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ON GENERALIZED OWA APPROACH TO SUPPORT LOCATION
AND ROUTING DECISIONS

Krzysztof FLESZAR∗†, Włodzimierz OGRYCZAK∗‡

Abstract. While modeling a transportation system one needs to take into account
various negative effects of location and routing decisions for several populated spa-
cial units. The minimization of the worst individual effect, the minimax approach,
is the simplest solution concept focused on the spatial equity. In this paper we use
the conditional means which generalize the worst effect by taking into account the
portion of population affected (quantile). Further, aggregating conditional means
for various quantiles we get a generalization of the so-called ordered weighted
average (OWA) which allows us to model various preferences.

1. Introduction

In various systems which serve many users there is a need to respect the fairness rules.
This applies to the desired system output (amount, quality of services) as well as to the
obnoxious outcomes (like risk exposure, pollutions). The so-called minimax solution con-
cept, where the worst individual effect (maximum individual disutility) is minimized, is
usually considered as the simplest fair optimization model. The minimax approach is con-
sistent with Rawlsian [4] theory of justice, especially when additionally regularized with
the lexicographic order. On the other hand, making the locational and routing decisions to
optimize the worst individual disutility may cause a large worsening of the overall (mean)
performances. Therefore, several other fair decision schemes are searched and analyzed.

In this paper we use an alternative concept of the conditional mean which is a parametric
generalization of the worst outcome taking into account the portion of population affected
by the worst effects [3]. Namely, for a specified portion β of population we take into
account the entire β portion (quantile) of the largest disutility outcomes and we consider
their average as the (worst) conditional β–mean outcome. When parameter β approaches
0, the conditional β–mean tends to the largest outcome. On the other hand, for β = 1 the
corresponding conditional mean becomes the standard mean.
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We select several conditional means for various levels of β and apply weights to aggre-
gate them. The resulting aggregation function is a generalization of the so-called ordered
weighted average (OWA) introduced by Yager [5]. While the original OWA weights the
ordered individual outcomes, our aggregation weights the quantiles of the distribution of
outcomes. Selecting different values of β and the corresponding weights allows us to model
various preferences and thereby to achieve different solutions.

Our analysis is based on the problem of locating disposal or treatment facilities and
transporting hazardous waste, introduced by Giannikos [1]. The disutility in this problem
is caused by two factors: locating treatment facility close to the population center and
transporting hazardous waste through the population center. In addition to the total location
and transportation cost Giannikos considered several criteria based on the worst or the mean
value of either of individual disutilities. Our approach aims at defining a framework allowing
for more general criteria to be implemented.

2. Core model

The problem is based on a directed transportation network {N,A}, along which the waste
is transported. The nodes N are divided into three disjointed sets: P – population centers
not generating waste, G – population centers generating waste, and L – location candidate
sites for the treatment facilities. Each population center i ∈ P ∪ G is associated a weight
wi > 0 expressing in relative terms the population located at site i. Each generation site
g ∈ G introduces to the network an amount of the hazardous waste denoted by Dg .

For each link (i, j) of the underlying network the unit cost cij of transporting waste
from i to j is known. One of the results of the decision process is the amount of hazardous
waste transported from i to j, denoted by a variable xij .

At each location candidate site m ∈ L it is possible to locate a treatment facility with
a capacity denoted by Ck (k = 1, . . . ,K). The decision to build a facility of size Ck at
location m is expressed by a binary variable zmk. Building a treatment facility of size Ck
at location m incurs a cost denoted by Fmk.

