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Abstract

Location problems can be considered as multicriteria models
where for each client (spatial unit) there is defined an individual
objective function, which measures the effect of a location pattern
with respect to the client satisfaction (e.g. it expresses the distance
or travel time between the client and the assigned facility). In this
approach the geographical space, essentially, represents both the
decision space and the criterion space. Thus, the approach is well
suited for a GIS environment. The individual objective functions
are usually conflicting when optimized and the decision—maker or
planner needs to select some compromise solution for implementa-
tion. Moreover, while locating public facilities, the distribution of
effects (distances) among the clients is a crucial issue and the pref-
erence model should take into account some equity aspects. In this
chapter various equitable multicriteria solution concepts are ana-
lyzed. The analysis provides a theoretical basis for development
of solution procedures.
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Equitable Approaches
to Location Problems

Introduction

Public goods and services are typically provided and managed by gov-
ernments in response to perceived and expressed need. The spatial dis-
tribution of public goods and services is influenced by facility location
decisions. A host of operational models has been developed to deal with
facility location optimization (c.f., Love et al., 1988; Francis et al., 1992;
Current et al., 1990). Most classical location studies focus on some as-
pects of two major approaches: the minimax (center) or the minisum
(median) solution concepts. Both concepts minimize only simple scalar
characteristics of the distribution: the maximal distance and the average
distance, respectively. In this chapter all the distances for the individual
clients are considered as the set of multiple uniform criteria to be mini-
mized. This results in a multiple criteria model taking into account the
entire distribution of distances. Moreover, the model enables us to link
location problems with theories of inequality measurement (in particular
the Pigou-Dalton approach) (Sen, 1973).

The generic location problem that we consider may be stated as fol-
lows. There is given a set of m clients (service recipients). Each client
is represented by a specific point in the geographical space. There is
also given a set of n potential locations for the facilities. It may be, in
particular, a subset (or the entire set) of points representing the clients.
Further, the number (or the maximal number) p of facilities to be lo-
cated is given (p < n). Thus, we limit our discussion to discrete location
problems (Mirchandani and Francis, 1990). They can be viewed, how-
ever, as network location problems with possible locations restricted to
some subset of the network vertices (Labbé et al., 1996).

The main decisions to be made in the location problem can be de-
scribed with the binary variables:

zj — equal to 1 if location j is to be used and equal to 0 otherwise



(j=12,...,n).

To meet the problem requirements, the decision variables z; have to
satisfy the following constraints:

n
Z'/E]:p’ ,’1}]6{0,1}, forj:l,?,,n (1)
j=1

Where the equation is replaced with the inequality (<) if p specifies the
maximal number of facilities to be located. Note that constraints (1)
take a very simple form of the binary knapsack problem with all the
constraint coeflicients equal to 1. However, for most location problems
the feasible set has a more complex structure due to explicit consider-
ation of allocation decisions. These decisions are usually modeled with
the additional allocation variables:

z;; — equal to 1 if location j is used to service client ¢ and equal to 0
otherwise (1 =1,2,...,m;j =1,2,...,n).

The allocation variables have to satisfy the following constraints:

:1:;]-:1, fori=1,2,...,m. (2)
1

n
J:

wi; <xzj, fori=1,2,....m and j=1,2,...,n. (3)
z;; €{0,1},  fori=1,2,...,m and j=1,2,...,7n. (4)

In the capacitated location problem the capacities of the potential fa-
cilities are given as g; (for j = 1,2,...,n). This implies the additional
constraints:

m
Zx;j <gj, for 7=1,2,...,n.
i=1

Let us assume that for each client i ( = 1,2,...,m) a function
fi(x) of the location pattern x has been defined. This function, called
the individual objective function, measures the outcome (effect) of the
location pattern for client 7 (Marsh and Schilling, 1994). Individual ob-
jective functions f; depend on effect of several allocation decisions. Thus
they depend on allocation effect coefficients d;; > 0 (i =1,2,...,m;j =
1,2,...,n). Hereafter d;; are called simply distance coefficients or dis-
tances as in the simplest problems they usually express the distance



between client ¢ and location 7. However, we emphasize to the reader
that we do not restrict our considerations to the case of outcomes mea-
sured as distances. They can be measured (modeled) as travel time,
travel costs as well as in a more subjective way as relative travel costs
(e.g., travel costs by clients incomes) or ultimately as the levels of clients
dissatisfaction (individual disutility) of allocations.

