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1 Introduction

Decision support system for planning and management of mobile personnel tasks has to deal
with complex optimization problems. The SATIS software [10] supports various fleet manage-
ment tasks as well as management of work of a sales team and allows to stimulate sales activity.
The latter functions include planning of visits and meetings of field employees, assignment of
tasks to be performed and preparation and settlement of sales plans. Daily access to data is en-
sured by embedded indicators and reports such as, for example, planning of work of commercial
representatives, monitoring of execution of a plan or report on visits. Gathered data is used to
measure effectiveness of employees, allows to define objectives and motivates to improve sales
results. SATIS Optimisation module gives a possibility to set the most advantageous route so
that a driver may cover a distance in the appropriate time. Optimization of processes reduces
fuel consumption and travel time, due to which mobile employees may work more effectively,
maintaining or reducing costs. For efficient support of planning and management of mobile
personnel tasks there have been developed procedures [8] to deal with large-scale periodic time-
dependent vehicle routing and scheduling problems with complex nonuniform constraints with
respect to frequency, time windows, working time, etc. Such a problem might be considered
as a generalization of the Time-Dependent Traveling Salesman Problem (TDTSP) [1, 2, 3, 13]
with several real features, specifically the following: each point (customer) can define multiple
time windows during which it is available and can be serviced; the travel time between the
points varies, due to the traffic, and actually it depends on the traffic time zone, in which the
transit actually occurs; starting and ending depots are treated as points so that they also have
time windows. Moreover, additional fast adaptive procedures for operational rescheduling of
plans in presence of various disturbances are needed. Several solution quality indicators with
respect to a single personnel person must be considered.

2 Equitable goal programming model

The objectives are structured in a two-level lexicographic optimization where on the top level
is maximized the number of visits completed according to all the restrictions. At the bottom
level four quantified schedule quality criteria are aggregated: minimized travel cost, minimized
labor cost (including overtime costs), minimized excess deviation from the weekly working
time norm, minimized lower and upper deviations from the reference visit frequency (gap
between subsequent visits). All the second level objectives are defined as the goal programming
deviational criteria with penalty functions [9] and unattainable targets. Thus they built a GP
model though equivalent to the Reference Point Method [4].



Since, even single-objective problem is extremely difficult to solve, due to the number of
binary variables, for medium and larger number of customers it is more efficient to tackle it
with heuristic approaches. Business requirements enforce that in short time (operational) per-
spective every point is visited by the same personnel person. In longer time horizon, due to
optimization needs or personnel fluctuation, there is possible a change of the personnel alloca-
tion. Therefore, while solving the problem one can separate the phase of personnel allocation to
points and simultaneous allocation of visits to specific days with respect to required frequency
and personnel limitations. The multicriteria preference model is adjusted already during the
first stage. Approximate solution depends on the use some metaheuristic to examine various
sequences of points while comparing the objective function values. Particularly, we have used
the list based threshold accepting heuristic [11]. For comparison the objective values, there is
no problem with handling two-level optimization. Although, the second level objectives must
be scalarized into one achievement function.

An equitable aggregation of the individual achievement functions is needed. Max-min ag-
gregation is typically used in GP for this purpose. It requires a regularization to guarantee
efficiency with respect to all individual achievements optimization. The regularization by the
average achievement is easily implementable but it may disturb the basic max-min model.
Actually, the only consequent regularization of the max-min aggregation is the lex-min order
or more practical the OWA aggregation with monotonic weights [5]. The latter combines all
the partial achievements allocating the largest weight to the worst achievement, the second
largest weight to the second worst achievement, the third largest weight to the third worst
achievement, and so on. The OWA aggregation [14] is mathematically formalized as follows.
Within the space of achievement vectors we introduce map Θ = (θ1, θ2, . . . , θm) which orders
the coordinates of achievements vectors in a nondecreasing order, i.e., Θ(a1, a2, . . . , am) =
(θ1(a), θ2(a), . . . , θm(a)) iff there exists a permutation τ such that θi(a) = aτ(i) for all i and
θ1(a) ≤ θ2(a) ≤ . . . ≤ θm(a). The standard max-min aggregation depends on maximization of
θ1(a) and it ignores values of θi(a) for i ≥ 2. OWA represents the weighted combination of of
the ordered achievements. The weights are then assigned to the specific positions within the
ordered achievements rather than to the partial achievements themselves:

max
m

X

i=1

wiθi(a) (1)

where w1 > w2 > . . . > wm > 0 are positive and strictly decreasing weights. Actually, they
should be significantly decreasing to represent regularization of the max-min order. Aggregat-
ing only four achievement functions (m = 4), there could be easily defined strictly decreasing
weights wi = 10−2(i−1). (They need not to be normalized to sum up to 1).

