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Scope and Purpose--- The classical interactive procedures for multiple criteria decision analysis assume the 
so-called rational behavior of decision makers: they know the decision problem, and they are consistent 
and coherent in the decision process. However, as has been stressed by many researchers and practitioners, 
decision makers usually learn the decision problem during the interactive session with the decision support 
system, and there are numerous examples in which people systematically violate the consistency and 
coherence of their preferences. Therefore, the so-called aspiration-based interactive decision support schemes 
seem to be much more interesting for practical implementations. This interactive process explicitly depends 
on the aspiration levels stated and modified by the decision maker, and thereby makes operational the 
concept of the adaptive dependence of the decision process on learning and context. The paper presents 
an implementation of an aspiration-based interactive procedure to solve various multiobjective transshipment 
problems with facility location. 

Abstract-DINAS is an interactive system to aid solving various multiobje~tive transshipment problems 
with facility focation using IBM-PC XT:AT or compatibles. DINAS utilizes the so-called aspiration-based 
(or reference point) approach to interactive handling of multiple objectives. In this approach the decision 
maker forms his/her requirements in terms of aspiration and reservation levels, i.e. specifies acceptable 
and required values for given objectives, whereas the system searches for a satisfying efficient solution by 
optimization of a special scalarizing achievement function. A sophisticated solver has been developed to 
provide DINAS with solutions to these single-objective problems. This numerical kernel of the system is, 
however, hidden from the user. Therefore the interactive analysis of the multiobjective problem can be 
performed with DINAS by a decision maker who is familiar with neither computer techniques nor 
mathematical programming 

I. INTRODUCTION 

Most real-life decision problems cannot be modeled with a single objective function. This causes 
growing interest in techniques taking into account multiple objectives. Various methods for multiple 
criteria decision making have been summarized in many books (see e.g. [lo]). The progress in 
computer technology made during the last decade allows us to consider as implementable even 
very complex multiple criteria optimization techniques requiring solutions to sequences of single 
objective problems. Even more important is the increased accessibility of computers. The use of 
computers is no longer limited to a narrow group of specialists concentrated around professional 
computer centers. Powerful microcomputers became standard productivity tools for businessmen 
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and other decision makers. It fruits in many attempts to build interactive decision support systems 
where mathematical models and methods play only the supporting role in decision analysis being 
performed by a human decision maker. 

The classical interactive procedures for multiple criteria decision analysis assume the so-called 
rational behavior of decision makers: they know the decision problem, and they are consistent and 
coherent in the decision process. Usually the existence of some individual or group utility function 
is assumed and the interactive process depends on its identification. However, as was stressed by 
many researchers and practitioners, decision makers usually learn the decision problem during the 
interactive session with the decision support system, and there are numerous examples in which 
people systematically violate the consistency and coherence of their preferences. Therefore the 
so-called quasisatisficin~ or aspiration-based interactive decision schemes (see [4]) seem to be 
much more interesting for practical implementation. 

The quasisatisficing framework of multiple criteria decision making was developed mainly by 
Wierzbicki (see [ll]). This approach deals with the so-called scalarizing achievement functions 
which when optimized generate efficient decisions relative to the current list of objectives. It is 
slightly similar to a utility function and, in fact, can be used as an approximation to a class of 
utility functions. It is, however, explicitly dependent on aspiration levels stated and modified by 
the decision maker, and thereby makes operational the concept of adaptive dependence of utility 
function on learning and context. Completeness, computational robustness and controllability of 
the interactive scheme are important here, rather than consistency and coherence. Several successful 
implementations of the aspiration-based multiple criteria optimization systems have been reported 
(see e.g. [2])_ 

In this paper we present an implementation of an aspiration-based interactive procedure to solve 
some mixed integer programming problems. Namely, the dynamic interactive network analysis 
system (DINAS), a scientific transferable tool which allows various multiobjective transshipment 
problems with facility location to be solved. The system is based on a sophisticated numerical 
solver taking advantage of the specific structure of the problem (SON and VUB techniques). This 
numerical kernel of the system is, however, hidden from the user. Therefore the interactive analysis 
of the multiobjective problem can be performed with DINGS by a decision maker who is familiar 
with neither computer techniques nor mathematical programming. 

