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Abstract

Several polyhedral risk measures have been recently introduced leading to Linear Programming (LP) models
for portfolio optimization. In this paper we study LP solvable portfolio optimization models based on the tail Gini’s
mean difference risk measurement. We use combinations of the Conditional Value at Risk (CVaR) measures to get
some approximations to the tail Gini’s mean difference withthe advantage of being computationally much simpler
than the Gini’s measure itself. We introduce the weighted CVaR (WCVaR) measures defined as simple combinations
of a very few CVaR measures with specific type of weights settings which relates the WCVaR measure to the tail
Gini’s mean difference. This allows us to use a few tolerancelevels as only parameters specifying the entire WCVaR
measures while the corresponding weights are automatically predefined by the requirements of the corresponding
tail Gini’s measure. All the studied models are SSD consistent and LP computable. We analyze both the theoretical
properties of the models and their performances on the real-life data.

Index Terms

Portfolio optimization, linear programming, risk measures, stochastic dominance, Conditional Value at Risk,
Gini’s mean difference.

I. INTRODUCTION

FOLLOWING Markowitz [4], the portfolio optimization problem is modeled as a mean-risk bicriteria
optimization problem where the expected return is maximized and some (scalar) risk measure is

minimized. In the original Markowitz model the risk is measured by the standard deviation or variance.
Several other risk measures have been later considered thuscreating the entire family of mean-risk
(Markowitz-type) models. In particular, the polyhedral risk measures have been introduced which leads
to Linear Programming (LP) solvable models in the case of discrete random variables, i.e., in the case
of returns defined by their realizations under specified scenarios. The LP solvability is very important for
applications to real-life financial decisions where the constructed portfolios have to meet numerous side
constraints (including the minimum transaction lots, transaction costs and mutual funds characteristics).
The introduction of these features leads to mixed integer LPproblems.

The simplest polyhedral risk measures are dispersion measures similar to the variance. Yitzhaki [17]
introduced the mean-risk model using Gini’s mean (absolute) difference as the risk measure. The Gini’s
mean difference turn out to be special aggregation techniques of the multiple criteria LP model [6] based on
the pointwise comparison of the absolute Lorenz curves. Thelatter leads the quantile shortfall risk measures
which are more commonly used and accepted. Recently, the second order quantile risk measures have
been introduced in different ways by many authors [5], [11].The measure, usually called the Conditional
Value at Risk (CVaR) or Tail VaR, represents the mean shortfall at a specified confidence level. It leads
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to LP solvable portfolio optimization models in the case of discrete random variables represented by their
realizations under specified scenarios. The CVaR measures maximization is consistent with the second
degree stochastic dominance [8]. Several empirical analyses confirm its applicability to various financial
optimization problems. Thus, the CVaR models seem to overstep the measure of Value-at-Risk (VaR)
defined as the maximum loss at a specified confidence level which is commonly used in banking.

Although any CVaR measure is risk relevant, it represents only the mean within a part (tail) of the
distribution of returns. Therefore, such a single criterion is in some manner crude for modeling various
risk aversion preferences. The Gini’s mean difference model combines all CVaR measures averaging all
shortfalls. In order to enrich the modeling capabilities, one needs to treat differently some more or less
extreme events. This require some techniques to enhance thedownside risk aversion [1]. Alternatively,
the Tail GMD measures may be applied [9], which averages the shortfall within specified quantiles. The
latter may be approximated with appropriate combinations of multiple CVaR measures. In this paper we
study such LP solvable portfolio optimization models basedon the use of multiple CVaR measures. Our
analysis has been focused on the Weighted CVaR measures defined as simple combinations of a very few
CVaR measures. This allows us to use a few tolerance levels asonly parameters specifying the entire
WCVaR measures while the corresponding weights are automatically predefined by the requirements of
the Tail Gini’s measures. Theoretical properties and computational efficiency of the models is studied as
well as their practical achievements are tested. All the studied models are shown to be SSD consistent.

