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Abstract

Location problems can be considered as multiple criteria models where for each
client (spatial unit) there is defined an individual objective function, which measures
quality of a location pattern with respect to the client satisfaction (e.g. it expresses
the distance or travel time between the client and the assigned facility). The in-
dividual objective functions are usually conflicting when optimized. Therefore, the
decision maker or planner needs to select some compromise solution for implemen-
tation. In this paper we analyze various approaches to discrete multiple facility
location problems (various solution concepts) from the perspective of the multiple
criteria models. We focus our analysis on two aspects of the solution concepts: if a
generated solution is an efficient (Pareto-optimal) solution to the multiple criteria
problem, and if the solution concept provides some control parameters allowing the
decision maker to select every efficient solution of the multiple criteria problem.
That means, we analyze if a solution concept complies with the optimality principle
for the multiple criteria model as well as if it allows to take into account various
preferences of the decision maker.
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1 Introduction

Public goods and services are typically provided and managed by governments in response
to perceived and expressed need. The spatial distribution of public goods and services
is strictly related to facility location decisions. A host of operational models has been
developed to deal with the facility location optimization (c.f., [13,4,10]). Most classical
location studies focus on the minimization of the total distance or the minimization of
the maximum distance to the service facilities [17]. Even multiple criteria approaches
to location problems employ these two types of the objectives [2,8]. In this paper we
analyze the location problem from the perspective of multiple criteria minimization of all
the distances considered as independent criteria for several users (clients) of the service
system.

The generic location problem, we consider, may be stated as follows. There is given
a set of n clients (spatial units). In the case of spatial units, each unit can be represented
by a specific point (node) situated in this unit. There is also given a set of m potential
locations for the facilities. It may be, in particular, a subset (or the entire set) of points
representing the clients. Further, the number (or the maximal number) p of facilities to
be located is given (p ≤ m). Thus, we limit our discussion to discrete location problems
[16]. They can be viewed, however, as network location problems with possible locations
restricted to some subset of the network vertices [11].

Further, let us assume that for each client j = 1, 2, . . . , n there is defined a function
fj(x) of the location pattern x. The function measures quality of the location pattern
with respect to the satisfaction of client j. In typical formulations of location problems
this function is usually related to the distances and thereby its smaller value means higher
service quality and client satisfaction. Therefore, we assume, each function fj needs to be
minimized. Thus, the generic location problem can be viewed as the following multiple
criteria minimization problem

min
x

{

{fj(x)}j=1,...,n : x ∈ Q
}

(1)

where Q denotes the feasible set of location patterns.
The main decisions to be made in the location problem can be described with the

binary variables:

xi — equal to 1 if location i is to be used and equal to 0 otherwise (i = 1, 2, . . . , m).

To meet the problem requirements, the decision variables xi have to satisfy the constraint
∑m

i=1 xi = p, where the equation is replaced with the inequality (≤) if p specifies the
maximal number of facilities to be located. Thus the simplest feasible set for problem (1)
takes the form

Q =
{

x = (xi)i=1,...,m :
m

∑

i=1

xi = p, xi ∈ {0, 1} for i = 1, 2, . . . , m
}

(2)

Note that the constraints of (2) take a very simple form of the binary knapsack problem
with all the constraint coefficients equal to 1. For certain classes of location problems,
the feasible set has more complex structure due to explicit consideration of allocation
decisions. Such decisions are usually modeled with additional allocation decision variables
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x′

ij — equal to 1 if location i is used to service client j and equal to 0 otherwise (i =
1, 2, . . . , m; j = 1, 2, . . . , n).

The feasible set takes then the following form

Q =
{

x = ((xi)i=1,...,m, (x′

ij)i=1,...,m;j=1,...,n) :
m

∑

i=1

xi = p,

xi ∈ {0, 1} for i = 1, 2, . . . , m
m

∑

i=1

x′

ij = 1 for j = 1, 2, . . . , n

x′

ij ≤ xi, x′

ij ∈ {0, 1} for i = 1, 2, . . . , m and j = 1, 2, . . . , n
}

We do not assume any special form of the feasible set. We rather consider it as a gen-
eral discrete (finite) set. Therefore, the results of our analysis apply to various discrete
location problems. Whenever we need a specific form of the feasible set (to present some
counterexamples or to illustrate some properties) we will use the simplest form of the
feasible set, defined by (2).

The objective functions are, in general, nonlinear and they can be very complex. Due
to the location problem specificity, we assume that all the objective functions fj take only
nonnegative values. We do not assume any special form of the objective functions nor
their special properties (like convexity). Although, we introduce specific functions related
to some types of location models to address them (as special cases) in the discussion.
Functions fj depend usually on distance coefficients dij (i = 1, . . . , m; j = 1, . . . , n) which
express the distance (or travel time) between location i and client j. For the standard
uncapacitated facility location problem, it is assumed that all the potential facilities pro-
vide the same type of service and each client is serviced by the nearest located facility.
The individual objective functions for problem (1)–(2) take then the following form

fj(x) = min
i=1,...,m

{

dij : xi = 1
}

for j = 1, 2, . . . , n (3)

They can be explicitly written in the form of piecewise linear functions as

fj(x) = min
i=1,...,m

(dij − dxi + d) for j = 1, 2, . . . , n

where d is an arbitrarily large number (greater than all the distance coefficients dij).
With the explicit use of the allocation variables and the corresponding constraints the
individual objective functions fj can be written in the linear form

fj(x) =
n

∑

i=1

dijx
′

ij for j = 1, 2, . . . , n

However, for our analysis we prefer the formulation (1)–(3), as it makes the individual
objective functions explicitly dependent on location patterns x. Our analysis, certainly,
covers also the capacitated facility location problem. In that case the allocation decision
variables with the corresponding constraints must be used.
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In location problems related to desirable facilities a smaller value of the individual
objective function means better effect (higher service quality or client satisfaction). This
remains valid for location of obnoxious facilities if the distance coefficients are replaced
with their complements to some large number: d′

ij = d − dij, where d > dij for all
i = 1, 2, . . . , m and j = 1, 2, . . . , n. Therefore, without loss of generality we can assume
that each function fj needs to be minimized as in model (1).

