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Abstract. There are several decision problems with multiple homogeneous
and anonymous criteria where the preference model needs to satisfy the prin-
ciple of anonymity (symmetry with respect to permutations of criteria). The
standard reference point method cannot be directly applied to such problems.
In this paper we develop, as an analogue of the reference point method, the
reference distribution method taking into account both the efficiency princi-
ple and the principle of anonymity. All the solutions generated during the
interactive process belong to the symmetrically efficient set which is a subset
of the standard efficient set. It means, the achievement vector of the gener-
ated solution is neither dominated by another achievement vector nor by any
permutation of some achievement vector.
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1 Introduction

Consider a decision problem defined as an optimization problem with m
homogeneous objective functions. For simplification we assume, without loss
of generality, that the objective functions are to be minimized. The problem
can be formulated as follows

min {F(x) : x€Q} (1)
where
F=(f1,..-.,fm) isavector—-function that maps the decision space X =
R™ into the criterion space Y = R™,
QCX denotes the feasible set,
xeX denotes the vector of decision variables.

The elements of the criterion space we refer to as achievement vectors. An
achievement vector y € Y is attainable if it expresses outcomes of a feasible
solution x € @ (y = F(x)). The set of all the attainable achievement vectors
is denoted by Y,,ie. Y, ={y €Y : y=F(x), x € Q}.



Model (1) only specifies that we are interested in minimization of all objec-
tive functions f; fori € I = {1,2,...,m}. In order to make it operational, one
needs to assume some solution concept specifying what it means to minimize
multiple objective functions. The solution concepts are defined by properties
of the corresponding preference model. We assume that solution concepts
depend only on evaluation of the achievement vectors do not taking into ac-
count other solution properties not represented within achievement vectors.
Thus, we can limit our considerations to the preference model in the criterion
space Y.

The preference model is completely characterized by the relation of weak
preference (c.f., [5]), denoted hereafter with <. Namely, we say that achieve-
ment vector y' € Y is (strictly) preferred toy” € YV (y' <y") iff y' X y"
and y” Ay'. Similarly, we say that achievement vector y’ € Y is indifferent
or equally preferred toy” € Y (y' =2 y") iff y' <y” and y" <y'.

The standard preference model related to the Pareto—optimal solution con-
cept assumes that the preference relation < is reflexive

y Xy (2)
transitive
' 2y" and y"=y") = y 2y” 3)
and strictly monotonic
y—ee;<y for €¢>0 (4)

where e; denotes the i—th unit vector in the criterion space. The last assump-
tion expresses that for each individual objective function less means better
(minimization).

We focus on multiple criteria problems with homogeneous and anonymous
objective functions. Therefore, we assume also that the preference relation
=< is anonymous (or impartial), i.e.

(yT(l)JyT(2)7"‘7yT(m)) = (y1;y2;---,ym) (5)

for any permutation 7 of I.

There are several decision problems with multiple homogeneous and anony-
mous criteria. As an example one may consider location problems. The
generic location problem may be stated as follows. There is given a set of m
clients (spatial units). There is also given a set of n potential locations for
the facilities. It may be in particular a subset (or the entire set) of points
representing the clients. Further, the number p of facilities to be located is
given (p < n). The main decisions to be made in the location problem can be
described with the binary variables z; (j = 1,2,...,n) equal to 1 if location j
is to be used and equal to 0 otherwise. To meet the problem requirements the
decision variables x; have to satisfy the constraint 2?21 z; = p. Further,
let us assume that for each client i = 1,2,...,m there is defined a function



fi(x) of the location pattern x = (z1,z2,...,Z,). The function measures
quality of the location pattern with respect to the satisfaction of client i.
In typical formulations of location problems this function is usually related
to the distances and thereby its less value means higher service quality and
client satisfaction. Therefore, each function f; needs to be minimized. Thus
the generic location problem can be viewed as the following multiple criteria
minimization problem

min {F(x) : Z zj=p, z; €{0,1} for j=1,2,...,n} (6)
j=1

The individual objective functions f; are usually conflicting when minimized.
Therefore, (6) can be considered a multiple criteria decision problem with
homogeneous objective functions. Moreover, while locating public facilities,
the distribution of distances among the clients is the crucial issue and the
preference model should satisfy the property of anonymity.