II. PORTFOLIO OPTIMIZATION AND CVAR MEASURES

Our analysis is focused on the portfolio optimization problem following the original Markowitz’
formulation and is based on a single period model of investment. At the beginning of a period, an
investor allocates the capital among various securities, thus assigning a nonnegative weight (share of the
capital) to each security. LetJ = {1, 2, . . . , n} denote a set of securities considered for an investment.
For each securityj ∈ J , its rate of return is represented by a random variableRj with a given mean
µj = E{Rj}. Further, letx = (xj)j=1,2,...,n denote a vector of decision variablesxj expressing the weights
defining a portfolio. To represent a portfolio, the weights must satisfy a set of constraints that form a
feasible setP. The simplest way of defining a feasible set is by a requirement that the weights must sum
to one and short sales are not allowed, i.e.

P = {x :

n
∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n} (1)

Hereafter, it is assumed thatP is a general LP feasible set given in a canonical form as a system of linear
equations with nonnegative variables: This allows one to include upper bounds on single shares as well
as several more complex portfolio structure restrictions which may be faced by a real-life investor.

Each portfoliox defines a corresponding random variableR
x

=
∑n

j=1 Rjxj that represents the portfolio
rate of return. We considerT scenarios with probabilitiespt (where t = 1, . . . , T ). We assume that for
each random variableRj its realizationrjt under the scenariot is known. Typically, the realizations
are derived from historical data treatingT historical periods as equally probable scenarios (pt = 1/T ).
The realizations of the portfolio returnR

x
are given asyt =

∑n

j=1 rjtxj and the expected value can

be computed asµ(x) =
∑T

t=1 ytpt =
∑T

t=1

[

∑n

j=1 rjtxj

]

pt. Similarly, several risk measures can be LP
computable with respect to the realizationsyt.

The portfolio optimization problem is modeled as a mean-risk bicriteria optimization problem where the
meanµ(x) is maximized and the risk measure̺(x) is minimized. In the original Markowitz model, the
standard deviation was used as the risk measure. Several other risk measures have been later considered
thus creating the entire family of mean-risk models (see [2]and [3]). These risk measures, similar to the
standard deviation, are not affected by any shift of the outcome scale and are equal to 0 in the case of a
risk-free portfolio while taking positive values for any risky portfolio. Unfortunately, such risk measures



are not consistent with the stochastic dominance order [16]or other axiomatic models of risk-averse
preferences.

In stochastic dominance, uncertain returns (modeled as random variables) are compared by pointwise
comparison of some performance functions constructed fromtheir distribution functions. The first per-
formance functionF (1)

x is defined as the right-continuous cumulative distributionfunction: F
(1)
x (η) =

F
x
(η) = P{R

x
≤ η} and it defines the first degree stochastic dominance (FSD). The second function is

derived from the first asF (2)
x (η) =

∫ η

−∞
F

x
(ξ) dξ and it defines the second degree stochastic dominance

(SSD). We say that portfoliox′ dominatesx′′ under the SSD(R
x
′ ≻

SSD
R

x
′′), if F

(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for

all η, with at least one strict inequality. A feasible portfoliox0 ∈ P is calledSSD efficientif there is no
x ∈ P such thatR

x
≻

SSD
R

x
0.

Several portfolio performance measures were introduced assafety measures to be maximized, like the
worst realization, analyzed by Young [18], and the CVaR riskmeasures we consider further. Opposite
to risk measures, the safety measures may be consistent withformal models of risk-averse preferences
[12], [16]. Actually, for any risk measure̺(x) a correspondingsafetymeasureµ̺(x) = µ(x) − ̺(x)
can be defined and viceversa [2], [3]. Note that while risk measure̺(x) is a convex function ofx, the
corresponding safety measureµ̺(x) is concave. We say that the safety measureµ̺(x) is SSD consistent
(or that the risk measure̺(x) is SSD safety consistent) if R

x
′ �

SSD
R

x
′′ implies µ̺(x

′) ≥ µ̺(x
′′). If the

safety measure is SSD consistent, then except for portfolios with identical values ofµ(x) andµ̺(x) (and
thereby̺(x)), every efficient solution of the bicriteria problem

max{[µ(x), µ̺(x)] : x ∈ P} (2)

is an SSD efficient portfolio [7]. Therefore, we will focus onthe mean-safety bicriteria optimization (2)
rather than on the classical mean-risk model.