The distribution-location type problems belong to the class of most significant real-life problems 
based on mathematical programming. They are usually formalized as the so-called transshipment 
problems with facility location. A network model of the transshipment problem with facility location 
consists of nodes connected by a set of direct flow arcs. The set of nodes is partitioned into two 
subsets: the set of fixed nodes and the set of potential nodes. The fixed nodes represent “fixed 
points” of the transportation network, i.e. points that cannot be changed, whereas the potential 
nodes are introduced to represent possible locations of new points in the network. Some groups 
of the potential nodes may represent different versions of the same facility to be located (e.g. different 
sizes of warehouse etc.). For this reason, potential nodes are organized in the so-called selections, 
i.e. sets of nodes with multiple choice requirements. Each selection is defined by the list of included 
potential nodes as well as by a lower and upper number of nodes to be selected (located). 

A homogeneous good is considered to be distributed along the arcs among the nodes. Each fixed 
node is characterized by two quantities: supply and demand on the good, but for mathematical 
statement of the problem only the difference supply-demand (the so-called balance) is important. 
Each potential node is characterized by a capacity which bounds the maximal flow of the good 
through the node. The capacities are also given for all the arcs but not for the fixed nodes. 

A few linear objective functions are considered in the problem. The objective functions are 
introduced into the model by given coefficients associated with several arcs and potential nodes. 
They are called cost coefficients independently of their real character. The cost coefficients for 
potential nodes are, however, understood in a different way than those for arcs. The cost coefficient 
connected to an arc is treated as the unit cost of the flow along the arc whereas the cost coefficient 
connected to a potential node is considered as the fixed cost associated with the activity (locating) 
of the node rather than as the unit cost. 

Summarizing, the following groups of input data define the transshipment problem under 
consideration: 
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-objectives 
-fixed nodes with their balances 
-potential nodes with their capacities and (fixed) cost coefficients 
---selections with their lower and upper limits on number of active potential nodes 
-arcs with their capacities and cost coefficients. 

The problem is to determine the number and location of active potential nodes and to find the 
flows (along arcs) so as to satisfy the balance and capacity restrictions and, simultaneously, optimize 
the given objective functions. A mathematical model of the problem is described in detail in [8]. 
For the purpose of this presentation of the DINAS functionality, however, it is enough to state 
that the problem under consideration is a multiobjective mixed integer linear program: 

optimize q (1) 

subject to 

q = F(x) (2) 

xc:Q (3) 

where q represents the acheivement vector, F = (F,, . . . , Fk) represents the vector of k objective 
functions, optimize means minimize or maximize for several objective functions, respectively to 
their nature, Q denotes the feasible set of the program, and x is a vector of decision variables. 

2. OVERVIEW OF THE SYSTEM 

DINAS enables a solution to the problem ( 1 )-( 3) using an IBM-PC XT/AT or compatible. The 
basic version of the DINAS system can process problems consisting of: 

-up to seven objective functions 
-a transportation network with up to one hundred fixed nodes and three hundred 

arcs 
-up to fifteen potential locations. 

DINAS consists of three programs prepared in the C programming language: 

-the interactive procedure for efficient solutions generation 
-the solver for single-objective problems 
-the network editor for input data and results examination. 

DINAS is a menu-driven system with very simple commands. Operations available in the DINAS 
interactive procedure are partitioned into three groups and three corresponding branches of the 
main menu (see Table 1): PROCESS, SOLUTION and ANALYSIS. 

The PROCESS branch contains basic operations connected with the processing of the 
multiobjective problem and generation of several efficient solutions. There are problem definition 
operations included such as calling the network editor for input or modification of the problem 
(PROBLEMS and converting the edited problem with error checking (CONVERT). Further, in 
this branch the basic optimization operations are available: PAY-OFF and EFFICIENT. The last 
command in this branch is the QUIT operation which allows the decision maker (DM) to leave 
the system. 