2 Symmetric efficiency

It is clear, or rather commonly accepted, that an achievement vector is better
than another if all its individual achievements are better or at least one
individual achievement is better whereas no other one is worse. In fact, it
is the most general assumption about the preference model underlying the
multiple criteria optimization. This assumption is equivalent to properties
(2)—(4) of the preference model. It is mathematically formalized with the
domination relation defined on the criterion space Y.

Definition 1 We say that achievement vector y' € Y dominatesy” € Y, or
y" is dominated by y', if y; <y}’ for all i € I and for at least one indezx io
strict inequality holds (y;, <y ).

Unfortunately, there usually does not exist an attainable achievement vec-
tor that dominates all the others with respect to all the criteria. Thus, in
terms of the domination relation, we cannot distinguish the best attainable
achievement vector. We can only distinguish the attainable achievement vec-
tors which are not dominated by the others.

Definition 2 We say that achievement vector y € Y, is nondominated, if
does not exist y' € Y, such that y' dominates y.

Definition 3 We say that feasible solution x € Q is an efficient (Pareto—
optimal) solution of the multiple criteria problem (1), if y = F(x) is a non-
dominated achievement vector.

In our problem all the functions are equally important and the preference
model satisfies the property of anonymity (5). That means we are interested
in comparison rather sets of outcomes than achievement vectors. Therefore,



for the problems with homogeneous and equally important objective func-
tions we should introduce an efficiency concept based rather on the set of
outcomes than on the achievement vectors. It means, we need to consider
the symmetric domination relation which is not affected by any permutation
of the achievement vector coefficients.

Definition 4 We say that achievement vector y' € Y symmetrically domi-
nates y"' €Y, ory" is symmetrically dominated by y', if there exist permu-
tations 7' and 7' such that y'T,(z.) < y'T',,(i) for all i € I and for at least one

indez io strict inequality holds (Y, ;. < Yin(iq))-

Definition 5 We say that feasible solution x € @Q is a symmetrically efficient
solution of the multiple criteria problem (1), if y = F(x) is symmetrically
nondominated.

The symmetric efficiency is stronger than the standard efficiency and the
symmetrically efficient set is a subset of the standard efficient set. The rela-
tion of symmetric domination can be expressed as domination of the achieve-
ment vectors with coefficients ordered in the weakly decreasing order. This
can be mathematically formalized with the ordering map © : R™ — R™
such that @(yl,yz, .. ,ym) = (gl,gz, .. -;gm); where N 2>2Y22 -2 Ym and
Ui = yr() for i =1,2,...,m for some permutation 7 of I.

Definition 6 We say that achievement vector y' € Y dominates y" € Y in
the ordered sense, ory" is dominated byy' in the ordered sense, if §' = O(y’)
dominates §"' = O(y"), i.e. y, < g for all i € I and for at least one index
io strict inequality holds (; < gj; )-

Proposition 1 Achievement vector y' € Y symmetrically dominatesy" € Y
if and only if y' dominates y" in the ordered sense.

Proof. If y' dominates y” in the ordered sense then, obviously, it does also
symmetrically dominate. Thus we only need to prove that the symmetric
dominance implies the dominance in the ordered sense.

Suppose that achievement vector y' € Y symmetrically dominates y” € Y.
It means, y' # y” and there exist permutations 7' and 7" such that the
dominance inequalities are valid

y;_,(,) S y;_ln(z) for i= 1,2,...,m

We will show that the dominance inequalities remain satisfied if one replaces
permutations 7/ and 7" with permutations ¥ and 7" sorting the correspond-
ing achievement vectors in the weakly decreasing order. Note that any vector
can be sorted by a finite number of comparisons and swappings (if neces-
sary) made on pairs of its coefficients. Suppose that for some pair of indices
i < j the corresponding coefficients of one of the achievement vectors, let



say y', violate the weakly decreasing order, i.e., y. (i) < y'T,( j- If; simultane-
ously, y’T',,(i) < y'T’,,(J.), then one can simply swap the corresponding coefficients
of both the achievements vectors preserving the dominance inequalities. If
Yiny = Yoy then yl o <yl <yl < i, and therefore, one can
swap the coefficients of vector y’' preserving the dominance inequalities and
the weakly decreasing order of the corresponding coefficients in the second
achievement vector.