Stochastic dominance relates the notion of risk to a possible failure of achieving some targets. Note
that functionF

(2)
x , used to define the SSD relation, can also be presented as follows [7]: F

(2)
x (η) =

E{max{η−R
x
, 0}} and thereby its values are LP computable for returns represented by their realizations

yt. In this paper we focus on quantile shortfall risk measures related to the so-calledAbsolute Lorenz
Curves(ALC) [5], [13] which represent the second quantile functions defined as

F (−2)
x

(p) =

∫ p

0

F (−1)
x

(α)dα for 0 < p ≤ 1 and F (−2)
x

(0) = 0, (3)

where F
(−1)
x (p) = inf {η : F

x
(η) ≥ p} is the left-continuous inverse of the cumulative distribution

function F
x
. Actually, the pointwise comparison of ALCs provides an alternative characterization of the

SSD relation [8] and

F (−2)
x

(β) = max
η∈R

[

βη − F (2)
x

(η)
]

= max
η∈R

[βη − E{max{η − R
x
, 0}}] (4)

whereη is a real variable taking the value ofβ-quantileQβ(x) at the optimum.
For any real tolerance level0 < β ≤ 1, the normalized value of the ALC defined asMβ(x) =

F
(−2)
x (β)/β is called theConditional Value-at-Risk (CVaR). The corresponding risk measure∆β(x) =

µ(x)−Mβ(x) is called hereafter the (worst)conditional semideviation. Note that, for any0 < β < 1, the
CVaR measures defined byF (−2)(β), opposite to below-target mean deviationsF (2)(η), are risk relevant.
They are also SSD consistent [8]. For a discrete random variable represented by its realizationsyt problem
(4) becomes an LP. Thus

Mβ(x) = max

[

η −
1

β

T
∑

t=1

d−

t pt

]

s.t. d−

t ≥ η − yt, d−

t ≥ 0 for t = 1, . . . , T. (5)

Yitzhaki [17] introduced the GMD model using Gini’s mean (absolute) difference as risk measure.
For a discrete random variable represented by its realizations yt, the Gini’s mean differenceΓ(x) =



1
2

∑T

t′=1

∑T

t′′=1 |yt′ − yt′′ |pt′pt′′ is LP computable (when minimized). Yitzhaki [17] suggestedto use the
corresponding safety measure

µ
Γ
(x) = µ(x) − Γ(x) = E{R

x
∧ R

x
} (6)

to take advantages of its SSD consistency and LP computability.
Both the Gini’s mean difference and the CVaR measures are related to the ALC (3). One may notice that

∆β(x) = 1
β
(µ(x)β−F

(−2)
x (β)) while the Gini’s mean difference may be expressed asΓ(x) = 2

1
∫

0

(µ(x)α−

F
(−2)
x (α))dα = 2

1
∫

0

α∆α(x)dα. Hence, the GMD safety measure summarizes all the CVaR measures as

µ
Γ
(x) = µ(x) − Γ(x) = 2

1
∫

0

F
(−2)
x (α)dα = 2

1
∫

0

αMα(x)dα. Therefore, the stronger SSD consistency

results have been recently shown for the GMD model [8], i.e.,R
x
′ ≻

SSD
R

x
′′ implies µΓ(x′) > µΓ(x′′)

which guarantees that every efficient solution of the bicriteria problem (2) is an SSD efficient portfolio.
On the other hand, its computational LP model (even when simplified by taking its LP dual [1]) requires
T 2 variables. which makes it much more complicated than the CVaR model (5) using onlyT variables.
In the next sections we will demonstrate that models based ona few CVaR criteria offer a very good
compromise between the computationally complex GMD model and simplified CVaR.