The individual objective functions fj are usually conflicting when minimized. There-
fore, model (1) is a really multiple criteria decision problem and the decision maker (DM)
or planner needs to select some compromise solution for implementation. An integra-
tion of multiple criteria decision approaches with geographical information system (GIS)
capabilities has recently been recognized as one of the most important areas for future
developments in decision support for spatial planning [1,21]. GIS usually focuses on the
capture, storage, manipulation, analysis and display of geographically referenced data and
only implicitly assumes a support of spatial decision making through analytical modeling
operations. The display capabilities of GIS typically provide the user with a number of
techniques that can be used to visualize the problem and the solution in geographical
space. Note that in our multiple criteria location problem (1) the geographical space,
essentially, covers both: the decision space and the criterion space. Therefore, multi-
ple criteria approach to location problems based on model (1) seems to be well suited
for the development of interactive solution procedures to be used within the GIS envi-
ronment. The analysis presented in this paper may provide a theoretical basis for such
developments.

Let F = (f1, . . . , fn) represent a vector of n individual objective functions. Vector–
function F maps the feasible set Q (as a subset of the decision space) into the criterion
space of outcomes. The elements of the criterion space we refer to as achievement vectors.
An achievement vector y is attainable if it expresses outcomes of a feasible solution
x ∈ Q (y = F(x)). The set of all attainable achievement vectors is denoted by Y ,
i.e. Y = {y = F(x) : x ∈ Q}. It is clear that an achievement vector is better than
another if all of its individual outcomes are better or at least one individual outcome is
better whereas no other one is worse. It is mathematically formalized with the domination
relation defined on the set Y .

Definition 1
We say that achievement vector y′ ∈ Y dominates y′′ ∈ Y , or y′′ is dominated by y′, if
y′ 6= y′′ and y′

j ≤ y′′

j for all j = 1, 2, . . . , n. 2

Achievement vector y′ ∈ Y is considered to be better than y′′ ∈ Y if y′′ is dominated
by y′. It means, we treat all the objective functions, and thereby all the clients, in the
same way. Thus, we do not make any specific assumption about the DM’s preference
model except of the general assumption that for each individual objective function less
means better (minimization), i.e. in terms of the location problem, for each client closer
to the service means better.

Unfortunately, there usually does not exist an achievement vector that dominates
all the others with respect to all the criteria. Thus, in terms of strict mathematical
relations, we cannot distinguish the best achievement vector. We can only distinguish the
achievement vectors which are not dominated by any others.
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Definition 2
We say that achievement vector y ∈ Y is nondominated if there does not exist a y′ ∈ Y
such that y′ 6= y and y′

j ≤ yj for all j = 1, 2, . . . , n. 2

Definition 3
We say that a feasible solution (location pattern) x ∈ Q is an efficient (Pareto–optimal)
solution of the multiple criteria problem if y = F(x) is a nondominated achievement
vector. 2

Each feasible solution (location pattern) for which one cannot improve any individual
achievement without worsening another one is an efficient solution. There exist usually
many efficient solutions and they are different not only in the decision space but also in the
criterion space. Hence, there arises a need for further analysis, or rather decision support,
to help the DM in selection of one efficient solution for implementation. Certainly, the
original objective functions do not allow one to select any efficient solution as better
than the others. Therefore, this analysis depends on additional information about the
DM’s preferences. The DM, working interactively with a decision support system (DSS),
specifies the preferences in terms of some control parameters and the DSS provides the DM
with an efficient solution which is the best according to the specified control parameters.
It is important, however, that the control parameters provide the completeness of the
control [28], i.e. that by varying the control parameters, the DM can identify every
nondominated achievement vector.

In this paper we analyze various approaches to location problems (solution concepts)
from the perspective of the multiple criteria model (1) and their possible use for decision
support. We focus our analysis on two aspects of the solution concepts: if a generated
solution is an efficient solution to the multiple criteria problem (1), and if the solution
concept provides some control parameters allowing the DM to select every efficient solution
of (1). The paper is organized as follows. The following section is devoted to the analysis
of the classical solution concepts for location problems: the median and the center solution
concepts. In both cases we allow to introduce some weights as control parameters. It turns
out that the median solution is always an efficient one but there are efficient solutions
which cannot be identified by varying weights in the median approach. On the other hand,
the weighted center approach allows us to identify each efficient solution to the problem (1)
but in the case of nonunique solution it may generate some solutions failing the efficiency
requirement. In Section 3 the solution concept of the lexicographic center is introduced
and analyzed. It may be considered a refinement (consistent with the center philosophy)
of the center solution concept. The solution concept of the lexicographic weighted center
seems to be ideal from the perspective of our analysis as it meets our both requirements
(efficiency principle and complete parameterization). However, it may require complex
computations. Therefore, in Section 4 we introduce another, computationally easier,
refinement of the center solution concept. It is derived as a modification of the so–called
λ–cent–dian approach [6] which is some form of compromise between the median and
center solution concepts. Recall that, despite of not using explicitly the prefix “p-”, we
consider all the solution concepts as applied to multiple facility location decisions.
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2 Median and center approaches

Many location models focus on the minimization of the total distance between clients and
the facilities located. The solution to these type of models is called the median solution.
Exactly, a feasible decision vector x̄ ∈ Q is called the median solution of the problem (1)
if it is an optimal solution to the single objective problem

min
x

{

n
∑

j=1

wjfj(x) : x ∈ Q
}

(4)

where wj (j = 1, 2, . . . , n) are some positive weights (wj > 0). In most applications
the weights are considered to express the demands for service in the corresponding client
points. A median solution may be then interpreted as that solution minimizing the total
distance taking into account the clients demands. In our analysis we consider the weights
to be parameters modeling the DM’s preferences. They can be affected by the service
demands as well as by various other factors.