For the standard uncapacitated location problem it is assumed that
all the potential facilities provide the same type of service and each
client is serviced by the nearest located facility. The individual objective
functions then take the following form:

filx) = 1111in {dij : zj=1}, fori=1,2,...,m.
=1,...,Mn

With the explicit use of the allocation variables and the corresponding
constraints (2)—(3) the individual objective functions f; can be written
in the linear form:

n
fi(x) = Z dijx;j , fori=1,2,...,m. (5)
7j=1

These linear functions of the allocation variables are applicable for the
uncapacitated as well as for the capacitated facility location problems.

In typical formulations of location problems related to desirable fa-
cilities a smaller value of the individual objective function means a bet-
ter effect (higher service quality or client satisfaction). This remains
valid for location of obnoxious facilities if the distance coefficients are
replaced with their complements to some large number: d;j = d — d;j,
where d > d;; for all i = 1,2,...,m and j = 1,2,...,n. Therefore,
without loss of generality, we can assume that each function f; is to be
minimized. Hence, the generic location problem can be viewed as the
following multiple criteria minimization problem:

min {f(x) : x€Q}. (6)
Where:
f=(f1,...,fm) is a vector—function that maps the decision space
X = R" into the criterion space Y = R™,
QCX denotes the feasible set of location patterns,



xeX denotes the vector of decision variables (the loca-
tion pattern).

The individual objective functions f; are usually conflicting when
minimized. Therefore, the location problem (6) is a multiple criteria de-
cision problem and the decision—maker or planner needs to select some
compromise solution for implementation. An integration of multiple cri-
teria decision approaches with geographical information system (GIS)
capabilities has recently been recognized as one of the most important
areas for future developments in decision support for spatial planning
(Carver, 1991; Pereira and Duckstein, 1993). GIS usually focuses on
the capture, storage, manipulation, analysis and display of geographi-
cally referenced data and only implicitly assumes a support of spatial
decision—making through analytical modeling operations (Densham and
Goodchild, 1989). The display capabilities of GIS typically provide the
user with a number of techniques that can be used to visualize the prob-
lem and the solution in geographical space. Note that in our multiple
criteria location problem (6) the geographical space, essentially, covers
both the decision space and the criterion space. Therefore, multiple cri-
teria approach to location problems based on model (6) seems to be well
suited for the development of interactive solution procedures to be used
within the GIS environment. The analysis presented in this chapter may
provide a theoretical basis for such developments. As a source of addi-
tional motivation we remark that a similar model was considered for the
purpose of management of ecological resources (Kostreva et al., 1998),
and that model is another candidate for the equity approach described
here.

We do not assume any special form of the feasible set while analyzing
properties of the solution concepts. We rather allow the feasible set to
be a general discrete (nonconvex) set. Therefore, the results of our
analysis apply to various discrete location problems. Similarly, we do
not assume any special form of the individual objective functions nor
their special properties (like convexity) while analyzing properties of
the solution concepts. However, computational procedures for many
solution concepts may assume that the individual objective functions
are defined in terms of formula (5).

One may be interested in putting into location model (1)—(6) some
additional client weights v; > 0 to represent the service demand. In typ-



ical applications such a weight represents the number of clients located
at the same geographical point. Integer weights can be interpreted as
numbers of unweighted vertices located at exactly the same place (with
distances 0 among them). For theoretical considerations we will assume
that the problem is transformed (disaggregated) to the unweighted one
(that means all the client weights are equal to 1). However, such a dis-
aggregation usually dramatically increases the problem size. Therefore,
while discussing specific solution concepts, we will analyze how they can
be applied directly to the weighted problem.

Model (6) specifies that we are interested in the minimization of all
objective functions f; for ¢ € I = {1,2,...,m}. There is, however, a
specificity of problem (6) related to the location decision circumstances.
In typical multiple criteria problems values of the individual objective
functions are assumed to be incomparable (Steuer, 1986). The individ-
ual objective functions in our multiple criteria location model express
the same quantity (usually the distance) for various clients. Thus the
functions are uniform in the sense of the scale used and their values
are directly comparable. This is ultimately true for all location models
as long as the modeler is capable to express the individual outcomes
(and the outcome coefficients d;;) in the unique scale of clients dissatis-
faction (disutility). Moreover, especially when locating public facilities,
the clients should be considered impartially and equally. Thus the distri-
bution of distances (outcomes) among the clients is more important than
the assignment of several distances (outcomes) to the specific clients. In
other words, a location pattern generating individual distances: 4, 2 and
0 for clients 1, 2 and 3, respectively, should be considered equally good
as a solution generating distances 0, 2 and 4. Moreover, according to
the requirement of equal treatment of all clients a location pattern gen-
erating all distances equal to 2 should be considered better than both
the above solutions. Our approach will take into account this specificity
of the multiple criteria location model (6).