The PAY-OFF command must be executed as the first step of the multiobjective analysis. It 

Table 1. DINAS main menu 

PWZSS Solution Analysis 

PROBLEM SUMMARY COMPARE 
CONVERT BROWSE PREVIOUS 
PAY-OFF SAVE NEXT 
EFFICIENT DELETE LAST 
QUIT RESTORE 
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Table 2 

Objective values 

Optimized function Invest Satisf Dist PIOX 

Invest 186 loo 2.61 4976 
Satisf 401 368 2.17 6385 
Dist 413 279 2.03 8782 
PIOX 398 187 2.12 8854 

performs optimization of each objective function separately. Namely, the following p single-objective 
programs are solved: 

optimize {F,(x,Y) + l/k i piF,(x):xeQ} P= l,Z...,k 
i=l 

(4) 

where Fi denotes the ith objective function and pi are arbitrarily small numbers (positive if the 
corresponding objective function Fi is to be minimized, and negative otherwise). This means that 
some small regularization term is added to all the objective functions to guarantee efficiency of all 

generated optimal solutions. As a result of these computations one gets the so-called pay-off matrix. 
The pay-off matrix is a well-known device in multiple criteria decision making (see [lo]). It is 
displayed as a table containing values of all the objective functions (columns) obtained while solving 
several single-objective problems (rows), thereby it helps to understand the conflicts between different 
objectives (compare Table 2). 

The execution of the PAY-OFF command also provides the DM with two reference vectors: 
the utopia vector and the nadir vector. The utopia vector represents the best values of each objective 
considered separately, and the nadir vector expresses the worst values of each objective noticed 
during several single-objective optimizations. The utopia vector is, usually, not attainable, i.e. there 
are no feasible solutions with such objective values. Coefficients of the nadir vector cannot be, in 
general, considered as the worst values of the objectives over the whole efficient (Pareto-optimal) 
set. They usually estimate these values but they express only the worst values of each objective 
noticed during optimization of the other objective functions. 

Due to the regularization technique, used while computing the pay-off matrix [compare (4)], 
each generated single-objective optimal solution is also an efficient solution to the multiobjective 
problem. So, after calculation of the pay-off matrix there is already available a number of efficient 
solutions connected with several rows of the pay-off matrix. The pay-off matrix calculation is, 
usually, the most time-consuming operation of the multiobjective analysis. Therefore DINAS 
automatically saves the computed pay-off matrix on the problem file. 

Having executed the PAY-OFF command one can start the interactive search for a satisfying 
efficient solution. DINAS utilizes aspiration and reservation levels to control the interactive analysis. 
More precisely, for several objectives the DM specifies the values he/she wishes to approach as 
the aspiration levels, and the worst acceptable values as the reservation levels. All the operations 
connected with editing the aspiration and reservation levels as well as with computation of a new 
efficient solution are performed within the EFFICIENT command. 

The system searches for a satisfying efficient solution using an achievement scalarizing function 
as a criterion in single-objective optimization. Namely, DINAS computes the optimal solution to 
the following problem: 

minimize 

maximum u,(q, q”, q’) + p/k i u,(q, q”, q’) 
1 $p<k p=l 

subject to 
q = F(x),xEQ (6) 

where p is an arbitrarily small number, and up is a function which measures the deviation of results 
from the DM’s expectations with respect to the pth objective depending on a given aspiration level 
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q” and reservation level q’. The function up is a strictly monotone function of the objective vector 
q with value up = 0 if qp = q”, and up = 1 if qp = q’,. In our system, we use a piece-wise linear 
function up defined as follows: 

i 

-$?lq, - q;1/1q; - S”,l? if qp is better than q”, 

yJ(q3 q”3 q’) = Iqp - s”,l/ls’, - Q”pL if q, is between q”, and q’, 

b,(q, - q’,\/\q*, - q”,l + 1, ifq,is worse thanq’, 

wherea,<< andb,>>l(p=1,2,..., k) are given positive parameters. Such a function up can be 
considered as a measure of the DM’s dissatisfaction from the achievement with respect to an 
individual objective. The coefficients up and b, allow to model a small premium for achievement 
better than the aspiration level, and a high penalty for achievement worse than the corresponding 
reservation level (the so-called soft bound), respectively. 