III. TAIL GINI ’ S AND WEIGHTED CVAR MEASURES

In order to model downside risk aversion, instead of the Gini’s mean difference, thetail Gini’s measure
[8], [9] is used. It is defined for anyβ ∈ (0, 1] by averaging the vertical diametersdp(x) within the tail
interval p ≤ β as:

Γβ(x) =
2

β2

β
∫

0

(µ(x)α − F (−2)
x

(α))dα =
2

β2

β
∫

0

α∆α(x)dα. (7)

For any0 < β ≤ 1, the tail Gini’s measureΓβ(x) is SSD safety consistent. One may notice that the
corresponding safety measureµΓβ

(x) = µ(x) − Γβ(x) can be expressed as

µΓβ
(x) = µ(x) −

2

β2

β
∫

0

(µ(x)α − F (−2)
x

(α))dα =
2

β2

β
∫

0

F (−2)
x

(α)dα

which allows us to consider it as a second degree CVaR measure.
In the simplest case of equally probableT scenarios withpt = 1/T (historical data forT periods), the

tail Gini’s measure forβ = K/T may be expressed as the weighted conditional semideviation∆
(K)
w (x)

with tolerance levelsβk = k/T for k = 1, 2, . . . , K and properly defined weights [9]. In a general case,
we may resort to an approximation based on some reasonably chosen gridβk, k = 1, . . . , m and weights
wk expressing the corresponding trapezoidal approximation of the integral in the formula (7). This leads
us to the Weighted CVaR (WCVaR) measure defined as

M (m)
w

(x) =

m
∑

k=1

wkMβk
(x),

m
∑

k=1

wk = 1, wk > 0 for k = 1, . . . , m (8)

The WCVaR measure is, obviously, a safety measure and it is risk relevant in the sense that for any
risky portfolio its value is less than that for the risk-freeportfolio with the same expected return. The
corresponding risk measure turns out to be the weighted sum of the ∆βk

(x) measures thus forming the
weighted conditional semideviation:

∆(m)
w

(x) = µ(x) − M (m)
w

(x) =

m
∑

k=1

wk∆βk
(x),

m
∑

k=1

wk ≤ 1, wk > 0 for k = 1, . . . , m (9)



The latter is not affected by any shift of the outcome scale and it is equal to 0 in the case of a risk-free
portfolio while taking positive value for any risky portfolio, thus representing a translation invariant and
risk relevant dispersion parameter. Therefore, we are eligible to consider the corresponding Markowitz-type
model and its mean-safety formalization (2):

max{[µ(x), M (m)
w

(x)] : x ∈ P} = max{[µ(x), µ(x) − ∆(m)
w

(x)] : x ∈ P} (10)

Since the CVaR measures are SSD consistent [9], the same applies to the WCVaR measure. Actually, the
following assertion is valid.

Theorem 1:For any set of levels0 < β1 < β2 < . . . < βm ≤ 1, except for portfolios with identical
values ofµ(x) and all conditional semideviations∆βk

(x), every efficient solution of the bicriteria problem
(10) is an SSD efficient portfolio.

Proof: Let x
0 ∈ P be an efficient solution to the bicriteria mean-safety model(10). Suppose

that there existsx′ ∈ P such thatR
x
′ ≻

SSD
R

x
0 . Then, due to SSD consistency,µ(x′) ≥ µ(x0) and

Mβk
(x′) ≥ Mβk

(x0) for all k = 1, . . . , m. The latter together with the fact thatx
0 is efficient, implies that

µ(x′) = µ(x0) and
∑m

k=1 wkMβk
(x′) =

∑m

k=1 wkMβk
(x0). Hence,Mβk

(x′) = Mβk
(x0) for k = 1, . . . , m,

and therefore,∆βk
(x′) = ∆βk

(x0) for all k = 1, . . . , m, which completes the proof.
Exactly, for any0 < β ≤ 1, while using the grid ofm tolerance levels0 < β1 < . . . < βk < . . . <