Analyzing the median solution from the perspective of the multiple criteria problem
(1) we want to know if the median solution is always an efficient solution. The median
solution may be, obviously, interpreted as the weighting approach to the multiple criteria
problem, which is known to generate efficient solutions (c.f., [26]). It is made precise in
the following proposition.

Proposition 1
For any positive weights wj > 0 (j = 1, 2, . . . , n), each optimal solution to the median
problem (4) is an efficient solution of the multiple criteria location problem (1). 2

Unfortunately, the parameters defining the median solution, i.e. the weights wj (j =
1, 2, . . . , n), do not provide us with a complete parameterization of the entire efficient
set. It is due to the specificity of the weighting approach to multiple criteria. In the
case of multiple criteria linear programming it allows to parameterize the entire efficient
set [26]. However, in the case of a discrete (and thereby nonconvex) set Y , usually, there
exist efficient solutions that cannot be generated as optimal solutions for a single objective
problem defined as a convex linear combination of the original objectives. As our multiple
criteria location problem is a discrete one, there may exist efficient solutions that cannot
be generated as median solutions with any set of positive weights. We illustrate this with
a small example.

Example 1
Let us consider a simple single facility location problem with two clients (C1 and C2) and
three potential locations (P1, P2 and P3). The distances dij (i = 1, 2, 3; j = 1, 2) between
several potential locations and clients are given as follows: d11 = 1, d12 = 10, d21 = 10,
d22 = 1, d31 = 6 and d32 = 6.

The problem can be easily expressed as a planar one with distances according to the
Euclidean (l2) or city-block (l1) norm. For instance, when the clients have assigned co-
ordinates: C1=(0,1.5) and C2=(9,1.5), and the potential locations have the coordinates:
P1=(0,2.5), P2=(9,2.5) and P3=(4.5,0), then our set of distances represents the l1 dis-
tances.
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Note that all three feasible solutions are efficient. Despite this they are quite different:
location P1 is close to client C1, P2 is close to C2, and P3 is in equal distances from
both clients. The problem can be related to the planning situation where two sites to
be serviced (clients) are connected via a motorway and some local highway. Along the
motorway the facility may be located only on an exit (either close to C1 or close to C2).
Along the local highway there exists an opportunity to choose a location on half a way
between the clients.

One can easily verify that while dealing with the median approach, location P3 (despite
being a very attractive compromise solution) cannot be selected for any set of positive
weights assigned to the clients. If C1 has assigned the higher weight than C2 (w1 > w2),
then location P1 is a unique optimal solution to the median problem (4). If C1 has
assigned the lower weight than C2 (w1 < w2), then location P2 is a unique optimal
solution to the median problem (4). Finally, if both clients have assigned equal weights
(w1 = w2), then both locations P1 and P2 are optimal. Thus location P3 is never an
optimal solution to the median problem (4). 2

As values of the objective functions fj are presumably nonnegative, the median model
(4) may be considered a minimization of the weighted l1 norm of the achievement vector.
Similarly, one may consider weighted lα norms for some α > 1 (c.f., [25]). In the case
of objective functions (3) it can be easily implemented by replacing the original distance
coefficients with its α powers and solving the standard median problem (4) for the modified
data. Increasing α usually effects in better parameterization of the efficient set. However,
for any fixed α, there may exist efficient solutions not generated as optimal solutions
of the corresponding problem (4). Moreover, due to computational reasons (numerical
instability) it is usually impossible to deal with α greater than 2 or maybe 3. When
increasing α to the infinity we get, as a limiting case, the center solution defined with the
Chebyschev norm l∞.

Since the median approach is based on averaging, it often provides solutions where
remote and low-population density areas are discriminated against in terms of accessibil-
ity to public facilities, as compared with centrally situated and high-population density
areas [3]. For this reason, an alternative approach, involving minimization of the maxi-
mum distance (travel time) between any client and the closest facility, may be considered
[5]. This class of location problems is referred to as minimax or center problems. The
minimax objective primarily addresses the geographical equity issues and it is of particu-
lar importance in spatial organization of emergency service systems, such as fire, police,
medical ambulance services, civil defense and accident rescue. The minimax location rule
is consistent with the Rawls’s [23] general difference principle of justice.

The solution concept related to the minimax approach is called center. Exactly, a
feasible decision vector x̄ ∈ Q is called the center solution of the problem (1), if it is an
optimal solution to the single objective problem

min
x

{

max
j=1,...,n

fj(x) : x ∈ Q
}

(5)

One can easily find examples of center solutions which are not efficient in terms of the
multiple criteria location problem (1). However, the center solution can be dominated
only by another center solution. It leads us to the following proposition [26].
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Proposition 2
The set of all center solutions, i.e. the optimal set of problem (5), always contains an
efficient solution of the multiple criteria location problem (1).
A unique optimal solution of problem (5) is an efficient solution of the multiple criteria
location problem (1). 2

It often turns out that the distribution of clients (spatial units) in relation to the lo-
cation of facilities makes the minimax criterion passive in the sense of generating a lot of
alternative optimal solutions. Such a situation is caused, for instance, by existence of an
isolated client located at a considerable distance from all the locations of facilities. Mini-
mization of the maximum distance is then reduced to minimization of the distance of that
single isolated client (e.g., [14]) leaving other location decisions unoptimized. To resolve
this problem, the center solution concept needs to be supported by some regularization
(refinement) technique to guarantee that only efficient solutions are selected. We discuss
the regularization techniques in subsequent sections.