Due to using the maximum operator for aggregation of the individual functions up (Chebychev 
norm) and an additional regularization term [compare (5)] the computed optimal solution to the 
problem (5))(6) is always an efficient solution to the original multiobjective model (even if the 
given aspiration levels are attainable). DINAS stores the efficient solutions in a special solution 
base. All the efficient solutions generated (or input from a file) during a session get consecutive 
numbers and are automatically put into the solution base. However, at most, nine efficient solutions 
can be stored in the solution base. When the tenth solution is put into the base then the oldest 
solution is automatically dropped from it. On the other hand any efficient solution can be saved 
on a separate file and restored during the same or a subsequent session with the problem. 

DINAS is armed with many operations helping to manage the solution base. There are two 
kinds of operations connected with the solution base: operations on a single efficient solution, and 
operations on the entire solution base. Operations addressed to a single solution are connected 
with the current solution. The newest generated efficient solution is automatically assumed to be 
the current solution but any efficient solution from the solution base can be manually assigned as 
the current solution. 

The SOLUTION branch of the main menu (see Table 1) contains additional operations connected 
with the current solution. One can examine in detail the current solution using the network editor 
(BROWSE) or analyze only short characteristics such as objective values and selected locations 
(SUMMARY). Values of the objective functions are presented in three ways: as a standard table, 
as bars in the aspiration/reservation scale and as bars in the utopia/nadir scale. The bars show 
percentage level of each objective value with respect to the corresponding scale. One may also save 
the current solution on a separate file in order to use it during the next runs of the system with 
the same problem (SAVE). There is also available a special command to delete the current solution 
from the solution base if one finds it as quite useless (DELETE). 

The ANALYSIS branch of the main menu groups commands connected with operations on the 
solution base. The main command, COMPARE, allows the DM to perform a comparison between 
all the efficient solutions included in the solution base or in some subset of the base. In the 
comparison only short characteristics of the solutions are used, i.e. objective values in the form of 
tables and bars as well as tables of selected locations. Moreover, some commands included in this 
branch (PREVIOUS, NEXT and LAST) allow the selection of any efficient solution from the 
solution base as the current solution. One can also restore some efficient solution (saved earlier 
on a separate file) to the solution base (RESTORE). 

A special solver has been prepared to provide the multiobjective analysis procedure with solutions 
to single-objective problems. The solver is hidden from the user but it is the most important part 
of the DINAS system. It is a numerical kernel of the system which generates efficient solutions. 
The concept of the solver is based on the branch and bound scheme with a pioneering implementation 
of the simplex special ordered network (SON) algorithm proposed by Glover and Klingman [3] 
with implicit representation of the simple and variable upper bounds (SUB & VUB) suggested by 
Schrage [ 91. The mathematical detailed background of the solver is provided by Ogryczak et al. [ 81. 

DINAS is equipped with a special network editor. It is a full-screen editor specifically designed 
for input and edit of the data of network problems analyzed with DINAS. The DINAS interactive 
procedure works with a special file containing whole information defining the problem and the 
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editor enables the preparation of this file. The essential data of the problem can be divided into 
two groups: 

-logical data defining the structure of a transportation network (e.g. nodes, arcs, 
selections) 

-numerical data describing the nodes and arcs of the network (e.g. balances, 
capacities, coefficients of the objective functions). 

The general concept of the editor is to edit the numerical data while defining or examining the 
logical structure of the network. More precisely, the essence of the editor concept is a dynamic 
movement from some current node to its neighbor nodes according to the network structure. The 
input data are inserted by a special mechanism of windows, while visiting several nodes. Apart 
from the windows with local information some special windows containing a list of nodes and a 
graphic scheme of the network can be activated at any moment to ease movement across the network. 

