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The problem of telecommunications network design with the objective to
maximize service data flows and provide fair treatment of all services is very
up-to-date. In this application, the so-called Max-Min Fair (MMF) solution
concept is widely used to formulate the resource allocation scheme [1,6,13].
It assumes that the worst service performance is maximized and the solution
is additionally regularized with the lexicographic maximization of the second
worst performance, the third one, etc. The MMF approach is an extreme and
very stiff and it can be compromised by some compensatory models based on
the ordered weighted averaging (OWA). In the OWA aggregation preferential
weights are allocated to the ordered outcomes. Such OWA aggregations are
sometimes called Ordered Ordered Weighted Averages [5]. When differences
between weights tend to infinity, the OWA model becomes Lexicographic Max-
Min [16], thus extending the MMF approach for nonconvex problems.
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For modeling various fair preferences one may use some combinations can
be expressed with weights ωi =

∑m
j=i sj (i = 1, . . . , m) allocated to coordinates

of the ordered outcome vector, i.e., as the so-called Ordered Weighted Average
(OWA) [15]:

max {

m∑
i=1

ωiθi(f(x)) : x ∈ Q}(1)

If weights ωi are strictly decreasing and positive, i.e. ω1 > ω2 > · · · > ωm−1 >
ωm > 0, then each optimal solution of the OWA problem (1) is a fairly effi-
cient solution. Such OWA aggregations are sometimes called Ordered Ordered
Weighted Averages (OOWA) [5].

The MMF approach is an extreme and very stiff and it can be compro-
mised by some compensatory models based on the ordered weighted averag-
ing (OWA). In the OWA aggregation preferential weights are allocated to the
ordered outcomes. Such OWA aggregations are sometimes called Ordered Or-
dered Weighted Averages. When differences between weights tend to infinity,
the OWA model becomes Lexicographic Max-Min thus extending the MMF
approach for nonconvex problems.
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Consider the bandwidth allocation for multi-commodity multi-path net-
works as presented above. The demands generate elastic traffic, i.e., each
of them can consume any bandwidth assigned to its path. There are 3 de-
mand pairs: d1 = {1, 2}, d2 = {2, 3}, d3 = {1, 3} and corresponding band-
width/flows: y1, y2, y3. The OOWA maximization: max(0.4y〈1〉 + 0.35y〈2〉 +
0.25y〈3〉) (where y〈k〉 the k-th smallest value) results in y1 = 2, y2 = 3, y3 = 0
which is maximum throughput solution. On the other hand, the OOWA max-
imization: max(0.6y〈1〉 + 0.3y〈2〉 + 0.1y〈3〉) results in y1 = y3 = 1, y2 = 2 which
is the MMF solution.

Frequently, one may be interested in putting into allocation models some
additional service importance weights. Typically the model of distribution
weights is introduced to represent the service importance thus defining dis-
tribution of outcomes according to measures defined by the weights. Such
distribution weights allow one for a clear interpretation of weights as the ser-
vice repetitions. Splitting a service into two services does not cause any change
of the final distribution of outcomes.



Consider again the bandwidth allocation for multi-commodity multi-path
networks with 3 demand pairs: d1 = {1, 2}, d2 = {2, 3}, d3 = {1, 3} and corre-
sponding flows: y1, y2, y3. The standard MMF solution lexmax (y〈1〉, y〈2〉, y〈3〉)
is y1 = y3 = 1, y2 = 2 Consider importance weights v1 = 1, v2 = 1, v3 = 2
interpreted as demand repetitions: d′1 = {1, 2}, d′2 = {2, 3}, d′3 = {1, 3}, d′4 =
{1, 3} with y′1, y

′
2, y

′
3, y

′
4. Then, lexmax (y′〈1〉, y

′
〈2〉, y

′
〈3〉, y

′
〈4〉) generate solution

y′1 = y′3 = y′4 = 2/3, y′2 = 5/3 and the importance weighted MMF results in
y1 = 2/3, y2 = 4/3, y3 = 5/3.

We will use the normalized weights v̄i = vi/
∑

i∈I vi, rather than the
original quantities vi. Note that, in the case of unweighted problem (all
vi = 1), all the normalized weights are given as v̄i = 1/m. The importance
weights can be easily accommodated in solution concept of the mean outcome
µ(y) =

∑
i∈I v̄iyi as well as in solution concepts based on the mean utility,

like the Proportional Fairness (PF) [4]. For any utility function u : R → R
one gets µ(u(y)) =

∑
i∈I v̄iu(yi). In the case of logarithmic utility function

one gets the PF formula PFv̄(y) =
∑

i∈I v̄i log(yi).