Due to different importance of several achievements related to various preferences, there is
a need for some importance weights control. Typical Min-Max aggregations allow weighting of
several achievements only by straightforward rescaling of the achievement values. The OWA
model enables one to introduce importance weights v = (v1, . . . , vm) such that vi ≥ 0 for
i = 1, . . . , m as well as

Pm
i=1 vi = 1 to affect achievement importance by rescaling accordingly

its measure within the distribution of achievements as defined in [7, 6]. Such a scalarization is
defined by modification of formula (1) where the OWA weights wi are applied to averages of
the corresponding uniform portions of ordered achievements (quantile intervals) according to
the distribution defined by importance weights vi. That is [7]:
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where F
(−1)
a is the stepwise function F

(−1)
a (ξ) = θi(a) for i − 1/m < ξ ≤ i/m. It can also

be mathematically formalized as follows. First, we introduce the right-continuous cumulative
distribution function (cdf):

Fa(d) =
m

X

i=1

viδi(d) (3)



where δi(d) = 1 if ai ≤ d and 0 otherwise. Next, we introduce the quantile function F
(−1)
a as

the left-continuous inverse of the cumulative distribution function Fa, ie., F
(−1)
a (ξ) = inf {η :

Fa(η) ≥ ξ} for 0 < ξ ≤ 1. Note that formula (2) is equivalent to the standard OWA (1) in the
case of equal importance weights (vi = 1/m for i = 1, . . . , m) as well as it covers the standard
weighted mean with importance weights vi as a special case of equal OWA weights (wi = 1/m
for i = 1, . . . , m).

Formula (2) may be reformulated with the tail averages thus leading to an LP implementable
form of the scalarization [6]. Although, due to the use of the heuristic algorithm requiring only
calculations and comparisons of the scalarizing function values, LP implementability of the
formula is not important. More effective computational formula can be then applied, instead.
Taking advantages of the finite number of steps in function F

(−1)
a and their correspondence to

values θi(a), the scalarization (2) may be expressed, similar to the original OWA (1), as the
weighted combination the ordered values although with apropriately recalculated weights:
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where the weights ωi are defined as

ωi = w∗(
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with τ representing the ordering permutation for a (i.e. aτ(i) = θi(a)) and the piece-wise linear
increasing function w∗:
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As function w∗ defined by (6) interpolates points ( i
m

,
P

k≤i wk) together with the point (0.0),
the scalarization formula (4) fits the general formula for the so-called Weighted OWA (WOWA)
aggregation [12]. The formula (6) depends only on the the OWA weights wi. Hence, it is
uniquely defined for the entire process while only formulae (4) and (5) have to be recalculated
for various solutions. Moreover, the control parameters represented by importance weights vi

affect only the formula (5).
In summary, the multiple objectives have been structured in the lexicographic optimization

with the function f0 at the top level and the ordered weighted average of the remaining four cri-
teria with importance weights (5). The latter defines the control parameters for the preference
model. Since do to business requirements while solving the problem it has been separated the
initial phase of personnel allocation to points and simultaneous allocation of visits to specific
days with respect to required frequency and personnel limitations. The importance weights
(preference model) have been adjusted already during this initial stage of the analysis.

3 Concluding remarks

Supporting for planning and management of mobile personnel tasks requires solving large-scale
periodic time-dependent vehicle routing and scheduling problems with complex constraints and
goals. Several solution quality indicators with respect to a single personnel person have to be
considered. In the developed system the objectives are structured in a two-level lexicographic
optimization where on the top level there is maximized the number of visits completed ac-
cording to all the restrictions. At the bottom level four quantified schedule quality criteria are
defined as the goal programming deviational achievement functions. They are aggregated into
ordered weighted average with importance weights. The latter represent control parameters
while adjusting the aggregation to the decision maker preferences. The approach is applicable
for hard discrete optimization problem solved with threshold accepting metaheuristics.
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