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Abstract. Classical approaches to location problems are based on the minimization of the average distance
(the median concept) or the minimization of the maximum distance (the center concept) to the service
facilities. The median solution concept is primarily concerned with the spatial efficiency while the center
concept is focused on the spatial equity. The k-centrum model unifies both the concepts by minimization of
the sum of the k largest distances. In this paper we investigate a solution concept of the conditional median
which is a generalization of the k-centrum concept taking into account the portion of demand related to the
largest distances. Namely, for a specified portion (quantile) of demand we take into account the entire group
of the corresponding largest distances and we minimize their average. It is shown that such an objective,
similar to the standard minimax, may be modeled with a number of simple linear inequalities. Equitable
properties of the solution concept are examined.
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1. Introduction

A host of operational models has been developed to deal with facility location optimiza-
tion (cf. [7,9,13]). Most classical location studies focus on the minimization of the mean
(or total) distance (the median concept) or the minimization of the maximum distance
(the center concept) to the service facilities [19]. The median solution concept is pri-
marily concerned with the spatial efficiency. As based on averaging, it often provides
solutions where remote and low-population density areas are discriminated in terms of
accessibility to facilities, as compared with centrally situated and high-population den-
sity areas. For this reason, while locating public services the center solution concept is
usually applied to minimize the maximum distance (travel time) between any consumer
and the closest facility. As the minimax objective primarily addresses the geographical
equity issues, this approach is of particular importance in spatial organization of emer-
gency service systems.

The center approach is consistent with the Rawlsian [25] theory of justice, espe-
cially when additionally specified as the lexicographic center [20]. On the other hand,
locating a facility at the center may cause a large increase in the total distance thus
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generating a substantial loss in spatial efficiency. This has led to a search for some
compromise solution concept. Halpern [10] introduced the λ-cent-dian as a parametric
solution concept based on the convex combination of the two objectives representing the
minisum and the minimax approaches. Unfortunately, due to the lack of convexity, the
solution concept of λ-cent-dian may fail to provide a compromise location in the case of
discrete problems [21].

Another compromise solution concept was introduced by Slater [29] as the so-
called k-centrum where the sum of the k largest distances is minimized. If k = 1 the
model reduces to the standard center concept while with k = m it is equivalent to the
classical median model. Early works on the solution concept [1,2,29] were focused on
the case of the discrete single facility location on tree graphs. Peeters [24] studied the
single facility problem on a graph and he introduced the full classification of the related
criteria and solution concepts. Consistently with typical distribution characteristics, four
optimization criteria on outcomes (distances) were introduced: upper (lower) k-median
where the sum of the k largest (smallest) outcomes was minimized, and upper (lower)
k-center where the k largest (smallest) outcome itself was minimized. According to
this classification, the k-centrum should be rather called the upper k-median. Recently,
Tamir [30] has presented polynomial time algorithms for solving the multiple facility
k-centrum (upper k-median) on path and tree graphs, while Ogryczak and Tamir [23]
have shown that the upper k-median criterion can be modeled with an auxiliary set of
simple linear inequalities thus simplifying several k-centrum models.

The k-centrum concept is restricted to unweighted problems. Although some
weights are used to scale the specific distances [30] (which may be considered as a defi-
nition of distance dependent outcomes), the demand weights as defining the distribution
of clients are not considered. In this paper we introduce a parametric generalization of
the k-centrum concept applied to weighted problems by taking into account the portion
of demand related to the largest outcomes (distances). Namely, for a specified portion β

of demand we take into account the entire β portion (quantile) of the largest outcomes
and we consider their average as the (worst) conditional β-mean outcome. Following
the classification by Peeters [24], we call an (upper) conditional median every location
pattern which minimizes the corresponding conditional mean outcome. According to
this definition the concept of conditional median is based on averaging restricted to the
portion of the worst outcomes. When parameter β approaches 0, the conditional β-mean
tends to the largest outcome and the conditional median becomes the center. On the other
hand, for β = 1 the corresponding conditional median becomes the standard median.
For the unweighted location problems and β = k/m, the conditional β-mean represents
the average of the k largest outcomes thus modeling the k-centrum solution concept.