Similar, approach may be applied to the OOWA solution concepts re-
sulting in the so-called Weighted OWA (WOWA) aggregations. The OWA
aggregation (1) is built for equally important outcomes where only distribu-
tion of outcome values is evaluated. For instance, considering two outcomes
with the OWA weights w1 = 0.9 and w2 = 0.1 both symmetric outcome
vectors y1 = (0, 1) and y2 = (1, 0) result in the same OWA aggregation
OWA1 = OWA2 = 0.9 · 0 + 0.1 · 1 = 0.1. Nevertheless, the importance
weights of outcomes can be introduced into the OWA aggregation following
the rule that the importance weights vi define a repetition measure within
the distribution (population) of outcome values while the OWA weights wi

are applied to averages within specific quantiles of size 1/m for this distribu-
tion. For instance, introducing importance weights v1 = 0.75 and v2 = 0.25
we replace y1 = (0, 1) with the distribution taking value 0 with the repeti-
tion measure 0.75 and taking value 1 with the repetition measure 0.25 while
y2 = (1, 0) is replaced with the distribution taking value 1 with the repetition
measure 0.75 and taking value 0 with the repetition measure 0.25. In this
specific case, the distributions may easily be equivalently interpreted in terms
of four dimensional space of equally important outcomes (measure 1/4 each)
where the original first outcome has been triplicated, thus y1 = (0, 0, 0, 1)
and y2 = (1, 1, 1, 0). The OWA aggregation with weights s1 = 0.9 and
s2 = 0.1 applied to the corresponding averages within quantiles of size 1/2
results then in aggregation values 0.9 · 0 + 0.1 · (0 + 1)/2 = 0.05 for y1 and
0.9 · (0 + 1)/2 + 0.1 · 1 = 0.55 for y2, respectively. Certainly, one do not need



to transform all the cases to equally important outcomes in order to calculate
appropriate OWA value. Such an importance weighting OWA formula was
introduced as the WOWA aggregation formally defined as follows [14]

WOWA(y) =
m∑
i=1

ωiθi(y)(2)

with

ωi = ω∗(

i∑
k=1

v̄τ(k)) − ω∗(

i−1∑
k=1

v̄τ(k))(3)

where ω∗ is piecewise linear function interpolating points ( i
m
,
∑i

k=1wk) to-
gether with (0.0) and τ representing the ordering permutation for y (i.e.
yτ(i) = θi(y)). Function w∗ can be defined by its generation function

g(ξ) = mwk for (k − 1)/m < ξ ≤ k/m, k = 1, . . . , m

with the formula w∗(α) =
∫ α

0
g(ξ) dξ. Introducing breakpoints αi =

∑
k≤i vτ(k)

and α0 = 0 allows us to express

ωi =

αi∫

0

g(ξ) dξ −

αi−1∫

0

g(ξ) dξ =

αi∫

αi−1

g(ξ) dξ

and the entire WOWA aggregation as

WOWA(y) =

m∑
i=1

θi(y)

αi∫

αi−1

g(ξ) dξ =

1∫

0

g(ξ)F (−1)
y

(ξ) dξ

where F
(−1)
y is the inverse of the cumulative distribution function, i.e. a step-

wise function F
(−1)
y (ξ) = θi(y) for αi−1 < ξ ≤ αi. Hence,

WOWA(y) =

m∑
k=1

wkm

k/m∫

(k−1)/m

F (−1)
y

(ξ) dξ(4)

Note that m
∫ k/m

(k−1)/m
F

(−1)
y (ξ) dξ represents the average within the k-th portion

of 1/m smallest outcomes, the corresponding conditional mean. Hence, the
formula (4) defines WOWA aggregations with preferential weights w as the
corresponding OWA aggregation but applied to the conditional means calcu-
lated according to the importance weights v̄ instead of the original outcomes
[10].



For theoretical considerations one may assume that the problem is trans-
formed (disaggregated) to the unweighted one (that means all the importance
weights are equal to 1). Such a disaggregation is possible for integer as well as
rational weights, but it usually dramatically increases the problem size. There-
fore, we are interested in solution concepts and solution algorithms which can
be applied directly to the weighted problem. In this paper we study both
exact and approximate solution algorithms.
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[3] Hurka la, J., and T. Śliwiński, Threshold Accepting Heuristic for Fair Flow

Optimization in Wireless Mesh Networks, Journal of Applied Mathematics,
2014 (2014), Article ID 108673, 1–11. doi:10.1155/2014/108673

[4] Kelly, F., A. Mauloo, and D. Tan, Rate control for communication networks:

shadow prices, proportional fairness and stability, J. Oper. Res. Soc., 49 (1997),
206–217.
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