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 1994 European Association for Signal Processing, Lausanne, CHMoving Segment Detectionin Monocular Image Sequences under EgomotionW lodzimierz KASPRZAK y and Heinrich NIEMANN yzyBavarian Research Center for Knowledge{Based Systems (FORWISS),Am Weichselgarten 7, D-91058 Erlangen, E-Mail: kasprzak@forwiss.uni-erlangen.dezUniversity of Erlangen{Nuremberg, Institute of Computer Science (IMMD 5),Martensstr. 3, D{91058 Erlangen, E-Mail: niemann@informatik.uni-erlangen.deAbstract. Two moving segment detection problems in image sequences of road scenes under egomotion are discussed:the classi�cation of image contours into moving or stationary and the 3{D object motion estimation. In both cases twosolution classes are compared. The approaches of the �rst class (bottom{up, application{independent) are searching forimage feature correspondence in subsequent images. The second class approaches perform a model{based classi�cationand object motion estimation. Hence the �rst problem is solved either by image motions of several contour points orby geometric vanishing point detection. After a road detection step the contours are grouped and their depth positionsare hypothesized. The two approaches applied to the problem of object motion estimation use either the 2{D lengthchange rate of a contour group or 3{D positions of corresponding groups in subsequent images.1. IntroductionDuring early image sequence processing one primarily wantsto redetect the previously detected features in the next imagein order to stabilize the image description and to obtain thevisual motion �eld [1]. In case of true camera motion in the3{D space (also called egomotion), not limited to the lateralcamera motion, the visual motion consists of two unknowncomponents: the �rst one corresponds to the object motionand the second one to the egomotion. The visual motion ofstationary objects is not unique { it depends from the ob-ject position relative to the camera. For a separation of truemoving segments from the stationary background the visualmotion part caused by the egomotion should be estimated.On the other hand for the calculation of this unknown mo-tion part the stationary segments should be used only.In this paper two moving segment detection problems inmonocular image sequences of road scenes under egomotionare discussed and two classes of methods for solving them arecompared: bottom{up methods based on image motion andmodel{driven methods, based on geometry detection in 2{Dor 3{D space. Related works are described for example in [2](road scene analysis), [3] (focus of expansion detection), [4](adaptive estimation) and [5] (3{D egomotion estimation).2. System outlineLet us consider a system for dynamic road scene analysiswith a moving observer as depicted in Figure 1. It con-sists of an application{independent module for image con-tour detection and image motion estimation (2{D) (left bot-tom scheme part), that is integrated with a 2.5{D modulefor contour classi�cation and road detection (top part), andthey are both interacting with two model{based modules forobject initialization (3{D) and tracking (4{D) (right part).The 2{D module has been described in [6]. Its task isto detect closed image contours and to estimate the imagemotion vectors of the contours.

After the contour classi�cation step has been �nished (asdescribed in section 3) application{speci�c knowledge aboutthe scene is used next for the detection of the road class,road width and the observer position relative to the middleroad axis.Because the measured image motion as well as the im-age locations are very sensitive to the discretization error,two stabilization schemes are applied and redundant mea-surements are provided. A weighted averaging of individualmeasurements in a short sequence of up to 5 images is per-formed and an adaptive scheme is applied (by means of arecursive linear �lter) for the stabilization of the image mea-surements in a long image sequence.The contour grouping step starts with the backprojectionof the contours into the 3{D space over the road plane. Thenit tries to aggregate neighbour contours from the same classtogether. For example the search for an "obstacle" groupstarts with a non{stationary "road" contour on the bottomof the image. It lookes for image neighbours that are locatednear the �rst contour, when projected back to the 3{D spaceover the road. The group should satisfy the geometry restric-tions given by the object model (i.e. width{to{height ratio).All initialized objects are supplied to the tracking mod-ule. The relative motion of "stationary" objects is caused bythe egomotion of the camera vehicle. The current egomotionmeasurement is the result of weighted averaging of individualstationary road stripe velocities. The weights correspond tothe measurement variances of every object. Both stationaryand true moving objects are tracked by the use of a model{to{image match (point{ or edge{based) and their states arerecursively updated by means of adaptive �ltering methods.The tracking module is scope of the paper [7].In the current paper the design of the contour classi�-cation and the object initialization steps is discussed in thecontext of the following question: how can the 3{D objectrecognition task in image sequences from a low{cost camera708