One of the disadvantages of the minimax approach to location problems is that it
is too crude and many quite different feasible solutions may be optimal with respect
to the minimax criterion. While using standard algorithmic tools to identify the min-
imax solution, one of many solutions is selected randomly. It causes that the centers
are highly unstable [26]. Furthermore, it often turns out that the distribution of spatial
units in relation to the location of facilities may make the minimax criterion partially
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passive. It arises, for instance, when an isolated spatial unit is located at a considerable
distance from all the locations of facilities. Minimization of the maximum distance is
then reduced to the minimization of the distance of that single isolated spatial unit [15]
leaving other location decisions unoptimized. The concept of conditional median, due
to averaging within the group of the worst outcomes, reduces this flaw of the center
approach.

While locating public facilities, the issue of equity is becoming important. Equity
is, essentially, an abstract socio-political concept that implies fairness and justice [27].
Nevertheless, equity can be quantified [3] and several equity maximizing approaches
to location problems have been developed and analyzed [6,8,14,16,17]. Moreover, the
concept of equitable multiple criteria optimization [12] is well suited for the locational
analysis [11,22]. The center model is an equitable approach [20]. It turns out that the
concept of conditional median preserves this property allowing simultaneously for wider
modeling of equitable preferences with the parameter.

The paper is organized as follows. In the next section we give a formal definition
of the conditional median solution concept. We show there that, similarly to the standard
center and the k-centrum [23], the conditional median may be found by solving an op-
timization problem with a linear objective and a number of auxiliary linear inequalities.
In section 3 we compare the conditional median to the classical parametric solution con-
cept of the λ-cent-dian [10]. It turns out that the former much better allows us to model
a compromise between the center and the median approaches. Finally, in section 4 we
discuss equitable properties of the conditional median. The conditional mean outcomes
turn out to be closely related to the absolute Lorenz curve which implies the equitable
properties of the corresponding solution concept.

2. The solution concept

The generic location problem that we consider may be stated as follows. There is given
a set I = {1, 2, . . . , m} of m clients (service recipients). Each client is represented by
a specific point in the geographical space. There is also given a set Q of location patterns
(location decisions). For each client i (i ∈ I ) a real valued function fi(x) of the loca-
tion pattern x has been defined. This function, called the individual objective function,
measures the outcome (effect) yi = fi(x) of the location pattern for client i [17]. In the
simplest problems an outcome usually expresses the distance. However, we emphasize
to the reader that we do not restrict our considerations to the case of outcomes measured
as distances. They can be measured (modeled) as travel time, travel costs as well as in
a more subjective way as relative travel costs (e.g., travel costs by clients incomes) or
ultimately as the levels of clients dissatisfaction (individual disutility) of locations. In
typical formulations of location problems related to desirable facilities a smaller value
of the outcome (distance) means a better effect (higher service quality or client satisfac-
tion). This remains valid for location of obnoxious facilities if the distances are replaced
with their complements to some large number. Therefore, without loss of generality, we
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can assume that each individual outcome yi is to be minimized, and the location problem
may be stated as the following multiple criteria minimization problem:

min
{
f(x): x ∈ Q

}
(1)

where f = (f1, . . . , fm) is a vector of the individual objective functions which measure
the outcome (effect) yi = fi(x) of the location pattern x for client i.

Typically, some additional weights wi > 0 are included into the location model
to represent the service demand. Integer weights can be directly interpreted as num-
bers of unweighted clients located at exactly the same place (with distances 0 among
them). Theoretically, one may consider that the weighted problem is transformed (dis-
aggregated) to the unweighted one (with all the demand weights equal to 1). Such a
disaggregation is possible for integer as well as rational weights, but it usually dramat-
ically increases the problem size. Therefore, we consider solution concepts which can
be applied directly to the weighted problem. Since the demand weights describe the
distribution of outcomes (distances), we will use the normalized weights

w̄i = wi

/ m∑
i=1

wi for i = 1, . . . , m, (2)

rather than the original quantities wi . Note that, in the case of unweighted problem (all
wi = 1), all the normalized weights are given as w̄i = 1/m.

A wide gamut of location problems can be considered within the framework of
model (1). We do not assume any special form of the feasible set while analyzing prop-
erties of the solution concepts. Similarly, we do not assume any special form of the
individual objective functions nor their special properties (like convexity). Therefore,
the results of our analysis apply to various location problems covering discrete as well
as continuous location decisions. The only assumption specifies the finite set of clients.