Let us analyze if the center approach can be used to examine any efficient solution. The
strict center solution defined with problem (5) has no control parameters at all. However,
like in the median approach one may consider positive weights assigned to several clients
and look for a weighted center solution. It means, we minimize the weighted Chebyschev
norm l∞ as in the following problem

min
x

{

max
j=1,...,n

wjfj(x) : x ∈ Q
}

(6)

If the weights are considered to express the demands for service, the weighted center
approach expresses minimization of maximal total distance covered by each client.

Similar to the center solution, the weighted center solution can be dominated only by
another weighted center solution with the same weights. Thus, the following analogue to
Proposition 2 can be easily proven [26].

Proposition 3
For any positive weights wj the set of all weighted center solutions, i.e. the optimal set of
problem (6), contains an efficient solution of the multiple criteria location problem (1).
The unique optimal solution of problem (6) is an efficient solution of the multiple criteria
location problem (1). 2

It turns out that the solution concept of the weighted center allows us to build a com-
plete parameterization of the entire efficient set to the multiple criteria location problem
(1). It is widely known in the multicriteria optimization theory (c.f., [26]) that such an as-
sertion is valid for problems with strictly positive outcomes, which is not a case for typical
discrete location problems. However, in the case of discrete location problems, the feasi-
ble sets are finite and therefore the assertion is also valid for problems with nonnegative
outcomes.

Proposition 4
For any efficient solution x̄ of the multiple criteria location problem (1), there exist positive
weights wj such that x̄ is an optimal solution to the corresponding weighted center problem
(6).
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Proof
As we deal with discrete location problems, the individual objective functions fj(x) can
take only values from some finite set. As the values of the functions depict some distances
we may assume that all the values are nonnegative. Let dj denote the smallest positive
value of the function fj on the set of feasible locations Q. If such a value does not exist,
the corresponding function is constant on Q and it does not affect the efficient set. Let
us define weights w̄j as follows

w̄j = 1/fj(x̄) if fj(x̄) > 0 or w̄j = 1/dj if fj(x̄) = 0

Note that for the center problem (6) with weights w̄j, vector x̄ has the objective value 1 if
at least one individual objective function is positive and 0 otherwise. In the latter case, x̄
is clearly an optimal solution. Let us concentrate on the former case. Suppose that there
exists a feasible vector x with objective value less than 1. Hence

fj(x) < fj(x̄) if fj(x̄) > 0 and fj(x) = 0 if fj(x̄) = 0

which contradicts efficiency of the vector x̄. 2

3 Lexicographic center

In the traditional center approach to location problem all the functions fj(x) are equally
important and therefore their values are important rather than their assignment to specific
spatial units. That means, we compare sets of outcomes {fj(x) : j ∈ N} (where
N = {1, 2, . . . , n}) rather than vectors (f1(x), f2(x), . . . , fn(x)) with a specified order of
coefficients. The center approach minimizes the largest outcomes and it is too crude to
guarantee efficiency of the solution in all possible cases. One may consider to minimize
also the second largest outcome, the third largest and so on. It leads us to a concept of
the lexicographic minimization of vectors (fj1(x), fj2(x), . . . , fjn

(x)) with decreasing order
of their outcome values, i.e. lexicographic minimax optimization.

This approach can be mathematically formalized as follows. We introduce map Θ :
Rn → Rn which orders the coordinates of the achievement vectors in the nonincreasing
order, i.e., Θ(y1, y2, . . . , yn) = (ȳ1, ȳ2, . . . , ȳn) iff there exists a permutation τ of N such
that ȳj = yτ(j) for all j ∈ N and ȳ1 ≥ ȳ2 ≥ . . . ≥ ȳn. Further, we introduce the strict
lexicographic order ≺ by y ≺ v iff there is an index k ≤ n such that yj = vj for all
j < k and yk < vk. The weak lexicographic order is defined with the relation y � v iff
y = v or y ≺ v. It is commonly known that the (weak) lexicographic order is complete
and therefore one can look for a minimum vector with respect to this relation. We call
a location pattern xo ∈ Q the lexicographic center solution if

Θ(f1(x
o), f2(x

o), . . . , fn(xo)) � Θ(f1(x), f2(x), . . . , fn(x))

for all location patterns x ∈ Q. That means, the lexicographic center solution is an
optimal solution of the following lexicographic problem

lex min
x

{

Θ(f1(x), f2(x), . . . , fn(x)) : x ∈ Q
}

(7)
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Example 2
To illustrate the solution concept of the lexicographic center, let us consider a problem of
locating two facilities among ten spatial units where each spatial unit can be considered
as a potential location. We assume that the facilities have unlimited capacities and each
spatial unit is served by the nearest facility. Thus the problem takes the form (1)–(3) with
m = n = 10 and p = 2. To simplify the example we consider several units U1, U2,. . .,U10
as points on one line, say X-axis, with coordinates: 0, 4, 5, 6, 8, 17, 18, 19, 20 and 28,
respectively.