βm = β one may define weights:

wk =
(βk+1 − βk−1)βk

β2
, for k = 1, . . . , m − 1, and wm =

(βm − βm−1)βm

β2
(11)

whereβ0 = 0. This results in the weighted sum
∑m

k=1 wk∆βk
(x) expressing the trapezoidal approximation

to the tail Gini’s measure (7). Note that
∑m

k=1 wk = β2
m/β2 = 1 and thus we get a regular weighted

conditional semideviation (9)∆(m)
w (x) ∼= Γβ(x). Further, weights (11) generate a WCVaR measure (8)

such thatM (m)
w (x) ∼= µΓβ

(x).
We emphasize that despite being only an approximation to (7), any WCVaR measure with weights

defined by (11) itself is a well defined LP computable measure with guaranteed SSD consistency in the
sense of Theorem 1. Hence, it needs not to be built on a very dense grid to provide proper modeling of
risk averse preferences. While using the uniform grid of levelsβk = (kβ)/m for k = 1, 2, . . . , m and gets
weights defined aswk = (2k)/m2 for k = 1, 2, . . . , m − 1 andwm = 1/m.

The commonly accepted approach to implementation of the Markowitz-type mean-risk models is based
on the use of a specified lower boundµ0 on expected return while minimizing the risk criterion. In our
analysis we use the bounding approach applied to the maximization of the safety measures, i.e.

max{µ̺(x) : x ∈ P, µ(x) ≥ µ0}. (12)

For small values of the boundµ0, the constraintµ(x) ≥ µ0 does not influence the optimization (12). In
this case, the portfolio obtained is the so called Maximum Safety Portfolio (MSP). In our analysis we
have used the bounding approach (12) applied to the maximization of the WCVaR measures. For returns
represented by their realizations we get an LP optimizationproblem:

maximize
m

∑

k=1

wkqk −
m

∑

k=1

wk

βk

T
∑

t=1

ptdtk

subject to x ∈ P and
n

∑

j=1

µjxj ≥ µ0

dtk − qk +
n

∑

j=1

rjtxj ≥ 0, dtk ≥ 0 for t = 1, . . . , T ; k = 1, . . . , m

(13)

whereqk (for k = 1, . . . , m) are unbounded variables taking the values of the corresponding βk-quantiles
(in the optimal solution). Except from the core portfolio constraints (1), model (13) containsT nonnegative



variablesdtk andT corresponding linear inequalities for eachk. Hence, its dimensionality is proportional
to the number of scenariosT and to the number of tolerance levelsm. Exactly, the LP model contains
m×T +n variables andm×T +2 constraints. It does not cause any computational difficulties for a few
hundreds of scenarios and a few tolerance levels, as in our computational analysis based on historical data.
However, in the case of more advanced simulation models employed for scenario generation one may
get several thousands of scenarios. This may lead to the LP model (13) with huge number of variables
and constraints thus decreasing the computational efficiency of the model. If the core portfolio constraints
contain only linear relations, like (1), then the computational efficiency can easily be achieved by taking
advantages of the LP dual to model (13). The LP dual model takes the following form:

minimize η − µ0ξ

subject to η − µjξ −
T

∑

t=1

rjt

m
∑

k=1

utk ≥ 0 for j = 1, . . . , n

T
∑

t=1

utk ≥ wk for k = 1, . . . , m

ξ ≥ 0, 0 ≤ utk ≤ ptwk/βk for t = 1, . . . , T ; k = 1, . . . , m

(14)

The dual LP model containsm×T variablesutk, but them×T constraints corresponding to variablesdtk

from (13) take the form of simple upper bounds (SUB) onutk thus not affecting the problem complexity.
Actually, the number of constraints in (14) is proportionalto the total of portfolio sizen and the number
of tolerance levelsm, thus it is independent from the number of scenarios. Exactly, there arem× T + 2
variables andm + n constraints. This guarantees a high computational efficiency of the dual model even
for vary large number of scenarios.