Preference model

Model (6) only says that we are interested in the minimization of all
objective functions f; for : € I = {1,2,...,m}. In order to make it
operational, one needs to assume some solution concept specifying what



it means to minimize multiple objective functions. Vector—function f
maps the feasible set ) (as a subset of the decision space) into the
criterion space Y. The elements of the criterion space we refer to as
achievement vectors. An achievement vector y € Y is attainable if it
expresses outcomes of a feasible solution x € @ (y = f(x)). The set of
all the attainable achievement vectors is denoted by Y,, i.e. Y, = {y €
Y : y=1(x), x€Q}.

We say that achievement vector y' € Y dominates y” € Y if at least
one individual achievement is better whereas no other one is worse (if
yi <y for alli € I where at least one strict inequality holds). It is clear,
or rather commonly accepted, that achievement vector y' is better than
y” if y' dominates y”. In fact, it is the most general assumption about
the preference model underlying the multiple criteria optimization. This
assumption is called the Pareto—optimality (or efficiency) principle. In
accordance with the Pareto—optimality principle, we treat all the ob-
jective functions, and thereby all the clients, in the same way. We do
not make any specific assumption about the decision—maker preference
model except for the general assumption that for each individual objec-
tive function less means better (minimization), i.e. in terms of location
problems, for each spatial unit, closer to the service means better.

Each feasible solution (location pattern) for which one cannot im-
prove any individual achievement without worsening another one is a
Pareto—optimal (efficient) solution. We say that a solution concept for
problem (6) complies with the Pareto-optimality principle if it always
generates a Pareto—optimal solution. Ususally there exist many Pareto—
optimal solutions and they are different not only in the decision space
but also in the criterion space. Therefore, there may exist many quite
different solution concepts complying with the Pareto—optimality prin-
ciple.

Typical solution concepts for the location problems are based on
some scalar measures of the achievement vectors. However, there are
some concepts, like the lexicographic minimax (Ogryczak, 1997), which
do not introduce directly any scalar measure, even though they rank the
achievement vectors with a complete preorder. Therefore, we prefer to
focus our analysis of solution concepts on the properties of the corre-
sponding preference model. We assume that solution concepts depend
only on evaluation of the achievement vectors and they do not take into
account other solution properties not represented within achievement



vectors. In fact, to the extent of our knowledge, all the solution concepts
for location problems present in the literature satisfy this assumption.
Thus, we can limit our considerations to the preference model in the
criterion space Y.

The preference model is completely characterized by the relation of
weak preference (Vincke, 1992), denoted hereafter with <. Namely, we
say that achievement vector y' € Y is (strictly) preferred to y” € Y
(¥ <y") iff y < y"” and y" A y'. Similarly, we say that achievement
vector y' € Y is indifferent or equally preferred to y” € Y (y' =@ y”) iff
y' <= y” and y" < y’. If a solution concept is defined by the minimization
of some scalar function g(y), then the corresponding preference model
is defined by the relation

y' =y" iff g(y') <g(y").

All the scalar solution concepts, as well as all the solutions concepts
considered in this chapter, generate complete preorders in the criterion
space. That means the corresponding preference relation < is complete

for any y',y" €Y, y <y" or y' <y, (7)

reflexive
y =y (8)

and transitive
(yl j yl/ a‘11(1 y_II j lel) :> y_I j yIII' (9)

A solution concept defined by the preference relation < depends on
finding y° € Y, such that y° < y for all y € Y,. To the extent of our
knowledge, all the solution concepts for location problems present in the
literature satisfy these properties. Under the assumption of transitiv-
ity of the preference relation, the Pareto—optimality principle may be
expressed as a property of the preference relation, called strict mono-
tonicity. We say that preference relation = is strictly monotonic if for
any achievement vector y and for any 1 €

y—ce <y for >0 (10)

where e; denotes the i—th unit vector in the criterion space. A solution
concept which preference relations satisfies (7)—(10) we call hereafter an
efficient solution concept.



Recall that in the multiple criteria location problem (6) all the in-
dividual objective functions are uniform and equally important. More-
over, we want to consider all the clients, and thereby all the individual
objective functions, impartially. Thus we are interested in comparison
of distributions of outcomes. Note that having two possible location
patterns generating achievement vectors y’ = (5,0,5) and y” = (0, 1,0),
respectively, we recognize both the location patterns as efficient. In fact,
neither y’ dominates y” nor y” dominates y’. However, the first location
pattern generates two outcomes (distances) equal to 5 and one outcome
equal to 0, whereas the second pattern generates one outcome equal to
1 and two outcomes equal to 0. Thus, the second location pattern is
clearly better.