Table 1: Achievements vectors for Example 2

Distances to units
Solution concept Locations 1 2 3 4 5 6 7 8 9 10
lexicographic center U2 U9 4 0 1 2 4 3 2 1 0 8
“worst” center U1 U9 0 4 5 6 8 3 2 1 0 8
median U3 U8 5 1 0 1 3 2 1 0 1 9

Table 2: Ordered achievements vectors for Example 2

Ordered distances
Solution concept Locations 1 2 3 4 5 6 7 8 9 10
lexicographic center U2 U9 8 4 4 3 2 2 1 1 0 0
“worst” center U1 U9 8 8 6 5 4 3 2 1 0 0
median U3 U8 9 5 3 2 1 1 1 1 0 0

One can easily verify that the lexicographic center solution is based on locating facil-
ities in spatial units U2 and U9. The distances generated by this location are presented
in the first row of Table 1. This solution seems to match very well the geographic equity
concept. It is, certainly, also an optimal solution to the classical center problem (5) with
a single minimax objective function. However, problem (5) has other optimal solutions
which are less desirable from the perspective of minimization of the distances. In the
second row of Table 1 there are presented distances for another, in our opinion the worst,
optimal solution to the center problem. It is based on locating facilities in spatial units
U1 and U9. In this solution two spatial units have the maximal distance 8 to the nearest
facility, while in the lexicographic center solution only one does. For easier comparison
of the solutions, Table 2 presents for each solution distances ordered in the nonincreasing
order. In Tables 1 and 2 we have also included the median solution based on locations in
units U3 and U8, which causes that the distance from unit U10 to the nearest facility is
equal to 9. 2

Proposition 5
The lexicographic center solution is an efficient solution of the multiple criteria location
problem (1).
Proof
Let x̄ be the lexicographic center solution. Suppose that x̄ is not an efficient solution
for problem (1). Then, there exists a feasible vector x such that fj(x) ≤ fj(x̄) for
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j = 1, 2, . . . , n, where for at least one index j0 strict inequality holds. Thus

Θ(f1(x), f2(x), . . . , fn(x)) ≺ Θ(f1(x̄), f2(x̄), . . . , fn(x̄))

which contradicts lexicographic optimality of x̄ for problem (7). 2

Due to Proposition 5, the lexicographic minimax optimization allows us to select a
center solution which is always an efficient solution of the multiple criteria problem (1).
The lexicographic center solution concept has no control parameters at all and cannot be
directly used to parameterize the entire efficient set. However, similar to the weighted
center, we may use for this purpose the lexicographic weighted center solution concept
defined as an optimal solution to the problem

lex min
x

{

Θ(w1f1(x), . . . , wnfn(x)) : x ∈ Q
}

(8)

In the two following propositions we show that the solution concept of the lexicographic
weighted center complies with the efficiency principle and it parameterizes the entire
efficient set of the multiple criteria location problem (1).

Proposition 6
For any positive weights wj, the lexicographic weighted center solution is an efficient
solution of the multiple criteria location problem (1).
Proof
Let x̄ be the lexicographic weighted center solution. Suppose that x̄ is not an efficient
solution for problem (1). Then a feasible vector x must exist such that fj(x) ≤ fj(x̄)
for j = 1, 2, . . . , n, where for at least one index j0 strict inequality holds. Thus, due to
positive weights wj

wjfj(x) ≤ wjfj(x̄) for j = 1, 2, . . . , n

with at least one strict inequality and therefore

Θ(w1f1(x), w2f2(x), . . . , wnfn(x)) ≺ Θ(w1f1(x̄), w2f2(x̄), . . . , wnfn(x̄))

which contradicts the lexicographic optimality of x̄ for problem (8). 2

Proposition 7
For any efficient solution x̄ of the multiple criteria location problem (1), there exist positive
weights wj such that x̄ is the lexicographic weighted center solution.
Proof
Let, as in Proposition 4, dj denote the smallest positive value of the function fj on the set
of feasible location patterns Q. If such a value does not exist, the corresponding function
is constant on Q and it does not affect the efficient set. Let us define weights w̄j as follows

w̄j = 1/fj(x̄) if fj(x̄) > 0 or w̄j = 1 + 1/dj if fj(x̄) = 0

Note that for such defined weights

w̄jfj(x̄) = 1 if fj(x̄) > 0 or w̄jfj(x̄) = 0 if fj(x̄) = 0
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and for any feasible x ∈ Q and j = 1, 2, . . . , n

fj(x) > fj(x̄) ⇒ w̄jfj(x) > 1 ≥ max
k=1,...,n

w̄kfk(x̄)

Suppose that there exists a feasible vector x such that

Θ(w̄1f1(x), w̄2f2(x), . . . , w̄nfn(x)) ≺ Θ(w̄1f1(x̄), w̄2f2(x̄), . . . , w̄nfn(x̄))

Then F(x) 6= F(x̄) and fj(x) ≤ fj(x̄) for j = 1, 2, . . . , n, which contradicts the efficiency
of vector x̄. Thus, x̄ is the lexicographic weighted center solution with weights w̄j. 2

Propositions 6 and 7 show that the lexicographic weighted center is a complete so-
lution concept. It always generates an efficient solution to the multiple criteria location
problem (1) and any efficient solution can be found as the lexicographic weighted center
solution with appropriate weights. Moreover, it uses the center solution concept on all
the optimization levels. Thus the solution concept of weighted lexicographic center seems
to be an ideal solution concept from the perspective of our analysis. Figure 1 illustrates
the relation between the efficient set and the solution sets for the concepts of weighted
center, weighted lexicographic center and (weighted) median.'

&

$

%

'

&

$

%

'

&

$

%

WCEN

EFF = WLCEN

WMED

Figure 1: Venn diagram illustrating the relation between the efficient set (EFF) and the
solution sets for concepts of the weighted center (WCEN), the weighted lexicographic
center (WLCEN) and the weighted median (WMED).

The lexicographic minimax solution is known in the game theory as the nucleolus of a
matrix game [24,22]. In matrix games the feasible sets Q are convex polyhedral sets and
the functions fj are linear. In the case of linear objective functions and convex feasible
sets, there exists a dominating objective function constant on the entire optimal set of the
minimax problem. Therefore, such problems can be easily solved, like the standard lexi-
cographic problems, by sequential optimization with elimination of dominating functions
[22]. For the discrete location problems, we consider, there does not exist a dominating
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objective function which makes the simple sequential optimization procedure inapplicable.
As shown by Ogryczak [18] for such problems one can apply the inverse approach taking
advantages of the finite number of possible outcomes (values of functions fj). In this ap-
proach the standard lexicographic problem, with apriori defined objective functions and
their hierarchy, is solved instead of the lexicographic minimax problem (7). However, the
number of the objective functions depends on the number of different possible outcomes
(different dij coefficients). Therefore, the solution concept of the lexicographic weighted
center may require complex computations.