3. SAMPLE PROBLEM 

In the next section we present an outline of the basic multiobjective analysis performed with the 
DINAS system on a small artificial problem of health service districts reorganization. Such real-life 
problems connected with reorganization of the primary health service in a district of Warsaw were 
successfully solved with the MPSX/370 package by Ogryczak and Malczewski [6]. Recently such 
an analysis connected with location of new pediatric hospitals in Warsaw macroregion using the 
DINAS system on an IBM-PC AT microcomputer has been completed (see [ 5)). To illustrate the 
interactive procedure and the system capabilities we will present an analysis of a test problem 
constructed as a small artificial part of this real-life model. 

The problem of health service districts reorganization connected with location of new health-care 
centers can be formulated as follows. The region under consideration is assumed to consist of some 
number of geographically defined subareas or spatial units with known distribution of the 
population. A number of health-care centers is available in the region but their capabilities of 
offering health services is not sufficient. Therefore some new facilities are located. The problem 
depends on determination of the locations and capacities of some new centers as well as on 
assignment of individuals to the centers (new and old). The proposed solution should be optimal 
with respect to a few objective functions and simultaneously it must be accepted by the competent 
decision maker. 

To set the stage, we consider as the region a part of city divided by five major highways into 12 
subareas. For each of these areas the demand on health-care services is identified in thousands of 
visits (treatments) per year. Within the region there are two health-care centers offering services: 
Pond and Hill. They can offer 100 and 90 thousands of visits per year, respectively. Thus, the total 
supply of services amounts to 190 while the total demand on services in the region was counted 
as 240. Therefore some new health-care centers should be located within the region. 

There are four potential locations considered for the new centers: Ice, Fiord, Bush, and Oasis. 
The locations are divided into two subsets associated with the corresponding two subregions: 

North = {Ice, Fiord}, 
South = {Bush, Oasis}. 

The distance between two potential locations in the same subregion are relatively small whereas 
each of them can meet the demands on health services. Therefore the locations belonging to the 
same subregion are considered as exclusive alternatives, i.e. no more than one location from the 
subregion can be used. However, different designed capacities of health centers are associated with 
several locations. 

One must decide which potential health-care centers have to be built so as to meet the total 
demand on health services. The decision should be optimal with respect to the following criteria: 

-minimization of the average distance per visit 
-maximization of the overall proximity to centers 
-minimization of the investment cost 
-maximization of the population satisfaction. 
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The first two criteria are connected with distances between health-care centers and areas assigned 
to them. Taking into account the urban morphology and the transportation network, it has been 
accepted that the city-block metric is the best approximation to the real distances. Therefore we 
define the distance between an individual and the health center as the rectangular distance between 
the center of the corresponding area and the location of the health-care center. Certain connections 
between the areas and the health centers are eliminated as unacceptable due to some transportation 
inconveniences. 

The overall proximity to the health care services is defined as a sum of all the individual proximity 
coefficients. The individual proximity is assumed to be inversely proportional to square of the 
distance to the health-care center. More precisely, the individual proximity coefficients are defined 
according to the following formula (compare [ 11): 

Pm = l/(&l, + &Y 

where d,, denotes the distance between the corresponding area a and the health-care center c, and 
E is an arbitrarily small positive number. 

The investment cost and the population satisfaction level are assumed to be a sum of fixed costs 
and a sum of fixed satisfaction levels connected with several possible locations, respectively. 

The problem of health service districts reorganization connected with location of new health-care 
centers, stated above, can be easily formulated as a multiobjective transshipment problem with 
facility location. The areas and existing health-care centers are, certainly, fixed nodes of the network 
under consideration. Similarly, all the potential locations of new health centers are treated as 
potential nodes. Arcs represent all the possible assignments of patients to the health-care centers. 
A flow along the arc from a center c to an area a expresses a number of visits in the area a serviced 
by the center c. In order to balance the problem in terms of supply and demand an artificial node 
Tie with supply equal to the overall demand is introduced. There are also defined additional arcs 
from the artificial node to each health-care center (existing or potential). Capacity of the existing 
health-care centers (Pond and Hill) are then represented as capacities of the arcs from Tie to the 
corresponding fixed nodes. A scheme of the network is presented in Fig. 1. 