For multiple criteria problems with uniform and equally important
objective functions we introduce an efficiency concept based rather on
the distribution of outcomes than on the achievement vectors them-
selves. For this purpose, we assume that the preference model satisfies
the principle of impartiality (anonimity)

(Yr), Yr(@)s - 2 Yr(m)) = (Y1, Y2, -, Ym) , forany 7 € II(I)  (11)

where II(I) is the set of all permutations of the set I. Condition (11)
means that any permutation of the achievement vector is equally good
(indifferent) as the original achievement vector. Adding the principle
of impartiality to the domination relation leads us to the concept of
symmetric domination which is not affected by any permutation of the
achievement vector coefficients (Ogryczak, 1998).

While locating public facilities, the preference model should take into
account equity of the effects (distances). Equity is, essentially, an ab-
stract socio—political concept that implies fairness and justice (Young,
1994). Nevertheless, equity is usually quantified with the so—called in-
equality measures to be minimized. Inequality measures were primarily
studied in economics (Sen, 1973). However, Marsh and Schilling (1994)
describe twenty different measures proposed in the literature to gauge
the level of equity in facility location alternatives. Among many inequal-
ity measures perhaps the most commonly accepted by economists is the
Gini coefficient, which has been recently also analyzed in the location
context (Mulligan, 1991; Erkut, 1993). The Gini coefficient is one half
the relative mean absolute difference (Kendall and Stuart, 1958). It can
be relatively easily introduced into the location models with tools of lin-



ear programming (Mandell, 1991). When applied to the multiple criteria
problem, direct minimization of typical inequality measures contradicts
the strict monotonicity axiom (10) in the multiple criteria optimization
preference model. As noticed by Erkut (1993), it is rather a common
flaw of all the relative inequality measures that while moving away from
the spatial units to be serviced one gets better values of the measure
as the relative distances become closer to one—another. As an extreme,
one may consider an unconstrained continuous (singlefacility) location
problem and find that the facility located at (or near) infinity will pro-
vide (almost) perfectly equal service (in fact, rather lack of service) to
all the spatial units.

According to the theory of equity measurement (Sen, 1973; Allison,
1978), the preference model should satisfy the (Pigou-Dalton) principle
of transfers. The principle of transfers states that a transfer of small
amount from an outcome to any relatively worse—off outcome results in
a more preferred achievement vector. As a property of the preference
relation, the principle of transfers takes the form of the following axiom

Yy Sy = y—ecepteepn <y for0<e<yy—ypm. (12)

Requirement of impartiality (11) and the principle of transfers (12),
i.e. two crucial axioms of inequality measures, do not contradict the
multiple criteria optimization axioms (8)—(10). Therefore, we can con-
sider solution concepts based on the preference model defined by axioms
(7)—(12). A solution concept satisfying all the properties (7)—(12) we call
hereafter an equitably efficient (E-E) solution concept and the location
pattern generated by this concept we call the equitably efficient solution.
In the next section we develop the basic theory and methodology for the
E-E solution concepts for location problems.

Scale invariance is widely considered an additional axiom for equity
measures. We say that preference relation < is scale invariant (satisfies
the principle of scale invariance) if for any achievement vectors y',y” €
Y and for any positive constant ¢

y =y = o 2y’ (13)
We do not assume the principle of scale invariance as an axiom for E-E
solution concept. Nevertheless, we pay attention if solution concepts
comply with it as such a principle is important for maintaining stability



of the solution, and for creating well-defined models. In fact, all the
concepts discussed here comply with the principle of scale invariance.

Equitable dominance

Consider the multiple criteria problem (6) with the preference model de-
fined by axioms (8)—(12). Recall that in the standard Pareto—optimality
preference model based on (8)-(10), achievement vector y' € Y dom-
inates y” € Y if at least one individual outcome is better whereas no
other one is worse (if y; < yi for all ¢ € I where at least one strict
inequality holds). While introducing the principle of transfers (12) we
enforce the dominance relation by the requirement that a transfer of
small amount from an outcome to any relatively worse—off outcome re-
sults in a more preferred achievement vector. The principle of impartial-
ity further enforces the dominance relation as any achievement vector
y (due to transitivity) dominates all the vectors dominated by any per-
mutation of y. Thus, finally, we say that achievement vector y’ € Y
equitably dominates y" € Y, or y” is equitably dominated by y’, iff
there exists a finite sequence of vectors y’,y',...,y’ such that y* = y”,

yt = (y’T(l),y’T(Z), .- ,y’T(m)) for some permutation 7 of I and for each

k=1,2,...,teither y* = y*~! —crey +epem with 0 < g < yb 1 —yh?
or y* dominates y*~!. Figure 1 shows the achievement vectors equitably
dominated by y € R? (i.e., in the case m = 2).