The classical approaches to location problems use either the median or the center
solution concept. Both the median and the center solution concepts are well defined for
location models using weights wi > 0 to represent service demand (several clients at
the same geographical point). Exactly, for the weighted location problem, we consider,
the median solution concept is defined by the minimization of the objective function
expressing the mean (average) outcome

µ(y) =
m∑
i=1

w̄iyi

but it is also equivalent to the minimization of the total outcome
∑m

i=1 wiyi . The center
solution concept is defined by the minimization of the objective function representing
the maximum (worst) outcome

M(y) = max
i=1,...,m

yi

and it is not affected by the demand weights at all.
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A natural generalization of the maximum outcome M(y) is the (worst) conditional
mean outcome defined as the mean of the specified size (quantile) of the worst (largest)
outcomes. For the simplest case of the unweighted location problem one may distin-
guish the k largest outcomes (the k worst-off clients) and define the conditional mean
outcome as the mean of the k distinguished outcomes. This can be mathematically
formalized as follows. First, we introduce the ordering map � :Rm → Rm such that
�(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) � θ2(y) � · · · � θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . , m. The (worst) conditional
k/m-mean outcome Mk/m(y) is given then as

Mk/m(y) = 1

k

k∑
i=1

θi(y) for k = 1, . . . , m. (3)

The minimization of the criterion (3) defines the upper k-median model [24] (or
k-centrum).

The quantity θ1(y), representing the largest distance, can easily be computed with
auxiliary linear inequalities:

θ1(y)= min t

s.t. yi � t for i = 1, . . . , m.

A similar formula can be given for any θk(y) although requiring the use of integer (bi-
nary) variables. Namely, for any k = 1, 2, . . . , m, the following formula is valid:

θk(y)= min t

s.t. yi � t + Szi, zi ∈ {0, 1} for i = 1, . . . , m,

m∑
i=1

zi � k − 1,

where S is a sufficiently large constant (larger than any possible difference between
various individual outcomes yi). This allows us to define, for any 0 < β � 1, the
conditional β-maximum outcome Cβ(y) as:

Cβ(y)= min t

s.t. yi � t + Szi, zi ∈ {0, 1} for i = 1, . . . , m,

m∑
i=1

w̄izi < β.

The minimization of Cβ(y) leads to the conditional β-center as a generalization of the
k-center solution concept [24].

A similar approach can be used to generalize the upper k-median model. For
the special cases of k = 1 and k = m we get M1/m(y) = θ1(y) = M(y) and
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Mm/m(y) = (1/m)
∑m

i=1 θi(y) = (1/m)
∑m

i=1 yi = µ(y), respectively, thus repre-
senting the classical criteria. For any k = 1, 2, . . . , m, the following formula is valid:

Mk/m(y)= min

(
t + 1

k

m∑
i=1

di

)

s.t. yi � t + di, di � 0 for i = 1, . . . , m,

di � Szi, zi ∈ {0, 1} for i = 1, . . . , m,

m∑
i=1

zi � k − 1

with an arbitrary large constant S. Again, this allows us to define, for any 0 < β � 1,
the conditional β-mean outcome Mβ(y) as:

Mβ(y)= min

(
t + 1

β

m∑
i=1

w̄idi

)

s.t. yi � t + di, di � 0 for i = 1, . . . , m,

di � Szi, zi ∈ {0, 1} for i = 1, . . . , m,

m∑
i=1

w̄izi < β.

(4)

The minimization of Mβ(y) defines the conditional β-median solution concept.
Note that, due to the finite distribution of outcomes yi (i = 1, . . . , m), the opti-

mization (4) is well defined. A linear programming model for Mk/m(y) computation has
been recently given in [23]. The following theorem generalizes this result showing that
for any β the integer variables (and the corresponding constraints) in (4) are redundant
and the conditional β-mean can be found by a simple linear programming minimization.