In the transshipment problem with facility location objective functions are considered as sums 
of linear functions of flows along several arcs and fixed costs connected with the used locations. 
In our model objective functions can be divided into two groups. Functions Investment (cost) and 
Satisfaction (level) are independent of the assignment decisions and thereby they have no coefficients 
connected with flows along arcs (i.e. these coefficients are equal to 0). On the other hand, functions 
(average) Distance and (overall) Proximity depend only on assignment decisions and they do not 
contain fixed terms connected with locational decisions. Fixed coefficients of the functions Investment 
and Satisfaction can be directly taken from original data. The linear coefficients of the function 
Proximity are calculated from the original distances according to formula (7). The linear coefficients 
of the function Distance are defined as quotients of the corresponding distances by the sum of all 
the demands. 

There are four potential nodes which represent the potential locations of the health-care centers, 
i.e. Ice, Fiord, Bush, Oasis. As we have already mentioned the locations belonging to the same 
subregion are considered as exclusive alternatives, i.e. no more than one location from the subregion 
can be used. Therefore we introduce into the network model selections which represent such a type 
of requirements. In our model there are two selections associated with to subregions: North and 
South. Both the selections have lower numbers equal to 0 and upper numbers equal to 1. This 
guarantees that, at most, one potential node in each selection is active. 

The last group of data is connected with the arcs. The arcs are characterized by their capacities 
and objective functions coefficients, The cost coefficients have been already discussed while 
considering the objective functions. Capacities of the arcs from the artificial node Tie to the nodes 
representing health-care centers (Pond, Hill, Ice, Fiord, Bush, Oasis) express capacities of the 
corresponding centers. The arcs connecting the nodes representing health-care centers with the 
nodes representing the areas have essentially unlimited capacities. However, in practice, flows along 
these arcs are also bounded by capacities of the corresponding health-care centers and we can use 
them as arcs capacities. 
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Spatial Units 

Fig. 1. A network scheme for the sample problem. 

4. SAMPLE SESSION 

Having defined and converted the problem as the first step of the multiobjective analysis one 
must execute the PAY-OFF command. In effect, we get the pay-off matrix presented in Table 2. 
It gives values of all the objective functions (columns) obtained while solving several single-objective 
problems (rows) and thereby helps in understanding the conflicts between different objectives. Here, 
and thereafter, the objective functions are denoted by abbreviations of the corresponding names. 

Execution of the PAY-OFF command also provides us with two reference vectors: the utopia 

vector and the nadir vector (see Table 3). The utopia vector represents the best values of each 
objective considered separately, and the nadir vector expresses the worst values of each objective 
noticed during optimization of the other objective functions. The utopia vector is, obviously, not 
attainable, i.e. there are no feasible solutions with such objective values. 

While analyzing Tables 2 and 3 we find that the objective values vary significantly depending 
on selected optimization. Only for the average distance we notice the relative variation less than 
30% whereas for the other objectives it even oversteps 100%. Moreover, we recognize a strong 
conflict between the investment cost and all the other objectives. While minimizing the investment 
cost we obtained the worst values for all the other objectives. On the other hand, while optimizing 
another objective function we obtained a double investment cost in comparison to its minimal value. 
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utopia 
Nadir 

Table 3 

Objective values 

Invest Satisf Dist PUX. 

186 368 2.03 8854 
413 100 2.61 4916 

Table 4 

Invest Satisf Dist PVJX 

Aspiratmn 186 300 2.08 8500 
Reservation 250 200 2.50 7000 

Coefficients of the nadir vector cannot be considered as the worst values of the objectives over 
the entire efficient (Pareto-optimal) set. They usually estimate these values but they express only 
the worst values of each objective noticed during optimization of another objective function. With 
further analysis we will show that these estimations can sometimes be exceeded. 

Due to the special regularization technique used while computation of the pay-off matrix [see 
(4)], each generated single-objective optimal solution is aso an efficient soution to the mutiobjective 
probem. So, we have already available in the solution base four efficient solutions connected with 
several rows of the pay-off matrix. Using different comands of DINAS we can examine in detail 
these solutions. In particular, we can recognize the locations structure for several solutions. The 
first solution which minimizes the investment cost is based on only one new health-care center 
located at Bush. Each other solution uses two new centers which explains their significantly higher 
investment costs. They are based on the following locations: Ice and Oasis, Fiord and Oasis, Bush 
and Fiord, respectively. 