The relation of equitable dominance can be expressed as a vector
inequality on the cumulative ordered achievement vectors. This can be
mathematically formalized as follows. First, we introduce the ordering
map © : R™ — R™ such that O(y) = (01(y),02(y),---,0m(y)), where
01(y) > 02(y) > -+ > 6,,(y) and there exists a permutation 7 of set
I such that 0;(y) = y,) for i = 1,2,...,m. This allows us to focus
on distributions of outcomes impartially. Next, we apply to ordered
achievement vectors ©(y), a linear cumulative map to get the cumulative
ordering map © = (01,0,...,0,,) defined as

0i(y) =>_ 0;(y) fori=1,2,....m. (14)
j=1

The coefficients of vector O(y) express, respectively: the largest out-
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Figure 1: Achievement vectors equitably dominated by y € R?

come, the total of the two largest outcomes, the total of the three largest
outcomes, etc.

Directly from the definition of the map ©, it follows that for any two
achievement vectors y', y” € Y equation ©(y') = ©(y") holds if and only
if y’ and y” have the same distribution of outcomes (i.e., ©(y’) = O(y")).
Similarly, inequality O(y') < O(y") implies O(y') < O(y") but the

reverse implication is not valid. For instance, ©(2,2,2) = (2,4,6) <
(3,5,6) = ©(3,2,1) and simultaneously ©(2,2,2) £ 0(3,2,1).

The relation O(y') < O(y") was extensively analyzed within the
theory of majorization (Marshall and Olkin, 1979), where it is called the
relation of weak submajorization. The theory of majorization includes
the results which allow us to derive the following proposition (Kostreva

and Ogryczak, 1998).

Proposition 1 Achievement vector y €Y equitably dominates y" €
Y, if and only if 0;(y') < 0;(y") for all i € I where at least one strict
inequality holds.

In income economics the Lorenz curve is a popular tool to explain
inequalities (Young, 1994). In the context of income distribution, the
Lorenz curve is a cumulative population versus income curve. First,
all individuals are ranked by income, from poorest to richest. For each
rank, we compute the proportion of the income earned by all individuals

11



at this rank and all ranks below this rank. The relationship between
the proportions of population and income defines the Lorenz curve. A
perfectly equal distribution of income has the diagonal line as the Lorenz
curve. All other distributions generate convex Lorenz curves below the
diagonal line.

0:(y)
m
0 1 2 ml 1 i
m m m m
Figure 2: ©(y) as Lorenz-type curves
Note that the definition of values 0;(y) for i = 1,2,...,m is similar

to the construction of the Lorenz curve for the population of m clients
(outcomes). The main difference depends on inverse ordering, from the
largest to the smallest value. It is due to minimization problem (6)
opposite to the incomes. If considered in connection with some obnox-
ious quantity, we get the upper Lorenz curves which are concave and
fall above the diagonal equity line. If the curve corresponding to dis-
tribution A falls below the curve corresponding to distribution B, then
distribution A is considered as less unequal than the latter one.

Vector ©(y) can be viewed graphically with the Lorenz-type curve
connecting point (0,0) and points (i/m,8;(y)/m) for i =1,2,...,m. In
the case of two achievement vectors y',y” € Y with the same total of
outcomes (0,,(y') = 0,,(y")), the inequality O(y') < O(y") is equiva-
lent to the dominance y’ over y” in the sense of upper Lorenz curves. In
the general case, the upper Lorenz curves may be considered the graphs
of vectors O(y)/0m(y). Graphs of vectors O(y) take the form of un-
normalized concave curves (Fig. 2), similar to the upper Lorenz curves.

12



Note that in terms of the Lorenz curves no achievement vector can be
better than the vector of equal outcomes. Equitable dominance takes
into account also values of outcomes. Vectors of equal outcomes are
distinguished according to the value of outcomes. They are graphically
represented with various ascent lines in Fig. 2. With the relation of
equitable dominance an achievement vector of small unequal outcomes
may be preferred to an achievement vector with large equal outcomes.

Example 1 In order to illustrate the concept of equitable dominance, let
us consider an example (Ogryczak, 1997) of location two facilities among
ten spatial units, where each spatial unit can be considered as a potential
location. We assume that the facilities have unlimited capacities and
each spatial unit is served by the nearest facility. Thus the problem
takes the form (1)—(6) with m = n = 10 and p = 2. To make possible an
easy analysis of the problem without complex computations, we consider
several units Ul, U2,...,U10 as points on a line, say the X-axis, with
coordinates: 0, 4, 5, 6, 8, 17, 18, 19, 20 and 28, respectively.