Theorem 1. For any outcome vector y ∈ Rm with the corresponding demand
weights wi , and for any real value 0 < β � 1, the conditional β-mean outcome is
given by the following linear program:

Mβ(y) = min

{
t + 1

β

m∑
i=1

w̄idi : yi � t + di, di � 0, for i = 1, . . . , m

}
. (5)

Proof. Consider an optimal solution (t, d1, . . . , dm) of problem (5), where the number
of positive variables di is minimal. Let I+ = {i: di > 0}. Define zi = 1 for i ∈ I+ and
zi = 0 for i /∈ I+. If

∑m
i=1 w̄izi < β, then one gets a solution to (4). Otherwise, by

introducing t̃ = t + �, d̃i = di − � for i ∈ I+, d̃i = di for i /∈ I+, and � = mini∈I+ di ,
one gets βt̃+∑m

i=1 w̄i d̃i � βt+∑m
i=1 w̄idi . Hence, we obtain an optimal solution to (5),



CONDITIONAL MEDIAN 173

where the number of positive variables di is strictly smaller than |I+|. This completes
the proof. �

It follows from theorem 1 that the conditional β-median for the weighted location
problem can be found as the optimal solution to the following problem:

min

{
t + 1

β

m∑
i=1

w̄idi: x ∈ Q; fi(x) � t + di, di � 0, for i = 1, . . . , m

}
, (6)

or in a more compact form:

min

{
t + 1

β

m∑
i=1

w̄i

(
fi(x) − t

)+
: x ∈ Q

}
,

where (· )+ denotes the nonnegative part of a number.
For the special case of an unweighted location problem, one gets the conditional

k/m-median model:

min

{
t + 1

k

m∑
i=1

di: x ∈ Q; fi(x) � t + di, di � 0, for i = 1, . . . , m

}
(7)

which is the same as the computational formulation of the k-centrum model introduced
in [23]. Hence, theorem 1 and formulation (6) generalize the k-centrum formulation
of [23] allowing to consider demand weights but preserving the simple structure and
dimension of the optimization problem.

3. Conditional median versus cent-dian

The conditional median concept provides a compromise between the center and the me-
dian models. Table 1 shows the quality of this compromise in terms of model (1). It pro-
vides the average percentage distribution of outcomes (i.e., yi = fi(x) for i = 1, . . . , m)

Table 1
Average distribution of outcomes.

Objective Percentage distribution of outcomes (m = 50, p = 3)

0–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40 41–45 46–50 51+
M 8.0 7.6 10.6 13.2 15.8 18.6 13.4 10.2 2.6 0.0 0.0
M0.1 9.0 5.8 10.0 16.6 15.8 19.6 14.2 7.4 1.6 0.0 0.0
M0.2 8.6 6.2 11.0 16.2 18.4 21.0 10.8 5.4 2.2 0.2 0.0
M0.3 8.6 7.8 10.4 15.6 19.4 20.6 9.6 5.2 2.6 0.2 0.0
M0.4 9.0 8.0 11.6 16.8 20.6 17.6 8.0 5.6 1.6 0.8 0.4
M0.5 8.8 8.6 14.0 20.0 18.0 14.6 6.4 5.2 2.0 1.4 1.0
M0.7 9.0 9.2 16.0 19.6 16.0 13.8 5.4 5.2 2.6 2.0 1.2
M1 = µ 10.2 11.2 16.0 16.6 13.8 12.6 8.2 5.6 3.4 1.6 0.8
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for compromise locations obtained by varying parameter β in the objective Mβ to define
respective conditional medians. There are also included the results for the center and the
median as the limiting cases. The outcomes are evaluated for 10 discrete location prob-
lems consisting of m = 50 client locations with randomly generated distance matrices
and three facilities (p = 3) to be placed among the client locations. We have gener-
ated m random (uniformly distributed) integer points with coordinates ranging from 0
to 100. The distances among the points have been defined by the Euclidean metric and
then rounded to integers. Possible outcomes are partitioned into clusters of range five.
Each row represents the average distribution for a particular β. Exactly, each field gives
the percentage of outcomes within a given range in 10 optimal locations.

It is clear that percentage of low outcomes increases with β (first four columns).
For small β, percentage of large outcomes is forced to zero. With β increasing, large out-
comes occur incidentally, however, their overall percentage is smaller (last five columns).
Compromise solutions close to the median maximize the number of shortest distances
allowing some outcomes to exceed the minimax optimal value.

Halpern [10] has introduced the λ-cent-dian as a parametric solution concept based
on minimization of the convex combination of two objectives:

Hλ(y) = λM(y) + (1 − λ)µ(y) for 0 � λ � 1. (8)

The location pattern x ∈ Q which minimizes Hλ(f(x)) is called λ-cent-dian. The
λ-cent-dian covers as special cases the center (λ = 1) and the median (λ = 0) solu-
tion concepts.