Having computed the utopia vector we can start the interactive search for a satisfying efficient 
solution. As we have already mentioned, DINAS utilizes aspiration and reservation levels to control 
the interactive analysis. At the beginning of the interactive analysis we compute the so-called neutral 
solution. For this purpose we accept the utopia vector as the aspiration levels and the nadir vector 
as the reservation levels. In effect, we get the fifth efficient solution based on the location of two 
new health-care centers: Bush and Ice. The investment cost of this solution is rather high 
(invest = 386) whereas the other objectives obtain middling values (satisf = 276, dist = 2.26, 
prox = 6457). 

Apart from the solution connected with minimization of the investment cost all the other solutions 
are based on the location of two new health-care centers which implies their high investment costs. 
Therefore we try to find an efficient solution with a small investment cost (one new center) and 
relatively good values of the other objectives. For this purpose we define the aspiration and 
reservation levels as it is given in Table 4. 

In effect, we get the sixth efficient solution based on the location of one new health-care center 
at Oasis. The investment cost is small (invest = 201), the satisfaction level has a middling value 
(satisf = 192), while the average distance is very large (dist = 2.58) and the overall proximity is 
even less than the corresponding coefficient of the nadir vector (prox = 4933). The system 
automatically corrects the nadir vector by putting the new worst value as the proper coefficient. 

To avoid too small values of the overall proximity we modify the reservation level for this 
objective putting 8000 as the new value. After repeating the compution we get the seventh efficient 
solution based solely on the new health-care center located at Ice. Due to the very convenient form 
of solution presentation in DINAS we can easily examine performances (in terms of objective 
values) of the new solution in comparison with the previous one. The overall proximity, the average 
distance and the investment cost are slightly better (prox = 5287, dist = 2.53 and invest = 200) 
while the overall satisfaction level is a few percent worse (satisf = 176). 

After analysis of two last efficient solutions we make a supposition that it is necessary to relax 
requirements on the satisfaction level to make it possible to find an efficient solution with good 
values of the average distance and the overall proximity under a small investment cost. So, we 
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l-able 5 

Invest Satisf Dist PrOX 

Aspiration 200 300 2.10 8800 
Reservation 400 200 2.50 8400 

Tabte 6 Table 7 

Satisf 

Solution 1 186 100 
Solution 2 401 368 
Solution 3 413 279 
Solution 4 398 187 
Solution 5 386 276 
Solution 6 201 192 
Solution 7 200 176 
Solution 8 212 87 
Solution 9 413 279 

Dist 
- 

2.61 
2.17 
2.03 
2.12 
2.26 
2.58 
2.53 
2.38 
2.04 

Prox Bush Fiord Ice Oasis 

4976 Solution 1 Yes DO tl0 tl0 

6385 Solution 2 no no yes Yes 
8782 Solution 3 “0 yes tl0 yes 
8854 Solution 4 yes Yes no no 
6451 Solution 5 Yes IlO yes “0 

4933 Solution 6 no “0 no Yes 
5281 Solution 7 no no Yes no 
7691 Solution 8 no Yes “0 no 

8791 Solution 9 no yes “0 yes 

change the reservation level associated with the function satisf on 100. The system confirms our 
supposition. We get the eighth efficient solution based solely on the new health-care center located 
at Fiord. The solution guarantees quite large overall proximity (prox = 7691) and relatively small 
average distance (dist = 2.38) under small investment cost (invest = 212). On the other hand, the 
satisfaction level has a value even less than the corresponding coefficient of the nadir vector 
(satisf = 87). Despite the latter, the solution seems to be very interesting compared to the other 
efficient solutions based on the location of a single health-care center. 