By applying this approach to the both achievement vectors, one finally gets
(in a finite number of swappings) the ordered achievement vectors satisfying
the dominance inequalities. |

Corollary 1 Feasible solution x € () is a symmetrically efficient solution of
the multiple criteria problem (1), if and only if it is an efficient solution of
the ordered multiple criteria problem

min {O(F(x)) : x € Q} (7)

There exist usually many symmetrically nondominated achievement vec-
tors and they are incomparable each other on the basis of the specified set
of objective functions. Therefore, there exist usually many symmetrically
efficient solutions and they are different not only in the decision space but
also in the criterion space. So, there arises a need for further analysis, or
rather decision support, to help the decision maker (DM) in selection of one
solution for implementation. Of course, the original objective functions do
not allow one to select any symmetrically efficient solution as better than any
other one. Therefore, this analysis depends usually on additional information
about the DM’s preferences. The DM, working interactively with a decision
support system (DSS), specifies his/her preferences in terms of some control
parameters and the DSS provides the DM with a symmetrically efficient so-
lution which is the best according to the specified control parameters. For
such an analysis, there is no need to identify the entire symmetrically efficient
set prior to the analysis, as contemporary optimization software is powerful
enough to be used on-line for direct computations at each interactive step.
Thus the DSS can generate at each interactive step only one symmetrically
efficient solution that meets the current preferences. Such a DSS can be used
for analysis of decision problems with finite as well as infinite efficient sets.
There is important, however, that the control parameters provide the com-
pleteness of the control (c.f., [7]), i.e., that varying the control parameters
the DM can identify every symmetrically nondominated achievement vector.

For an interactive DSS dealing with multiple and homogeneous criteria
we need parametric solution concepts generating symmetrically efficient so-
lutions. In the case of the standard efficiency one may consider weighting
of objective functions. In the case of anonymous criteria we cannot assign
various weights to individual objective functions. Due to Corollary 1, the
weights should be assigned rather to the specific coefficients of the ordered



achievement vectors. Such an ordered weighting approach was proposed by
Yager [8] in the so—called Ordered Weighted Averaging (OWA) aggregation.
Applying the OWA aggregation operator to the multiple criteria problem (1)
we get the following single objective problem

min {Z wy; © §=0F([kx)), xe€Q} (8)

Due to Corollary 1, the following proposition is valid.

Proposition 2 For any positive weights w;, any optimal solution to problem
(8) is a symmetrically efficient solution of the multiple criteria problem (1).

Unfortunately, the ordered weighting does not provide us with a complete
parameterization of the entire symmetrically efficient set. It is due to the
specificity of the linear weighting approach to multiple criteria. In the case
when the multiple criteria problem is a discrete one (like the location problem
(6)), there exist symmetrically efficient solutions that cannot be generated
as optimal solutions to problem (8) with any set of positive weights. We
illustrate this with a small example.

Example 1 Let us consider a simple single facility location problem with
two clients (C1 and C2) and three potential locations (P1, P2 and P3). The
distances between several clients and potential locations are given as follows:
d11 - 15, d12 == ].4, d13 = ].2, dgl - 10, d22 == ].]., d23 =12.

Note that all three feasible solutions are efficient in the standard and sym-
metric sense. One can easily verify that while dealing with ordered weighting
approach, location P2 cannot be selected for any set of positive weights. If
3wy < 2ws, then location P1 is a unique optimal solution to the problem
(8). If 3wy > 2ws, then location P3 is a unique optimal solution to the prob-
lem (8). Finally, if 3w; = 2ws, then both locations P1 and P3 are optimal.
Location P2 is never an optimal solution to the corresponding problem (8).