Both Hλ(y) for 0 � λ � 1 and Mβ(y) for 0 < β � 1 provide us with a tool for
modeling various compromise solutions between the center and the median. However,
opposite to the λ-cent-dian, the conditional median is not based on the direct weight-
ing of criteria. Therefore, the latter is also well applicable to discrete location problems
where the former may fail to generate a compromise location, due to the lack of convex-
ity. We illustrate this with the following example [21].

Example 2. Let us consider a single facility location problem defined on the network
presented in figure 1. We consider all the clients located at vertices vi (i = 1, 2, . . . , 8)
with the service demand defined by weights: w1 = w2 = 47 and w3 = w4 = w5 =
w6 = w7 = w8 = 1. Note that these data define the entire set of median solutions on the
edge [v1, v2]. Among them, point a (in the middle of edge [v1, v2]) is the median with
the best value of the maximum distance. The network has the unique center at point c
(in the middle of edge [v5, v6]). Point b, in the middle of edge [v3, v4], seems to be a
very interesting compromise location. We consider three points a, c and b as possible
location of a single service center.

Outcome vectors for locations c, a and b are given as yc = (5, 5, 3, 3, 1, 1, 5, 5),
ya = (1, 1, 3, 3, 5, 5, 9, 9) and yb = (3.1, 3.1, 1.1, 1.1, 3.1, 3.1, 7.1, 7.1), respectively.
Note that M(ya) = 9, M(yc) = 5 and M(yb) = 7.1 whereas (taking into account the
weights wi) µ(ya) = 1.28, µ(yc) = 4.88 and µ(yb) = 3.14. One may easily verify that,
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Figure 1. Sample network for example 2.

for any 0 � λ � 1, Hλ(ya) < Hλ(yb) or Hλ(yc) < Hλ(yb). Thus, point b cannot be
found as a λ-cent-dian for any 0 � λ � 1.

Now, let us analyze the conditional medians. For β close to 0 one gets Mβ(y) =
M(y). For instance, with β = 0.01 we get: M0.01(ya) = 9, M0.01(yc) = 5,
M0.01(yb) = 7.1 and c is the corresponding conditional median. For large β, say
β = 0.5, we get: M0.5(ya) = 1.56, M0.5(yc) = 5, M0.5(yb) = 3.26 which means
that a is the corresponding conditional median. There exist, however, values of β gen-
erating point b as the corresponding conditional median. In particular, for β = 0.05 we
get: M0.05(ya) = 6.2, M0.05(yc) = 5, M0.05(yb) = 4.7 which justifies location b as the
corresponding conditional median.

For a further comparison between the conditional median and the cent-dian models,
we have run computational experiments on discrete location problems. Given a distance
matrix and number p, we search for compromise locations that are optimal with respect
to the various conditional median and cent-dian models defined by varying parameter β
in the objective Mβ and parameter λ in the objective Hλ, respectively. As a comparison
basis, we have used several distance matrices and p = 1, 2, 3. Indeed, we have analyzed
25 randomly generated distance matrices (10 of size m = 25, 10 of size m = 50 and
5 of size m = 100) as well as 5 distance matrices derived from OR-Lib [4] (pmed1,
pmed2, pmed3, pmed4 and pmed5, all of size m = 100). For a given distance matrix
and given value of p, 12 conditional medians (β varying from 0.01 to 1.00) and 12 cent-
dians (λ = 1 − β) were found. Among them 2 represent the center and the median,
respectively, while the remaining 10 (for each solution concept) represent compromise
solutions (however, not necessarily distinct). The results of comparison between the
models are shown in table 2 presenting the numbers of generated distinct solutions.
Each table field is an average number of distinct locations (including 2 representing the
center and the median solutions) found for 10 instances of distance matrix.

It turns out that varying parameter λ does not lead to many location patterns. Note
that, in the case of locating a single facility (p = 1), 10 different intermediate values of λ
do not generate any compromise solution for all 10 instances of size m = 25 and m = 50,
respectively. Only in 5 percent cases varying the cent-dian parameter λ has resulted in
more than one compromise solution. On the other hand, solving the conditional median
instances with varying β yields much more (distinct) compromise locations. Thus, we
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Table 2
Average number of distinct location patterns (center and median included).

Problem Distinct solutions Distinct solutions
size (by varying β in Mβ ) (by varying λ in Hλ)

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

m = 25 2.4 3.7 4.5 2.0 2.4 2.6
m = 50 2.2 4.8 5.7 2.0 2.4 2.9
m = 100 3.6 5.1 6.2 2.1 2.8 3.1

may conclude that the conditional median concept is a more flexible tool for modeling
compromise location patterns than the cent-dian approach.