Solution Outcomes y;
v2 U9 (4 0 1 2 4 3 2 1 0 8
Ur U9 |0 4 5 6 8 3 2 1 0 8
vu3 U8 |5 1 0 1 3 2 1 0 1 9
UvuT U000 4 5 6 8 11 10 9 8 O

Table 1: Outcomes of location solutions in Example 1

Table 1 contains (four) various solutions to the location problem.
The first one corresponds to the lexicographic minimax solution (Ogry-
czak, 1997), where in addition to the largest distance we minimize also
the second largest distance, the third largest and so on. This solution
depends on location facilities in spatial units U2 and U9. In the second
row of Table 1 there are presented distances for another, in our opinion
the worst, minimax solution. It is based on location facilities in spatial
units Ul and U9. Further, we have included the minisum (median)
solution and the solution minimizing the Gini coefficient. The minisum
solution is based on locations in units U3 and U8, whereas the Gini
solution uses locations Ul and Ul0. Note that among four solutions
(achievement vectors) presented in Table 1 no one is dominated by any
other. In fact, all these solution are efficient as, due to the problem
specificity, each feasible solution is efficient.

13



Solution Cumulative ordered outcomes 8;(y)

U2 U9 8§ 12 16 19 21 23 24 25 25 25
Ur U9 | 8 16 22 27 31 34 36 37 37 37
U3 U8 9 14 17 19 20 21 22 23 23 23
Ul U10 |11 21 30 38 46 52 57 61 61 61

Table 2: Cumulative ordered outcomes in Example 1

Comparing cumulative ordered outcomes ©(y) given in Table 2, one
can see, however, that cumulative ordered achievement vector of the
second solution is dominated by that of the first one. The cumulative
ordered achievement vector of the fourth solution is dominated by each
of other three vectors. Thus, both the second and the fourth solutions
are not equitably efficient. O

Note that Proposition 1 permits one to express the relationship be-
tween equitable efficiency for problem (6) and the Pareto-optimality for
the multiple criteria problem with objectives ©(f(x)):

min {(01 (f(x)), 02(f(x)), ..., 0m(f(x))) : x€Q}. (15)

Corollary 1 A location pattern x € Q is an equitably efficient solu-
tion of the multiple criteria problem (6), if and only if it is an efficient
solution of the multiple criteria problem (15).

We emphasize to the reader the importance of this result, as it allows
us to derive E-E solution concepts for problem (6) from standard effi-
cient solution concepts for the modified problem (15). In what follows
we will use Corollary 1 to introduce and analyze E-E solution concepts.

Equitably efficient solution concepts
Efficient solutions of the multiple criteria problem (6) can be generated

with simple scalarizations of the problem. Most of them are based on
the minisum approach:

min {Z filx) : xeQ}, (16)
=1
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or on the minimax approach:

min { max fi(x) : x€ Q}. (17)
1=1,...,,n

However, the latter generates an efficient solution only in the case of
a unique optimal solution. In the general case, the optimal set of (17)
includes an efficient solution and some additional refinement (regular-
ization) is necessary to select the optimal solution which is efficient. For
location problems, the minisum and the minimax approaches represent
the median and the center solution concepts, respectively. Most clas-
sical location studies focus on the minimization of the mean (or total)
distance (the median concept) or the minimization of the maximum dis-
tance (the center concept) to the service facilities (Morrill and Symons,
1977).

Both the median and the center solution concepts are well defined
for aggregated location models using client weights v; > 0 to represent
several clients (service demand) at the same location. Exactly, for the
weighted location problem, the center solution concept (17) is not af-
fected by the client weights whereas the median problem takes then the
following form

min {i vifi(x) © x€Q}. (18)

Unfortunately, neither center nor median solution concept complies with
the principle of transfers. Thus they are not E-E solution concepts.

Note that Corollary 1 allows one to generate equitably efficient solu-
tions of (6) as efficient solutions of problem (15). The median solution
concept, minimizing the sum of outcomes (16), corresponds to minimiza-
tion of the last (m—th) objective in problem (15). Similar, the center
solution concept, based on the minimax scalarization (17), corresponds
to minimization of the first objective in (15). Thus both the concepts
use only one objective in the multiple criteria problem (15).

In the case of efficiency one may use the weighted sum of objective
functions to generate various efficient solutions (Steuer, 1986). In the
case of equitable multiple criteria programming one cannot assign vari-
ous weights to individual objective functions, as that violates the require-
ment of impartiality (11). However, due to Corollary 1, the weighting

15



approach can be applied to problem (15) resulting in the scalarization
m -
min {Z wif;i(f(x)) : x € Q}. (19)
i=1

Note that, due to the definition of map © with (14), the above problem
can be expressed in the form with weights w; = 3> w; (1 = 1,2,...,m)
allocated to coefficients of the ordered achievement vector. Such an ap-
proach to multiple criteria optimization was introduced by Yager (1988)
as the so—called Ordered Weighted Averaging (OWA). When applying
OWA to problem (6) we get

min {i": wifi(f(x)) : x€Q}. (20)

If weights w; are strictly decreasing and positive, i.e.
wy > we > D> Wyl > Wiy > 0, (21)

then each optimal solution of the OWA problem (20) is an equitably
efficient solution of (6). Thus the OWA approach defines a parametric
family of E-E solution concepts for location problem (6).