Further research for a satisfying efficient solution based on only one new health-care center has 
finished without success. Namely, for different values of the aspiration and reservation levels the 
same efficient solutions have been generated. So, to complete the analysis we try to examine other 
efficient solutions. For this purpose we relax requirements on the investment cost. Among others, 
while using the aspiration and reservation levels given in Table 5, we get the ninth efficient solution. 
It is based on the same location of the new centers as the third solution (Fiord and Oasis) and 
thereby gives the same investment cost (invest = 413) and satisfaction level (satisf = 279). However, 
the average distance and the overall proximity differs slightly (dist = 2.04 and prox = 8791) due 
to another allocation scheme. 

Finally, we examine all the generated efficient solutions using special comparison tools available 
in DINAS. The solutions are listed in Tables 6 and 7. Careful anal,ysis of these solutions leads us 
to the following conclusion. The investment cost cannot be regarded as a typical objective function 
since its values depend on the number of new health-care centers rather than on their locations. 
It only partitions all the efficient solutions into gwo groups: solutions based on a single new 
health-care center and solutions based on the location of two new centers. Therefore, it is necessary 
to look for a good solution based on one new center that can be expanded later to a better solution 
by adding the second new center. In our opinion, the first new health-care center should be located 
at Fiord (Solution 8). It is the only efficient solution (based on a sole new center) which gives 
acceptable values of the average distance and the overall proximity (compare Tables 6 and 7). This 
solution also gives the worst value of the satisfaction level. However, further development of this 
solution by adding the new health-care center at Oasis (Solution 9) leads to quite a high value of 
the satisfaction level and makes further significant improvements with respect to the average distance 
and the overall proximity (see Table 6). Both the proposed solutions have the highest investment 
costs in the corresponding groups of solutions but variation of this objective among solutions of 
the same group is so mall that it canot be considered as a serious weakness. 

Due to the easy way DINAS has for modification of the problem we can perform an additional 
analysis with some canceled objective functions. While repeating the multiobje~tive analysis with 
the omitted objective function Invest we get the ninth solution as the neutral solution which confirms 
optimality of this solution with respect to good values of all three objectives. 
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Using the BROWSE command we can examine in detail the selected solutions with the network 
editor. It turns out that in the eighth efficient solution the new health-care center Fiord is completely 
loaded whereas in the old centers we can notice some small free capacities. This suggests that the 
old health-care centers have nonoptimal location with respect to the considered objective functions. 
The ninth efficient solution confirms this observation. The new additional health-care center at 
Oasis takes some area from the region of Hill and from the region of Pond. So, in this solution 
both the new health-care centers use their entire capacities whereas the old centers use only 50-70% 
of their capacities. 

5. FINAL COMMENTS 

DINAS has already been used successfully while analyzing two real-life problems: routes 
optimization for building materials transportation and location of new pediatric clinics. The former 
was a three-objective transportation problem without facility location. It was originally a 
two-commodity transshipment problem but we managed to model it as a single-commodity one. 
The latter problem was more complex (compare [S]). It contained 5 objective functions, almost 
300 arcs and almost 100 nodes, including 8 potential ones. 

Initial experiences with the DINAS system confirm the appropriateness of the methodology used 
for solving multiobjective transshipment problems with facility location. The interactive scheme is 
very easy and supported by many analysis tools. Thereby, a satisfactory solution can usually be 
reached in a few interactive steps. 

As has been shown in this paper, application of DINAS is not limited to typical transshipment 
problems. DINAS can be successfully used to solve different distribution-location problems. The 
problem of health service reorganization connected with location of new health-care centers 
presented in the paper is only an example, among many others, of real-life decision problems which 
can be solved with DINAS or similar tools. 

When real-life problems are solved with DINAS on IBM-PC XT/AT microcomputers the 
single-objective computations take, obviously, much more time than when using some standard 
optimization tools (like the MPSX/370 package) on a mainframe. However, our experiences with 
both these approaches (see [S, 63) allow us to suppose that DINAS, in general, will take much 
less time for performing the entire multiobjective analysis. 

DINAS is available in executable form to educational and scientific institutions. Inquiries for 
software should be directed to: System and Decision Sciences Program, International Institute for 
Applied Systems Analysis, A-2361 Laxenburg, Austria. 
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