IV. EXPERIMENTAL ANALYSIS

In our computational analysis we examine the MSPs for the different tested models. The analysis is
performed on historical data are represented by weekly rates of return obtained by using stock prices
from Milan Stock Exchange. The rates are computed as relative price variations. The data set consists
of 157 securities quoted with continuity. The historical period covers six years during which the Italian
Stock Exchange has shown alternate short periods of up and down trends. A set of 7 instances has been
created, each of which takes into account the complete set ofsecurities over a different time period. For
each instance the Maximum Safety Portfolio (MSP) has been obtained through the use of the various
tested models. In this section we only summarize and commentthe main figures out of the huge amount
of computational results we obtained.

The model based on the safety measure corresponding to the Gini’s mean difference, i.e. the mean worse
return, is referred simply as GMD. The CVaR model associatedto a given tolerance levelβ is identified
as CVaR(β). We have tested the CVaR model for five different values ofβ, i.e. CVaR(0.05), CVaR(0.1),
CVaR(0.25) and CVaR(0.5). All the CVaR and the weighted CVaRmodels have been formulated according
to (13). We have also tested two Tail WCVaR models:

• Model WCVaR(TG2) with two tolerance levelsβ1 = 0.1, β2 = 0.25 and weightsw1 = 0.4 and
w2 = 0.6.

• Model WCVaR(TG3) with three tolerance levelsβ1 = 0.1, β2 = 0.25, β3 = 0.5 and weightsw1 = 0.1,
w2 = 0.4 andw3 = 0.5.

While analyzing for all the models over all the periods, the diversification of the optimal portfolios
(MSPs), one may notice that, in general, all the models have resulted in diversified portfolios. The number
of selected securities for the Minimax model ranges between6 and 29 securities. The GMD model has
generated portfolios of 12 to 26 securities. The basic CVaR models as well as the WCVaR models provide
portfolios similarly well diversified (14-30 securities).



TABLE I

OUT-OF-SAMPLE RESULTS ONMSPS: SINGLE PERIOD RETURNS.

Max. safety Periods
models 1 2 3 4 5 6 7 rmin rmax rmed rav

Minimax 39.77 85.43 348.50 -24.86 -60.31 0.99 10.33-60.31 348.50 10.33 57.12
CVaR(0.05) 39.77 85.43 348.50 -24.86 -49.44 -2.84 9.51-49.44 348.50 9.51 58.01
CVaR(0.1) 39.23 78.16 352.58 -25.94 -48.17 -7.46 39.95-48.17 352.58 39.23 61.19
CVaR(0.25) 20.16 71.22 392.11 10.28 -54.66 31.95 34.90-54.66 392.11 31.95 72.28
CVaR(0.5) 10.14 58.21 434.77 7.51 -55.21 39.74 58.90-55.21 434.77 39.74 79.15
GMD 9.75 36.80 431.47 10.76 -53.08 47.40 10.33-53.08 431.47 10.76 70.49
WCVaR(TG2) 28.27 71.23 385.45 -17.94 -47.15 10.67 140.90-47.15 385.45 28.27 81.63
WCVaR(TG3) 21.41 52.27 404.90 7.78 -53.40 29.80 66.31-53.40 404.90 29.80 75.58

We have also analyzed the models performances with respect to a long-run portfolio management.
Each of the portfolios selected by a specific model in the 7 instances has been evaluated ex-post in the
three months period following the date of selection. Table Iprovides the single period returns for each
model expressed on a yearly basis. It is worth noticing that single period ex-post returns quite perfectly
represent the upward and downward movements of the market. For instance, the high returns of all the
models in period 3 can be partially interpreted as a consequence of the positive trend of the market
at the beginning of the 1998 with a high positive jump of MIB30performances in March. Similarly,
negative results showed by all the models in the periods 5 aremainly due to the negative trend of the
market in August 1998. To describe better out-of-sample results we have included into Table I also the
following ex-post parameters: the minimum, average and maximum portfolio return (rmin, rav andrmax,
respectively); the median (rmed) of the average returns; Such performance criteria have been computed
for all the models over all the periods and can be used to compare the out-of-sample behavior of the
maximum safety portfolios selected by the different models.

TABLE II

OUT-OF-SAMPLE RESULTS ONMSPS: CUMULATIVE RETURNS.