4. Relation to equitable optimization

The issue of equity is important in many location decisions. Equity is usually quantified
with the so-called inequality measures to be minimized. Inequality measures were pri-
marily studied in economics [27]. However, Marsh and Schilling [17] describe twenty
different measures proposed in the literature to gauge the level of equity in facility loca-
tion alternatives. The simplest inequality measures are based on the absolute measure-
ment of the spread of outcomes. In economics one usually considers relative inequality
measures normalized by mean outcome. Among many inequality measures perhaps the
most commonly accepted by economists is the Gini index (Lorenz measure), which has
been also analyzed in the location context [8,14,16]. One can easily notice that a di-
rect minimization of typical inequality measures (especially relative ones) contradicts
the minimization of individual outcomes. As noticed by Erkut [8], it is rather a com-
mon flaw of all the relative inequality measures that while moving away from the clients
to be serviced one gets better values of the measure as the relative distances become
closer to one-another. As an extreme, one may consider an unconstrained continuous
(single-facility) location problem and find that the facility located at (or near) infinity
will provide (almost) perfectly equal service (in fact, rather lack of service) to all the
clients.

The notion of equitable multiple criteria optimization [12] introduces the prefer-
ence structure that complies with both the efficiency (Pareto-optimality) and with the
inequality measurement rules (in particular the Pigou–Dalton approach) [27]. It is well
suited for the locational analysis [11,22]. The equitable optimization can be mathemati-
cally formalized as follows. First, we introduce the left-continuous right tail cumulative
distribution function:

Fy(d) =
m∑
i=1

w̄iδi(d) where δi(d) =
{

1 if yi � d,

0 otherwise,
(9)



CONDITIONAL MEDIAN 177

which for any real (distance) value d provides the measure of outcomes greater or equal
to d. Next, we introduce the quantile function F (−1)

y as the right-continuous inverse of
the cumulative distribution function Fy:

F (−1)
y (v) = sup{η: Fy(η) � v} for 0 < v � 1.

By integrating F (−1)
y one gets:

F (−2)
y (0) = 0 and F (−2)

y (v) =
∫ v

0
F (−1)

y (α) dα for 0 < v � 1, (10)

where F (−2)
y (1) = µ(y). Graphs of functions F (−2)

y (v) (with respect to v) take the form
of concave curves (figure 2), the (upper) absolute Lorenz curves. In the special case of
uniform demand weights w̄i = 1/m, the absolute Lorenz curve is completely defined by
the values F (−2)

y (k/m) = (1/m)
∑k

i=1 θi(y) for k = 1, . . . , m.
The absolute Lorenz curves define the relation (partial order) of the equitable dom-

inance. The equitable dominance is originally defined by axioms of efficiency, impartial-
ity and the Pigou–Dalton principle of transfers [12,22]. Nevertheless, due to the results
of the majorization theory [18] and its generalizations [28], it can be expressed with
inequalities on the absolute Lorenz curves. Exactly, outcome vector y′ ∈ Y equitably
dominates y′′ ∈ Y , if and only if F (−2)

y′ (v) � F
(−2)
y′′ (v) for all v ∈ (0; 1] where at least

one strict inequality holds. We say that a location pattern x ∈ Q is equitably efficient (is
an equitably efficient solution of the problem (1)), if and only if there does not exist any
x′ ∈ Q such that f(x′) equitably dominates f(x).

In income economics the Lorenz curve is a cumulative population versus income
curve. A perfectly equal distribution of income has the diagonal line as the Lorenz
curve and no outcome vector can be better. The absolute Lorenz curves, used in the
equitable optimization, are unnormalized taking into account also values of outcomes.

Figure 2. The (upper) absolute Lorenz curves.
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Figure 3. Absolute Lorenz curve and the conditional mean outcomes.

Vectors of equal outcomes are distinguished according to the value of outcomes. They
are graphically represented with various ascent lines in figure 2. Hence, with the relation
of equitable dominance an outcome vector of small unequal outcomes may be preferred
to an outcome vector with large equal outcomes. This allows to overcome the common
flaws of the approaches based on a strict inequality minimization [8].