4 λ–cent–dian and regularized weighted center

According to Proposition 4, any efficient solution of the multiple criteria location prob-
lem (1) is a weighted center solution with some positive weights wj. Moreover, due to
Proposition 3, every unique weighted center solution is always an efficient solution of the
multiple criteria location problem (1). In the case of nonunique solutions, the optimal set
for the corresponding weighted center problem (6) always contains an efficient solution
of problem (1). Thus, to get a complete solution concept, we need only an additional
regularization technique that will allow us to select always an efficient weighted center
solution. The solution concept of the lexicographic weighted center, discussed in the pre-
vious section, is such a regularization of the weighted center problem (6). The solution
concept of the lexicographic weighted center seems to be ideal from the perspective of
our analysis. However, it may require very complex computations. Therefore, one may
consider regularizations based on the median solution concept as easier alternatives.

Halpern [6,7] has introduced a parameterized solution concept based on the bicriterion
center/median model

min
x

{

[ max
j=1,...,n

fj(x),
n

∑

j=1

wjfj(x)] : x ∈ Q
}

(9)

Halpern has modeled the corresponding trade-offs with a convex combination of two
objectives. He has introduced the λ–cent–dian solution as an optimal solution to the
parameterized problem

min
x

{

Hλ(x) : x ∈ Q
}

(10)

where

Hλ(x) = λ
n

∑

j=1

wjfj(x) + (1 − λ) max
j=1,...,n

fj(x) (11)

As suggested by Hansen et al. [9], the median weights wj should be rather normalized
(
∑n

j=1 wj = 1) in (11) because average and maximum distances are more directly compa-
rable in terms of magnitude. Note that for λ = 0, Hλ expresses the maximal distance and
the problem (10) is then the standard center problem. Similarly, for λ = 1, Hλ expresses
the total (or average if normalized weights are used) distance and the problem (10) is then
the standard median problem. Thus, in both these limiting cases the analysis from the
previous sections may be applied. Note, however, that the weights wj are used only for
the median objective function whereas the center objective function remains unweighted.
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We will further consider a modification of the λ–cent–dian solution concept using the
same weights for the center objective function.

In the case of a single facility location on a tree, as originally considered by Halpern
[6], the λ–cent–dian solution concept provides the complete modeling of the trade–offs.
However, from the perspective of our analysis, it tends to have similar properties as
the median solution concept. That means, λ–cent–dian solutions (for λ > 0) are efficient
solutions for the multiple criteria problem (1) but they do not provide us with a capability
to parameterize the entire set of efficient solutions.
Proposition 8
For any 0 < λ < 1 and for any positive weights wj (j = 1, 2, . . . , n), each optimal solution
to the λ–cent–dian problem (10) is an efficient solution of the multiple criteria location
problem (1) as well as an efficient solution to the bicriterion problem (9).
Proof
Let x̄ be a λ-cent-dian solution, i.e., an optimal solution to problem (10) with some
0 < λ < 1 and some positive weights wj (j = 1, 2, . . . , n). Suppose that x̄ is not an efficient
solution for problem (1). Then a feasible vector x must exist such that fj(x) ≤ fj(x̄) for
j = 1, 2, . . . , n, where for at least one index j0 strict inequality holds. Thus

max
j=1,...,n

fj(x) ≤ max
j=1,...,n

fj(x̄)

and due to positive weights wj

n
∑

j=1

wjfj(x) <
n

∑

j=1

wjfj(x̄)

Hence, due to 0 < λ < 1, we get Hλ(x) < Hλ(x̄) which contradicts the optimality of x̄
for problem (10).

Suppose now that x̄ is not an efficient solution for the bicriterion problem (9). Then
a feasible vector x must exist such that

max
j=1,...,n

fj(x) ≤ max
j=1,...,n

fj(x̄) and
n

∑

j=1

wjfj(x) ≤
n

∑

j=1

wjfj(x̄)

where at least one of these two is a strict inequality. Hence, due to 0 < λ < 1, we get
Hλ(x) < Hλ(x̄) which contradicts the optimality of x̄ for problem (10). 2

The λ-cent-dian approach, combining the median and center solution concepts, re-
solves the problem of inefficient solutions possibly generated by the center approach itself.
Unfortunately, similarly to the median approach, the parameters defining the λ-cent-dian
solution, i.e., 0 ≤ λ ≤ 1 and positive weights wj (j = 1, 2, . . . , n), do not provide us with
a complete parameterization of the entire efficient set of the multiple criteria problem (1)
nor of the bicriterion problem (9). We illustrate this with Example 3.

Example 3
Let us consider a simple single facility location problem with two clients (C1 and C2) and
three potential locations (P1, P2 and P3). The distances dij (i = 1, 2, 3; j = 1, 2) between
several potential locations and clients are given as follows: d11 = 2, d12 = 14, d21 = 10,
d22 = 10, d31 = 5 and d32 = 13.
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This problem can be easily expressed as a planar one with distances according to the
Euclidean norm (l2) or city-block norm (l1). Location P1 is close to client C1 and it is
actually the optimal median solution in the case of equal weights. Location P2 is in equal
distances from both the clients and it is the optimal center solution. Location P3 is closer
to client C1 than to C2, but it is more balanced than location P1 and it is not an optimal
solution to the median problem (with equal weights). Location P3 is an efficient solution
to the multiple criteria problem (1) as well as to the bicriterion problem (9). In terms
of both problems it may be an interesting compromise solution. We will show that P3
cannot be a λ-cent-dian solution for any 0 ≤ λ ≤ 1 and positive normalized weights w1,
w2 > 0 (w1 + w2 = 1).