O

In the case of discrete (or more general nonconvex) feasible sets, the entire
efficient set can be parameterized with augmented weighted Tchebychev dis-
tance function (c.f., [4]). It is used as the basis of the reference point method
[6]. Due to Corollary 1, we can apply the reference point method to the
ordered problem (7) to parameterize the entire symmetrically efficient set of
the original multiple criteria problem (1). In the next section we describe
this approach in details.

3 Reference distribution approach

The reference point method [6] is an interactive technique for an open search
for a satisficing efficient solution. The basic concept of the interactive scheme
is as follows. The DM specifies requirements in terms of aspiration levels for



individual objective functions. Depending on the specified aspiration levels
a special scalarizing achievement function is built which when minimized
generates an efficient solution to the problem. The computed efficient solution
is presented to the DM as the current solution allowing comparison with
previous solutions and modifications of the aspiration levels if necessary.
The scalarizing achievement function not only guarantees efficiency of the
solution but also reflects the DM’s expectation as specified via the aspiration
levels. In building the function the following assumption regarding the DM’s
expectations is made: the DM prefers outcomes that satisfy all the aspiration
levels to any outcome that does not reach one or more of the aspiration levels.
One of the simplest scalarizing functions takes the following form (c.f., [4]):

s(y) = max {Qilys —ai)} + EZ Ai(yi — a;) 9)

where
a denotes the vector of aspiration levels,
A is a scaling vector, A\; > 0,
€ is an arbitrarily small positive number.

Minimization of the scalarizing achievement function (9) over the feasible
set generates an efficient solution. The selection of the solution within the
efficient set depends on two vector parameters: an aspiration vector a and
a scaling vector A. In practical implementations the former is usually des-
ignated as a control tool for direct use by the DM during the interactive
analysis. The latter is automatically calculated on the basis of some predeci-
sion analysis or adjusted during the interactive process depending on values
of the reservation levels used as additional control parameters. The small
scalar ¢ is introduced only to guarantee efficiency in the case of a nonunique
optimal solution. It can be replaced by two level lexicographic minimization
of the corresponding terms [3]. The reference point approach was success-
fully implemented in many DSS (c.f., [1]) with real-life applications including
multiple criteria location decision problems (see, for example, [2]).

In order to parameterize the entire symmetrically efficient set, one may use
the scalarizing achievement function

3(y) = max
i=1,...,m

{\i@i—a)}+e ) MiBi—a), ¥=6(y), a=0(a) (10)
i=1

where ¢ is an arbitrarily small positive parameter. Applying function (10) to
the multiple criteria problem (1) we get the following parameterized single
objective problem generating symmetrically efficient solutions

min {3(y) : y=F(x), xe€Q@} (11)



Parametric problem (11) provides us with a complete parameterization for
the symmetrically efficient set of the multiple criteria problem (1). That
means, any optimal solution to problem (11) is a symmetrically efficient so-
lution of (1) and any symmetrically efficient solution of the multiple criteria
problem (1) can be generated as an optimal solution to problem (11) for some
aspiration vector a.

Ordering operator © used in the definition of scalarizing achievement func-
tion (10), in general, makes the scalarized problem (11) very difficult to
implement. Note that even unweighted scalarizing achievement function (10)
with all A\; = 1 provides us with a complete parameterization of the entire
symmetrically efficient set. If we decide to use such unweighted scalarizing
achievement function we can form the corresponding scalarized problem (11)
without the ordering operator in the following form

m

minimize max 2; +5§ 2
i=1,...,m 1
1=

subject to X€EQR

Zi=fi(x)—z g, Z ug =1 for i=1,2,...,m
=1 =1

Zuu:l for 1=1,2,...,m
i=1
ug € {0,1} for i=1,2,....m;l=1,2,....m

Note that aspiration vector a is used in scalarizing achievement function
(10) only in its ordered form a. Thus it is rather an aspiration set of out-
comes than a vector. For problems with large number of objectives, like large
location problem (6), we can consider it as an aspiration distribution of out-
comes. In fact, for discrete problems with multiple homogeneous criteria we
can directly deal with the distribution of outcomes. Let V = {v1,v2,...,v,}
(v > -+- > v,) denote the set of all possible values of objective functions f;
for x € . We can introduce then integer functions hg(x) (k = 1,2,...,7)
expressing the number of values vy taken in the achievement vector F(x).
Analytically, functions hy can be introduced into the model by auxiliary as-
signment (binary) variables u;; with the following formulas

hi(x) = uik for k=1,2,...,r (12)
i=1
£ix) =D vnuik, D uin=1 for i=1,2,....m (13)
k=1 k=1

uip € {0,1} for ¢=1,2,...,mk=1,2,...,r (14)