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Figure 1: Processing structure of the road analysis systembe supported by the application{independent image motionof the contours. During the contour classi�cation step theimage motion in several contour points may allow the sepa-ration of moving contours from the stationary ones. In thesecond step the translational velocity of an object hypothesismay be initialized by using the image contour change rateinstead of detecting the depth position di�erence of corre-sponding hypotheses.3. Contour classi�cation3.1 VP{based contour classi�cationAn example of the contour data results from the 2{D mod-ule is given in Figure 2(a). The vanishing point (V P ) inthe image is detected as the center point of an area with thehighest density of hypothetic road line crossings (Figure2(b). On the basis of the V P location the image pixels areclassi�ed into three classes: "road", "surrounding area" and"heaven". The contours containing some number of "road"pixels are classi�ed as "road" contours, the contours with-out such pixels but containing enough "surrounding" areapixels are classi�ed as surrounding contours. The remainingcontours constitute the "heaven" (Figure 2(c)).After this basic classi�cation the "road" contours witha large amount of V P{edges (i.e. pointing towards the V Ppoint) are classi�ed as "road stripes" (stationary segments)and the remaining "road" contours are "obstacles" (movingsegments) (Figure 3).3.2 FOE{based contour classi�cationIn the general case the existence of a vanishing point is notgaranteed. In such situation an image motion{based methodfor moving segment detection could be used instead of theV P{based method.In Figure 4(a) a closed discrete contour, its features anddiscrete disparity vectors are shown. The unknown motion(~vx;~vy) of a continuous contour feature is approximated bya weighted averaging of N-1 disparity vectors for a discretefeature point { (vx; vy). The weights are directly related tothe additional component of contour motion vz { the rela-tive contour length change rate. For the motion vector set ofa true moving contour a dynamic focus of expansion point

(C FOE) is estimated. This is the point in an image (in gen-eral a region), where the motion lines induced by the featuremotion vectors vanish.The general method of moving segment detection isbased on the distinction of individual focus of expansionpoints for each contour. The idea is to classify contours beingthe projections of assumed road stripes and the "surround-ing" contours into stationary contours. The motion vectors ofstationary contours induce then the current dynamic focus ofexpansion point (FOE). This is the center of an area in theimage plane, whith the highest density of C FOE points forstationary contours. A moving contour should di�er from thestationary background by its visual motion (its C FOE doesnot match the stationary FOE point) (Figure 4(b),(c)).4. Object initializationThe initialization of an object (or generation of an objecthypothesis) is equivalent to the initialization of a parametricstate vector on the basis of one group features and model{dependent restrictions, with the knowledge about the currentcamera{to{road transformation. A state vctor consists of thetrajectory and shape parts. The trajectory subvector x(k) attime point tk is a �ve{dimensional vectorx(k) = [(pX(k); pZ(k);�(k)); (V (k); !(k))]T ; (1)that consists of the position (pX(k); pZ(k)) relative to thecamera vehicle, the orientation �(k) of the translational mo-tion and the magnitudes V (k) and !(k) of translational andangular velocities.The localization parameters (position and orientation)are model{based estimated by projecting the image groupfeatures back into the road coordinates assuming the on{road position. Then the model{based restrictions about thelength-to-width and height-to-width ratios allow the orien-tation estimation.The angular velocity is assumed to be equal to the cur-rent egomotion state parameter !(k). The translational ve-locity along the depth axis can be hypothesized on two ways.The geometry{based method performs a short{time track-ing of the object depth, whereas the application{independent709
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(k)1 + vz(k) � 1� (2)where the coe�cient 