To be a λ-cent-dian solution, location P3 needs to satisfy inequalities: Hλ(P3) ≤
Hλ(P1) and Hλ(P3) ≤ Hλ(P2). Note that Hλ(P1) = 2 + 12(1− λw1), Hλ(P2) = 10 and
Hλ(P3) = 5+8(1−λw1). Hence we get the inequalities λw1 ≤ 1/4 and λw1 ≥ 3/8, which
are impossible to satisfy. 2

The original solution concept of the λ–cent–dian is based on the unweighted center
concept. Let us consider the weighted λ–cent–dian solution defined as an optimal solution
to the problem

min
x

{

Hλ,w(x) : x ∈ Q
}

(12)

where

Hλ,w(x) = λ
n

∑

j=1

wjfj(x) + (1 − λ) max
j=1,...,n

wjfj(x) (13)

wj > 0 for j = 1, 2, . . . , n and
n

∑

j=1

wj = 1 (14)

Note that for λ = 0 problem (12) is the weighted center problem whereas for λ = 1
it becomes the weighted median problem. Note, moreover, that in both terms of the
objective function the same weights wj are used. Therefore, in this solution concept clearly
the individual objective functions fj are scaled with weights wj, whereas the parameter
λ generates some compromise between the center and median solution concept on the
scaled problem. It allows us to take advantages of both approaches: the center and the
median.

Proposition 9
For any 0 < λ ≤ 1 and for any weights wj satisfying (14), each optimal solution to the
weighted λ–cent–dian problem (12) is an efficient solution of the multiple criteria location
problem (1).
Proof
Let x̄ be an optimal solution to problem (12) with some 0 < λ ≤ 1 and some weights wj

(j = 1, 2, . . . , n) satisfying (14). Suppose that x̄ is not an efficient solution for problem
(1). Then a feasible vector x must exist such that fj(x) ≤ fj(x̄) for j = 1, 2, . . . , n, where
for at least one index j0 strict inequality holds. Thus due to positive weights wj

max
j=1,...,n

wjfj(x) ≤ max
j=1,...,n

wjfj(x̄) and
n

∑

j=1

wjfj(x) <
n

∑

j=1

wjfj(x̄)
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Hence, due to 0 < λ ≤ 1, we get Hλ,w(x) < Hλ,w(x̄) which contradicts the optimality of
x̄ for problem (12). 2

Proposition 10
For any efficient solution x̄ of the multiple criteria location problem (1), there exist weights
wj satisfying (14) and 0 < λ < 1 such that x̄ is an optimal solution to the corresponding
weighted λ–cent–dian problem (12).
Proof
Let, as in Proposition 4, dj denote the smallest positive value of the function fj on the
set of feasible locations Q. If such a value does not exist, the corresponding function is
constant on Q and it does not affect the efficient set. Let us define weights w̄j as follows

w̄j = 1/fj(x̄) if fj(x̄) > 0 or w̄j = 1/dj if fj(x̄) = 0

Note that for such defined weights and λ = 0, H0,w̄(x̄) = 1 if at least one individual
objective function is positive and H0,w̄(x̄) = 0 otherwise. In the latter case x̄ is, clearly,
an optimal solution of (12). We will show that it is also valid for the former case. Suppose,
there exists a feasible vector x such that H0,w̄(x) < 1. Hence

fj(x) < fj(x̄) if fj(x̄) > 0 and fj(x) = 0 if fj(x̄) = 0

which contradicts the efficiency of x̄. Thus, vector x̄ is an optimal solution of problem
(12) with the weights w̄ and parameter λ = 0. Moreover, it is a unique optimal solution
in terms of the criterion space (achievement vectors). That means, any x ∈ Q optimal
for the corresponding problem (12) satisfies F(x) = F(x̄).

We will prove that x̄ remains optimal for problem (12) with the weights w̄ and some
small positive λ. Due to (13), Hλ,w(x) = λH1,w(x) + (1 − λ)H0,w(x). Note that, due to
discreteness of our location problem, there exist ε > 0 and E > 0 such that

H0,w̄(x̄) ≤ H0,w̄(x) − ε for any x ∈ Q, F(x) 6= F(x̄)

H1,w̄(x̄) − E ≤ H1,w̄(x) for any x ∈ Q

Thus, putting λ̄ = ε/(E + ε), we get

λ̄(H1,w̄(x̄) − H1,w̄(x)) ≤ (1 − λ̄)(H0,w̄(x) − H0,w̄(x̄)) for any x ∈ Q

Hence, for any x ∈ Q

Hλ̄,w̄(x̄) = λ̄H1,w̄(x̄) + (1 − λ̄)H0,w̄(x̄) ≤ λ̄H1,w̄(x) + (1 − λ̄)H0,w̄(x) = Hλ̄,w̄(x)

which proves the optimality of vector x̄ for problem (12) with the weights w̄ satisfying
(14) and the parameter 0 < λ̄ < 1. 2

According to Propositions 9 and 10, the weighted λ–cent–dian solution concept satisfies
our expectations regarding solution techniques for the multiple criteria location problems
(1). That means, each generated (optimal) solution is an efficient solution of problem
(1) and for any efficient solution there exists a set of control parameters generating this
solution. Note, however, that the value λ̄ constructed in the proof of Proposition 10 has
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to be “small enough” and we have used directly the assumption about the finite feasible
set (discrete location problem) to define it. Thus, in fact, we use the median term H1,w(x)
of the objective function (13) only as a regularization for the main center term H0,w(x),
to guarantee that in the case of nonunique center solutions that solution with the best
median value will be selected. In other words, we use the λ–cent–dian solution concept
only to emulate a two level lexicographic optimization with the weighted center and the
median objective functions. Thus, we may introduce explicitly the solution concept of
the lexicographic cent–dian as an optimal solution to the following lexicographic problem

lex min
x

{

[ max
j=1,...,n

wjfj(x),
n

∑

j=1

wjfj(x)] : x ∈ Q
}

(15)

One can easily adjust the proofs of Propositions 9 and 10 two show similar properties of
the lexicographic cent–dian solution concept, as stated in two following propositions.