As the limiting case of the OWA problem (20), when the differences
among weights w; tend to infinity, we get the lexicographic problem

lexmin {(6;(f(x)), 02(f(x)),...,0n(f(x))) : x€ Q}, (22)

where first 6;(f(x)) is minimized, next 63(f(x)) and so on. Problem
(22) represents the lexicographic minimax approach to the original mul-
tiple criteria problem (6). In the location context this solution concept
is called the lezicographic center (Ogryczak, 1997). The lexicographic
center is indeed a refinement (regularization) of the center solution con-
cept (17), but in the former, in addition to the largest outcome, we
minimize also the second largest outcome (provided that the largest
one remains as small as possible), minimize the third largest (provided
that the two largest remain as small as possible), and so on. The lex-
icographic minimax solution of location problem (6) can be found by
sequential optimization as shown by Ogryczak (1997).
Due to (14), problem (22) is equivalent to the problem

lexmin {(0;(f(x)),02(f(x)),...,0n(f(x)) : x€Q}
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which can be considered the standard lexicographic optimization applied
to problem (15). As the lexicographic optimization generates efficient
solutions, thus due to Corollary 1, we get the following result.

Corollary 2 The optimal solution of the lexicographic minimazx problem
(22) is an equitably efficient solution of the multiple criteria problem (6).

Corollary 2 shows that the lexicographic center (22) is an E-E solu-
tion concept which refines the standard center solution concept.

The lexicographic center is unique with respect to the ordered achie-
vement vectors O(f(x)). It can be considered in some sense the “most
equitable solution”. Note that one may wish to consider the multiple
criteria problem (15) as an equitable problem (with an equitable rational
preference relation). In such a situation we should apply Corollary 1 to
problem (15). It results in the problem with doubly cumulative ordered
criteria which again may be considered as equitable. As the limit of such
an approach we get the lexicographic minimax problem (22). One may
wish to look for the “least equitable solution” (or “the most efficient
equitable solution”) applying reverse lexicographic minimization to the
problem (15), i.e. solving the lexicographic problem

lexmin {(0,,(f(x)), 0m_1(F(x)),...,0:(F(x))) : x€Q}, (23)

where first 0,,(f(x)) is minimized, next 6,,_1(f(x)) and so on. While
the lexicographic center (22) is a refinement of the standard center so-
lution concept (17), the problem (23) is a lexicographic refinement of
the median approach (16). Therefore, we refer to it as the lezicographic
median problem. As the lexicographic optimization generates efficient
solutions, from Corollary 1, we get the following corollary.

Corollary 3 The optimal solution of the lexicographic median problem
(23) is an equitably efficient solution of the location problem (6).

According to Corollary 3 the lexicographic median (23) is an E-E
solution concept which shows that the standard median solution concept
may be, similar to the center, refined to an E-E solution concepts. In
other words, the median solution is equtably efficient if it is unique and
otherwise (23) allows us to find among many median solutions the equi-
tably efficient one. Note that multiple solutions to the median problem
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are not so common as to the center problem but still for many loca-
tion problems it may happen quite frequently (e.g., multiple medians of
networks; Labbé et al., 1996).

The OWA model (20) defines the multidimensional continuum of
E-E location concepts spanning the space between the center and the
median. Although rich with E-E solutions concepts, some caution is
required. The OWA approach, in general, requires the disaggregation
of location problem with the client weights v;. This may restrict com-
putation due to the size of the problem required. However, for some
special sequences of the OWA weights w; this solution concept can be
easily defined for the weighted location problem without disaggregation
and the solution procedure may be quite simple. For instance

S 20m - i)+ U0(y) = 3> max{yi, ).
=1 i=1 k=1

Hence, the OWA problem given by the weights with equal differences
w; — w;4+1 depends on minimization of a piecewise linear function which
can be directly defined for the weighted location problem as

m m
M(x) =" > v max{fi(x), fe(x)}. (24)
i=1 k=1
Further research is necessary to identify wider class of easily solvable
OWA solution concepts.

As a simplified approach one may consider bicriteria center/median
solution concepts. Recall that the median solution concept corresponds
to minimization of the last (m—th) objective in problem (15) and the
center solution concept corresponds to minimization of the first objective
in (15). Thus, in the case of bicriteria problems (m = 2), the set of
equitably efficient solutions is equal to the set of efficient solutions of
the bicriteria problem with objectives defined as the maximum and the

sum of the original two objectives. In general the following corollary is
valid.