Having defined the decision variables and the parameters, the core model of the decision
problem can be stated in the following terms:

∑

i∈INm

xim −
∑

j∈ONm

xmj ≤
K∑

k=1

Ckzmk for m ∈ L (1)

∑

j∈ONg

xgj −
∑

i∈INg

xig ≥ Dg for g ∈ G (2)

∑

i∈INj

xij −
∑

i∈ONj

xji = 0 for m ∈ P (3)

K∑

k=1

zmk ≤ 1 for m ∈ L (4)

xij ≥ 0 for (i, j) ∈ A (5)



zmk ∈ {0, 1} for m ∈ L, k = 1, . . . ,K (6)

where INi = {j ∈ N : (j, i) ∈ A} and ONi = {j ∈ N : (i, j) ∈ A}. Constraints (1)–(3)
ensure the flow conservation at candidate location sites, generation sites and the remaining
population centers, respectively. Constraints (4) restrict the number of facilities built at
each candidate location to one. Constraints (5) and (6) ensure proper values of decision
variables.

To evaluate the feasible solutions of the above constraint set several outcomes can be
defined. Ri denotes individual perceived risk at population center i caused by shipment of
hazardous waste transported through population center i. It is calculated as:

Ri =
∑

j∈INi

xji for i ∈ P ∪G (7)

Similarly, Ei denotes individual perceived disutility at population center i caused by the
operation of the treatment facilities. It is calculated as:

Ei =
∑

m∈L

∑K
k=1 Ckzmk
bim

for i ∈ P ∪G (8)

where bim is a distance of candidate location site m from population center i. Note that both
Ri and Ei denote in fact risk or disutility perceived by each inhabitant of the population
center i, so whenever outcomes are used, the weights wi associated with population centers
should be taken into account.

Additionally, the total cost of location and transportation is denoted by T and calcu-
lated as:

T =
∑

m∈L

K∑

k=1

Fmkzmk +
∑

(i,j)∈A
cijxij (9)

3. Preference model

According to the problem formulation, a smaller value of the outcome (risk or disutility)
means a better effect (higher service quality or client satisfaction). Therefore, without
loss of generality, we can assume that each individual outcome is to be minimized, and
the location-routing problem may be stated as the following multiple criteria minimization
problem:

min {f(x, z) : (x, z) ∈ Q} (10)

where Q is a feasible set of solutions defined by constraints (1)–(6) and f = (f1, . . . , fm)
is a vector of the individual objective functions which measure the outcome (effect) yi =
fi(x, z) of the location-routing pattern (x, z) for city i.

Recall now the weights wi > 0 defined in the model to represent the population. Integer
weights can be directly interpreted as numbers of unweighted individual clients located at
exactly the same place (with distances 0 among them). Theoretically, one may consider
that the weighted problem is transformed (dis-aggregated) to the unweighted one (with all



the population weights equal to 1). Such a dis-aggregation is possible for integer as well
as rational weights, but it usually dramatically increases the problem size. Therefore, we
consider solution concepts which can be applied directly to the weighted problem. Since
the population weights describe the distribution of outcomes, we will use the normalized
weights w̄i = wi/

∑m
i=1 wi for i = 1, . . . ,m rather than the original quantities wi.

The simplest approach depends on minimization of the objective function representing
the maximum (worst) outcome M(y) = maxi=1,...,m yi and it is not affected by the
population weights at all. A natural generalization of the maximum outcome M(y) is
the (worst) conditional mean outcome defined as the mean of the specified size (quantile)
of the worst (largest) outcomes. For the simplest case of the unweighted problem one
may distinguish the k largest outcomes (the k worst-off clients) and define the conditional
mean outcome as the mean of the k distinguished outcomes. This can be mathematically
formalized as follows. First, we introduce the ordering map Θ : Rm → Rm such that
Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists
a permutation τ of set I such that θi(y) = yτ(i) for i = 1, . . . ,m. The (worst) conditional
k
m–mean outcome M k

m
(y) is given then as

M k
m

(y) =
1

k

k∑

i=1

θi(y), for k = 1, . . . ,m. (11)

For the special cases of k = 1 and k = m one gets M 1
m

(y) = θ1(y) = M(y) and
Mm

m
(y) = 1

m

∑m
i=1 θi(y) = 1

m

∑m
i=1 yi, respectively, thus representing the classical

criteria. It turns out that the conditional k
m–mean outcome M k

m
(y) can be found by

a simple linear programming minimization [2] and this formula can be generalized to any
conditional β–mean [3]:

Mβ(y) = min {t+
1

β

m∑

i=1

w̄idi : yi ≤ t+ di, di ≥ 0, for i = 1, . . . ,m}. (12)

For better modeling of the preferences one may consider several conditional means
for various levels βk and the simplest way of their aggregation is a weighted sum with
normalized (preference) weights vk:

Mv(y) =

r∑

k=1

vkMβk(y). (13)

Note that the conditional k
m–means (11) themselves as well as their weighted aggregations

represent the ordered weighted averages (OWA) [5], Our weighted aggregation (13) gener-
alizes it to taking into account the population by allocating preference weights to various
quantiles of the distribution of outcomes.

4. Example

We consider a hypothetical instance of the location and routing problem described above [1].
There are ten population centers not generating waste and three population centers generat-



ing waste. Treatment facilities of capacity 30, 50 or 80 can be open in five locations. For
all other parameter values the reader is referred to [1].

In the experiment presented here we add constraints for the total cost T ≤ 1100 and
for each i ∈ P ∪ G Ei ≤ 75. Thus, we restrict our multi-criteria analysis to only risk
outcomes, i.e. yi = Ri for each i ∈ P ∪G.

β
(1)
k v

(1)
k β

(2)
k v

(2)
k β

(3)
k v

(3)
k β

(4)
k v

(4)
k

10 9 10 9 1 10 1 90
25 40 25 80 100 90 100 10
50 50 50 10

100 1 100 1

Table 1. Parameters (percentage values)

i w̄i [%] R
(1)
i R

(2)
i R

(3)
i R

(4)
i

1 5 0 0 0 0
2 6.5 0 0 0 0
3 8.5 0 0 0 0
4 6 0 1.46 0 2.33
5 5 0 1.46 0 0
6 12.5 30 33.33 30 33.33
7 9 40 33.33 35 33.33
8 7 0 3.33 0 3.33
9 9 30 33.33 35 33.33

10 8 30 33.33 35 33.33
11 7.5 0 0 0 0
12 10 0 0 0 0
13 6 0 0 0 0

maxRi 40 33.33 35 33.33
Mβ1 39 33.33 35 33.33
Mβ2 33.6 26.26 12.85 13.21
Mβ3 24.9 26.26
Mβ4 12.45 13.23

mean Ri 12.45 13.23 12.85 13.21
Mv 29.52 32.43 15.07 31.32

Table 2. Experiment results.

Table 1 shows parameter values assumed for our tests. In the first two cases the same
quantile values βk are taken but different weights vk are applied. In the last two cases
parameter values are chosen in such a way, that the preference model is in fact weighting the
worst outcome (average of 1% worst outcomes) and the mean outcome. Table 2 summarizes
the test results. With a restricted total cost T and individual perceived disutilities Ei different



routing schemes are chosen for each set of parameter values, resulting in different values
of risk Ri.

The same set of facilities is chosen in each solution: facility capacities 50, 80, 30, 50,
30 are assumed for candidate locations 14 to 18, respectively. This is probably due to the
fact, that the choice of locations is mainly affected by optimization of disutilities Ei, which
we only restricted from above.

5. Conclusions and further work

While modeling a transportation system (location and routing decisions) the distribution
of effects among the population is an important issue and some fairness or equity rules
must be respected. We analyze the use of the conditional means for several quantiles
and their OWA type aggregation. Simple initial experiments shows that the usage of only
few quantile levels allows us to generate various routing strategies corresponding to risk
distribution preferences. One may expect even better controllability of the search process
when using the reference point methodology rather than the weighting aggregation to the
multiple conditional means. Such an interactive approach with aspiration and reservation
levels defined for several conditional means is currently being studied.

Although the conditional means formula can be represented by auxiliary linear con-
straint, for larger real-life problems a search for specialized optimization algorithms cus-
tomized to this criteria seems to be necessary.
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