Proposition 11
For any weights wj satisfying (14), each optimal solution to the lexicographic problem
(15) is an efficient solution of the multiple criteria location problem (1). 2

Proposition 12
For any efficient solution x̄ of the multiple criteria location problem (1), there exist weights
wj satisfying (14) such that x̄ is an optimal solution to the corresponding lexicographic
problem (15). 2

The lexicographic cent–dian solution concept defined as problem (15) seems to be more
lucid and better appealing than the equivalent λ–cent–dian model with “small enough”
λ. The use of a “small enough” parameter, to combine the objective functions emulating
their pre–emptive hierarchy, is usually the simplest implementation technique for the
lexicographic optimization. However, especially in the case of objective functions (3),
specificity of the location problem allows for easy sequential implementations of problem
(15). We need to solve the center problem, and next the median problem with forbidden
allocations on (weighted) distances exceeding the optimal value of the center problem.
For instance, having solved the center problem, one may replace with infinity (or a very
large number) all the distances exceeding the optimal value of the center problem.

The lexicographic cent–dian approach may be considered a special case of the as-
piration/reservation based approach [12,19] to multiple criteria optimization which is
a modification of goal programming and the reference point method [27]. The aspira-
tion/reservation based approach has been implemented in an experimental DSS for mul-
tiple criteria transportation problem with facility location [20] and successfully used for a
real-life decision analysis [15]. Efficient solutions generated within the interactive scheme
of the aspiration/reservation based approach (in the simplest form of that by Ogryczak
and Lahoda [19]) are defined as optimal solutions to the following problem

lex min
x

{

[ max
j=1,...,n

(fj(x) − aj)/(rj − aj),
n

∑

j=1

(fj(x) − aj)/(rj − aj)] : x ∈ Q
}

(16)

where the DM’s preferences are modeled with the aspiration levels aj (as the most desired
values) and the reservation levels rj (as the worst acceptable values) for several objective
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functions. Note, that applying (16) to the multiple criteria location model (1) with aj = 0
and rj = 1/wj (for j = 1, 2, . . . , n) we get exactly problem (15). Thus, the lexicographic
cent–dian solution concept differs from (16) only due to using always zero as the aspiration
levels and the direct use of weights instead of the reservation levels. The latter is only a
technical difference as we do not consider how the weights are defined to model the DM’s
preferences. The former suggests a possibility to introduce various aspiration levels into
the lexicographic cent–dian concept. It would improve the controllability of the efficient
set parameterization and thereby ease the interactive analysis. One may consider rather
impracticable to use various weights in the multiple criteria location model (1). However,
the use of aspiration and reservation levels during an interactive analysis within the GIS
environment seems to be a reasonable tool to adjust the solution to the DM’s preferences.

5 Conclusions

Location problems can be considered as multiple criteria models (1) where for each client
there is defined an individual objective function, which measures quality of a location
pattern with respect to the client satisfaction. In our multiple criteria location model the
geographical space, essentially, covers both: the decision space and the criterion space.
Therefore, the multiple criteria approach to location problems based on model (1) seems
to be well suited for development of interactive solution procedures to be used within the
GIS environment. The analysis presented in this paper may provide a theoretical basis
for such developments.

The individual objective functions are usually conflicting when optimized. Therefore,
the DM needs to select some compromise solution for implementation. In this paper
we have analyzed various approaches to location problems (solution concepts) from the
perspective of the multiple criteria model (1). We have focused our analysis on two
aspects of the solution concepts: if a generated solution is an efficient (Pareto-optimal)
solution to the multiple criteria problem, and if the solution concept provides some control
parameters allowing the decision maker to select every efficient solution of the multiple
criteria problem. That means, we have analyzed if a solution concept complies with the
optimality principle for the multiple criteria model as well as if it allows to take into
account various preferences of the DM.

First, we have analyzed the classical solution concepts for location problems: the
median and the center. In both the concepts we allow to introduce some weights as
control parameters modeling the DM’s preferences. It turns out that both the concepts
fail to achieve our standards. The median solution is always an efficient one but there are
efficient solutions which cannot be identified by varying weights in the median approach.
On the other hand, the weighted center approach allows us to identify each efficient
solution to the problem (1) but in the case of nonunique solution it may generate some
solutions failing the efficiency requirement.

The solution concept of the weighted center needs only an additional regularization
in the case of nonunique solutions to meet our requirements. We have introduced the
concept of the lexicographic center as a regularization (consistent with the center philos-
ophy) of the center solution concept. The solution concept of the lexicographic weighted
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center seems to be ideal from the perspective of our analysis as it meets our both require-
ments (efficiency principle and complete parameterization). However, for most location
problems it may require complex computations. Therefore, we have introduced another,
computationally easier, regularization of the center solution concept. It has been de-
rived as a modification of the so–called λ–cent–dian approach [6] which is some form of
compromise between the median and center solution concepts. The solution concept of
the lexicographic cent–dian is computationally robust and meets our standards. Its only
weakness depends on some methodological inconsistency as it switches from the center to
the median approach. The lexicographic cent–dian approach may be considered a special
case of the aspiration/reservation based approach [19] to multiple criteria optimization
which is a modification of goal programming and the reference point method [27]. It
suggests possible further extensions of this solution concept.
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