Note that in many discrete problems functions hj can be introduced directly



to the model without auxiliary variables u;. It is possible, in particular, for
the location problem with explicit allocation variables.

Having defined functions hj we can introduce cumulative distribution func-
tions

k
he(x) =Y h(x) for k=1,2,...,r (15)
I=1
and consider the corresponding multiple criteria problem

min {(hy(x), h2(x),...,h(x)) : x€Q} (16)

Proposition 3 Feasible solution x € @Q is a symmetrically efficient solution
of the multiple criteria problem (1), if and only if it is an efficient solution
of the multiple criteria problem (16).

Proof. Let x € () be a symmetrically efficient solution of problem (1).
Suppose that x is not efficient solution of the distribution problem (16). It
means, there exists x° € Q such that hy(x°) < hg(x) for k = 1,2,...,r
where for at least one index kg strict inequality holds (g, (x°) < h,(X)).
Then, obviously, ©(F(x’)) dominates ©(F(x)) which contradicts symmetric
efficiency of x for problem (1). Thus, symmetric efficiency of vector x € @
for problem (1) implies its efficiency for problem (16).

Now, let x € @ be an efficient solution of problem (16). Suppose that
x is not symmetrically efficient solution of problem (1). It means, there
exists x° € ) such that ¥° = O(F(x°)) dominates y = ©(F(x)). Note that
hi(x°) = hi(x) = 0 if vy > y? and vy, > 71 as well as hy,(x°) = hi(x) = m if
v, < 9%, and vy < ¥n,. Moreover, for any i € I §? = v < §; = v implies
hi(x°) < hi(x) for ' < k < k". So, achievement vector H(x°) dominates (in
the standard sense) achievement vector H(x) which contradicts efficiency of
x for problem (16). Thus, efficiency of vector x € @ for problem (16) implies
its symmetric efficiency for problem (1). O

Due to Proposition 3 we can apply the standard reference point method to
the distribution multiple criteria problem (16) for an interactive analysis of
the symmetrically efficient set of problem (1). The corresponding scalarizing
achievement function takes then the following form

k=1,...,

s(x) = max  {Ae(he(x) = @)} +e D Me(hr(x) = G) (17)
k=1

q denotes the vector of aspiration levels for the cumulative distribution
of outcomes,

is a scaling vector, A\ > 0,
€ is an arbitrarily small positive number.



Aspiration distribution vector q is the main control tool for direct use by
the DM during an interactive analysis. Scaling factors Ay can be used as
auxiliary control parameters and modified by the DM during the interactive
process. Note that, in the case of large r, the DM does not need to deal with
all the aspiration coefficients §x. As q represents the reference cumulative
distribution, it can be specified with only a few coefficients g and automatic
interpolation of values for the remaining coefficients.

4 Concluding remarks

The reference point method is a very convenient technique for interactive
analysis of the multiple criteria optimization problems. It provides the DM
with a tool for an open analysis of the efficient frontier. The interactive anal-
ysis is navigated with the commonly accepted control parameters expressing
aspiration levels for the individual objective functions.

There are several decision problems with multiple homogeneous and anony-
mous criteria where the preference model needs to satisfy the principle of
anonymity (symmetry with respect to permutations of criteria). The stan-
dard reference point method cannot be directly applied to such problems. In
this paper we have developed, as an analogue of the reference point method,
the reference distribution method taking into account both the efficiency prin-
ciple and the principle of anonymity. All the solutions generated during the
interactive process belong to the symmetrically efficient set. The interactive
analysis of the symmetrically efficient set is controlled with the aspiration
cumulative distribution of outcomes.
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