(k) depends from the object type andthe rate vz(k).5. ExperimentsFive test sequences have been used with complexity of 100{120 contours in one image and with average contour lengthof 100{110 pixels.5.1 FOE vs. V P{estimationIn Table 1 the detected errors E and the variances �2 ofthe detection (X;Y ) and estimation (X�; Y �) of the FOEand V P points in �ve image sequences are given. The orig-inal V P locations (xo; yo) have been manually measured inthe images. As the camera vehicle is moving approximatelytowards the V P{line, the reference value for the FOE detec-tion error was the same as for the V P error. While comparingthe errors and variances an immediate conclusion is, that thequality of V P detection is about ten times better, than thequality of FOE detection.Thus the FOE{based approach has failed to reach hisgoals in practical tests. Unfortunately the di�erences in mea-sured motion of di�erent contour points have been to smallfor a robust and stable determination of a C FOE point fora great number of contours.5.2 Object motion initializationThere are two road hypotheses tracked in parallel that corre-spond to a 2{ or 3{lane road class. The contours are groupedinto 20 { 30 groups with a tracking success of 90 { 95 %. Some 10 groups correspond to a moving object hypothe-sis (there were 3{4 vehicles in the scene) and 10{12 groupsinduce a generation of up to 6 road stripes for each roadhypothesis (Figure 5).The Table 2 summarizes the results of repeated depthpZ and object motion V initializations for a middle roadstripe hypothesis in 20 images. The original values of depthpZo and velocity Vo of the moving object have been measuredmanually in the image sequence.The errors of depth estimation were up to �25% but theerrors of translational velocity along the depth axis, calcu-lated from the 3{D location di�erences, were much higher {between �57% and 67%. The quality of the same velocity,but computed by the vz{based method, was better { errorsof �17:5% have been observed. There is a big contour de-tection instability in the image interval 7{12 as the stripeis passing a highligted area in the road. During the estima-tion of the vz change rate, these errors are partly �ltered out

by the measurement stabilization procedures and by the re-dundancy of measurements (the border length and diagonallength change rates are combined).These errors should be related to the discretization errorsof object initialization in a synthesized image sequence. Fora synthetic road stripe of similar size (256x256x8 bit images,contour length from 34 to 106 pixel) the detected measure-ment error of vz�l or of the contour center motion (vCx, vCy)was up to 0:3pel=�t or up to 7%. At the same time the errorsof individual border point motions were several times largerthan this error. With known vehicle speed (ca. 1:11m=�) theerror of translational velocity was below 2m or 7:4%.6. ConclusionTwo classes of approaches for moving segment detection inimage sequences under true camera egomotion have beencompared: general image motion{based methods and model{based methods. For the �rst detection problem the process-ing results of a model{based method (V P{detection) havebeen of much better quality than the results of a generalsolution (dynamic FOE{detection). For the estimation oftranslational velocity along the depth camera axis a contour{length{change{based method was proposed, which is of bet-ter quality than the 3{D location di�erence measurement ofcorresponding object hypotheses.AcknowledgementsThe support from the 'Deutsche Forschungsgemein-schaft', Bonn, F.R.G., is gratefully acknowledged. The realimages are by courtesy of the BMW AG., Munich, F.R.G.References[1] Scott G.L. (1988): Local and Global Interpretation ofMoving Images. Pitman, London.[2] Masaki I. (ed.) (1992): Vision{based VehicleGuidance, Springer Series in Perception Engineering,Springer, New York Berlin Heidelberg.[3] Burger W., Bhanu B. (1988): Dynamic Scene Un-derstanding for Autonomous Mobile Robots, IEEE Con-ference on A.I. Applications, IEEE Publ., 736{741.[4] Gennery D.B. (1992): Visual tracking of known three-dimensional objects, Int. Journal of Computer Vision,(7), 243{270.[5] Heeger D.I., Jepson A.D. (1992) : Subspace Meth-ods for Recovering Rigid Motion I: Algorithm and Imple-mentation, Int. Journal of Computer Vision, (7), 95{117.[6] Kasprzak W., Niemann H. (1993): Visual MotionEstimation from Image Contour Tracking, Springer, Lec-ture Notes in Computer Science, (719), 363-370,[7] Kasprzak W. (1994): Road Object Tracking in Monoc-ular Image Sequences Under Egomotion,Machine Graph-ics & Vision, (3), No.1/2, PAS Warsaw, 297{308.710



Figure 2: Basic contour classi�cation: (a) contours, (b) vanishing point, (c) "road" and "surrounding" contours
Figure 3: V P{based contour classi�cation: (a) VP-edge detection, (b) "obstacle" contours, (c) "road stripe" contours
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Figure 4: FOE{based contour classi�cation: (a) the image motion of one contour and the C FOE{point, (b) themotion vectors of the contours, (c) the detected FOE pointSpace Image feature Image k =or object state 2 5 8 11 14 17 202{D Contour length l [pel] 34 40 48 74 78 92 106Stabilized vz[pel=� ] 0.064 0.068 0.058 0.063 0.072 0.095 0.1063{D : V P{based depth pZ [m] -43.70 -39.40 -46.15 -38.95 -27.00 -25.95 -18.10repeated �pZ{based V [m=� ] 1.42 1.03 0.49 1.06 1.94 1.04 1.92init vz{based V [m=� ] 1.46 1.45 1.38 1.33 1.10 1.29 1.153{D : pZo [m] -43.27 -39.79 -36.31 -32.84 -29.36 -25.88 -22.41original Vo [m=� ] 1.16 1.16 1.16 1.16 1.16 1.16 1.16Table 2: Repeated object initialization (depth and translational velocity of "stationary" objects (the �rst middle roadstripe) (pX ;�S are constant and !S = 0)) (� = 0:04sec, pel{pixel side).
Figure 5: Object detection: (a) road lane hypothesis, (b) the car object hypotheses, (c) the road stripe objects711