Max. safety Periods
models 1 1-2 1-3 1-4 1-5 1-6 1-7
Minimax 39.77 60.99 115.24 71.91 28.23 23.22 22.83
CVaR(0.05) 39.77 60.99 115.24 71.91 34.59 27.47 24.74
CVaR(0.1) 39.23 57.50 112.92 69.81 33.93 25.93 27.84
CVaR(0.25) 20.16 43.44 106.15 78.28 38.32 37.24 36.90
CVaR(0.5) 10.14 32.00 100.87 77.91 35.02 35.79 38.88
GMD 9.75 22.53 91.36 72.42 32.90 35.21 31.34
WCVaR(TG2) 28.27 48.21 109.51 71.99 35.84 31.28 43.17
WCVaR(TG3) 21.41 35.97 100.98 78.10 36.20 35.12 39.19

Further, we cumulated the returns over the horizon up to 7 periods (21 months) to better analyze each
model achievements. The figures shown in Table II are the cumulative returns of the portfolios selected
by each model. Each column of the table refers to a period and provides the cumulative return of the
portfolios selected over the preceding periods. For betterunderstanding of the figures let us consider the
first line of Table II which refers to the model Minimax. Each of the 7 portfolios selected by the Minimax
model in the 7 instances has been evaluated ex-post in the three months investment period following the
date of its selection. We define asr1, r2, ..., r7, the ex-post returns of these 7 portfolios. Then, the first
column of Table II gives the ex-post return (after 3 months) of the first portfolio selected, i.e.r1 (notice
that such value is identical in Tables II and I). The second column of Table II gives the cumulative return
of the portfolio selected in the first period and then modifiedafter three months with the portfolio selected
in the second period: the value is computed as(1 + r1)(1 + r2) − 1 where r1 is the ex-post quarterly
return for the first portfolio andr2 is the ex-post quarterly return for the second one. Similarly, for all the
other columns of the table; in particular, the last one provides the cumulated return over all the 7 periods.



These results have been computed to simulate a multi-periodsetting where, at no transaction cost, the
portfolio changes over time. Rates are expressed on a yearlybasis.

In Table II, it can be noticed that except for the Minimax and the extremal CVaR models (β = 0.05 or
β = 0.1) all the other models resulted in similar cumulative returnover the entire horizon of 21 months
with (annual) rate of return exceeding 30%. The Minimax and the extremal CVaR models (β = 0.05 or
β = 0.1) perform much worse than all the other models. Note that boththe Tail WCVaR models and
the CVaR(0.5) here have the best cumulative performances. It is interesting to notice that Also the GMD
model is outperformed by simple Tail WCVaR models and the CVaR models for larger tolerance levels.

V. CONCLUDING REMARKS

In this paper we have studied LP solvable portfolio optimization models based on extensions of the
Conditional Value at Risk (CVaR) measure. The models use multiple CVaR measures thus allowing for
more detailed risk aversion modeling. All the studied models are SSD consistent and may be considered
some approximations to the Gini’s mean difference with the advantage of being computationally much
simpler than the GMD model itself. Our analysis has been focused on the weighted CVaR measures
defined as simple combinations of a very few CVaR measures. Wehave introduced the specific type of
weights settings which relate the WCVaR measure to the tail Gini’s mean difference. This allows us to use
a few tolerance levels as only parameters specifying the entire WCVaR measures while the corresponding
weights are automatically predefined by the requirements ofthe corresponding tail Gini’s measure.

Our experimental analysis of the models performance on the real-life data from the Milan Stock
Exchange has confirmed their attractiveness. The weighted CVaR models have usually performed better
than the GMD itself, the Minimax or the extremal CVaR models.These promising results show a need
for further comprehensive experimental studies analyzingpractical performances of the weighted CVaR
models within specific areas of financial applications. It isimportant to notice that although the quantile
risk measures (VaR and CVaR) were introduced in banking as extreme risk measures for very small
tolerance levels (likeβ = 0.05), for portfolio optimization good results have been provided by rather
larger tolerance levels.
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