Recall that the worst conditional β-mean outcome is defined as the mean of
the β-quantile of the worst outcomes. Hence, Mβ(y) = (1/β)

∫ β

0 F (−1)
y (α) dα while∫ β

0 F (−1)
y (α) dα = F (−2)

y (β) is the value of the absolute Lorenz curve at v = β. There-
fore, as shown in figure 3, the conditional mean outcome represents the projection of
the point of the Lorenz curve onto the vertical line at v = 1. Since the conditional
mean outcome Mβ(y) is proportional to the value of the absolute Lorenz curve at a spe-
cific point β, an outcome vector y′ ∈ Y equitably dominates y′′ ∈ Y , if and only if
Mβ(y′) � Mβ(y′′) for all β ∈ (0; 1], where at least one strict inequality holds. Hence,
the following assertion is valid.

Theorem 3. For any 0 < β < 1, except for location patterns with identical conditional
mean outcome Mβ(y), every location pattern x ∈ Q that is minimal for Mβ(f(x)) is an
equitably efficient solution of the location problem (1).

The perfectly equal outcome vector generates its absolute Lorenz curve as the as-
cent line connecting points (0, 0) and (1, µ(y)). Hence, the space between the curve
and its ascent line (the chord) represents the dispersion (and thereby the inequality) of y
in comparison to the perfectly equal outcome vector of µ(y). It is called the dispersion
space [22]. Various size parameters of the dispersion space are considered as summary
characteristics of inequality – the so-called inequality measures. They allow to build the
corresponding bicriteria mean/equity models [5,16,22]. Note that vertical diameter of
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the dispersion space at point β is given as β(Mβ(y) − µ(y)). The following assertion
justifies the related mean/equity approach as an equitable optimization technique.

Theorem 4. For any 0 < β < 1, except for location patterns with identical mean µ(y)
and conditional mean outcome Mβ(y), every efficient solution to the bicriteria problem

min
{(
µ
(
f(x)

)
,Mβ

(
f(x)

))
: x ∈ Q

}
(11)

is an equitably efficient solution of the location problem (1).

Proof. Let x0 ∈ Q be an efficient solution of problem (11). Suppose there exists a
location pattern x′ ∈ Q such that y′ = f(x′) equitably dominates y0 = f(x0). Then
F

(−2)
y′ (v) � F

(−2)
y0 (v) for all v ∈ (0; 1]. Hence, in particular, F

(−2)
y′ (β) � F

(−2)
y0 (β)

and F
(−2)
y′ (1) � F

(−2)
y0 (1). Thus, Mβ(f(x

′)) � Mβ(f(x
0)) and µ(f(x′)) � µ(f(x0)).

This, together with the fact that x0 is efficient to the bicriteria optimization (11), implies
µ(f(x′)) = µ(f(x0)) and Mβ(f(x′)) = Mβ(f(x0)) which completes the proof. �

For more detailed modeling of the equitable preferences one may use multiple cri-
teria model with several conditional mean criteria for various values of the parameter β
or a combination of such criteria.

5. Concluding remarks

In this paper we have introduced a solution concept of the conditional median which is
a parametric generalization of the k-centrum concept (upper k-median according to the
classification by Peeters [24]) taking into account the portion of demand related to the
largest distances. The conditional median is shown to be much more effective in model-
ing various compromise location preferences than the classical cent-dian approach [10]
(especially, in the case of discrete location problems). Moreover, the conditional mean
outcome, used to define the solution concept of the conditional median, is closely re-
lated to the absolute Lorenz curve which implies the equitable properties of the solution
concept.

Minimization of the conditional mean, similar to the standard minimax approach,
may be modeled with a number of simple linear inequalities. Our limited experiments
with the use of a simple general purpose MIP code show that the conditional median usu-
ally needs a computational effort larger than that for the median but smaller than that for
the center. Certainly, large-scale real-life location problems will require some special-
ized algorithms. Therefore, research on efficient specialized algorithms for conditional
medians of various specific types of location problems should be continued. Recall that
for the specific case of unweighted problems (k-centrum), polynomial algorithms were
shown for location on path and tree graphs [30] as well as for rectilinear problems [23].

This paper has focused on location problems. However, the location decisions
are analyzed from the perspective of their effects for individual clients. Therefore, the
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general concept of the proposed conditional mean outcome can be used for optimization
of various systems which serve many users. In particular, it offers a new promising
approach to the equitable resource allocation problems.
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