support resource planning decisions.

The long-term contracts management is currently supported only by verification
and evaluation of solution submitted by the DM. The solutions are evaluated with sim-
ple criteria, such as schedule feasibility or the expected return. Moreover, I-enviser
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provides various decision-aid tools from suitable data presentation and visualization to
simple heuristics. Nevertheless, an analytical decision support for dis-aggregation of the
long-term contracts obligations into shorter periods remains an important goal for our
future developments. We intend to exploit the concepts of equitable optimization [22] to
formalize dis-aggregation decisions.

6. Concluding remarks

As deregulation in the power sector is advancing, the electricity markets are moving
toward greater reliance on competition. In most markets the competition is limited to
include only the wholesale energy market. Even such a limited deregulation causes
that the traditional methods of operating in the energy market continue to change and
reformulate which makes the energy suppliers facing a necessity of new management
decisions. In a regulated market only technical aspects of generation are considered by
the generator (electric power producer), as the minimization of the production costs as-
sures the maximum profit. A new competitive environment relates the profit to a success
in bidding and clearing process, and the generator becomes an active market partici-
pant. This enforces the generator to serve as a decision maker (DM) dealing with new
goals and decision processes as well as new types of necessary information. There is
a strong need for a decision support system (DSS) dedicated to such electricity market
participants.

In this paper it has been shown that the stochastic short-term planning model can be
effectively used as a key analytical tool within the DSS for active participants of the elec-
tricity markets. The technical constraints result in a mixed-integer linear program while
the market price uncertainty leads to the stochastic objective function. The uncertainty
is modeled by a set of possible scenarios with assigned probabilities. Several risk mea-
sures have been introduced to be used as multiple criteria for modeling the generator’s
risk attitude. Apart from typical dispersion measures some extreme events risk measures
are available. The aspiration/reservation based interactive analysis is applied to the mul-
tiple criteria problem thus allowing to find an efficient solution (generation schedule)
well adjusted to the generator’s preferences (risk attitude). All the criteria are LP com-
putable while the feasible set of generation decisions defined by the mixed-integer LP
constraints. Our computational experience shows that the resulting mixed-integer LP
problems can be effectively solved for the scheduling several generation units over a
horizon covering up to one week (168 hours) with 100 price scenarios.
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