Corollary 4 FEzxcept for location patterns with identical mean and worst
outcome, every efficient solution to the bicriteria problem

min {( max fz(x),z filx)) : xe€Q} (25)
i=1

i=1,...,
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is an equitably efficient solution of the problem (6).

The median solution concept based on the minimization of aggre-
gate distance (16) is primarily considered as concerned with spatial ef-
ficiency. The center solution concept based on the minimax objective
(17) addresses the geographical equity issues. It is of particular impor-
tance in spatial organization of emergency service systems, such as fire,
police, medical ambulance services, civil defense and accident rescue.
On the other hand, locating a facility at the center may cause a large
increase in the total distance thus generating a substantial loss in spatial
efficiency. This has led to a search for some compromise solution con-
cept to reduce as much as possible discrepancies in accessibility among
clients. Most of them are based on the bicriteria center/median model
(25) thus defining the so-called cent—dians. The convez cent—dian solu-
tion concept (Halpern, 1978) for the weighted location problem depends
on minimization of the function

H)(x) = ki:nlljlu)’(m filx) + (1 =X) i_ﬂ: v; fi (X).

The convex cent—dian is a parametric solution concept which covers as
a special case the center (A = 1) and the median (A = 0). For 0 <
A < 1, it minimizes a convex combination of the average and maximum
distance, thus taking into account both the efficiency and equity criteria.
In the case of discrete location problems, we consider, not all efficient
solutions of the center/median problem (25) can be identified with the
convex cent—dians. This can be achieved with Chebyschev cent—dians
(Ogryczak, 1997a) based on the minimization of

Hy(x) = max{)\i:nliaxm filx), (1 —=X) Z vi fi(x)}.
oo Pt

Corollary 4 partially justifies cent—dian approaches as E-E solution con-
cepts provided that the corresponding solutions are unique. To trans-
form cent—dians into true E-E solution concept one may regularize them
with additional objective (24). This allows us to define the regularized
convez cent—dian

lexmin {(H)(x),M(x)) : x€Q} (26)
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and the regqularized Chebyschev cent—dian
lex min {(Hy(x),M(x)) : x€Q}. (27)

The lexicographic minimization in (26) and (27) means that first we
minimize Hy(x) (H)(x)) on x € @, and next we minimize M (x) on the
optimal set of Hy(x) (Hy(x)). The second minimization is only needed
when the optimal solution of H)(x) (Hx(x)) is not unique. Corollary 1
implies the following result.

Corollary 5 For any 0 < XA < 1, optimal solutions to the reqularized
cent-dian problems (26) and (27) are equitably efficient solutions of the
problem (6).

Corollary 5 shows that the regularized cent—dian models (26) and
(27), similar to the OWA model, define the continuum of E-E location
concepts spanning the space between the center and the median. Cer-
tainly, cent—dians do not allow us to define the entire richness of the
OWA solution concepts. On the other hand, the regularized cent—dians
can be applied directly to the weighted location problem without the
necessity of disaggregation.

Concluding remarks

In modern society there are many policies and safeguards designed to
promote equity and to ensure fairness for all citizens. The need for such
policies is clear considering the limited shared public service resources
provided by the government. When equity and/or fairness is violated, in
this context litigation and difficult negotiations may arise, and society
at-large suffers until the violation is removed.

This problem of lack of equitable treatment of all citizens may be due
to a lack of foundations in the theory of management of public resources.
Our contribution to this volume presents a theory of equitable efficiency
in location analysis, which must be considered as foundational. It is
shown how to construct the theory from well established socio-economic
and political theories and other more mathematical first principles. Once
the theory is presented, mathematical models of multiple criteria opti-
mization and appropriate solution methods are described. These com-
putational devices allow the theory to be fully realized, and eventually
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applied to enhance decision—making for policy refinement. Specially, we
have made equitable solutions available through the solution concepts
of ordered weighted averaging, lexicographic center, lexicographic me-
dian, together with the regularized convex cent—dian and the regularized
Chebyschev cent—dian. A simple bicriteria center/median model which
“almost always” works is also discussed. Depending on the problem
data, several of these E-E solution concepts may serve the decision—
maker well.

Our discussion includes remarks telling why certain existing theo-
retical constructs are inadequate, and how they may be modified and
enhanced to obtain a consistent equitable theory. Such information will
reinforce the need for a new theory, especially for experienced analysts,
who have likely observed these difficulties first-hand.

Finally, we refer the interested reader to a paper published recently
elsewhere (Kostreva and Ogryczak, 1998) which contains the relevant
mathematical proofs and we suggest that there are many opportunities
for further research in this interesting, applicable subject.
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