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Abstract. Two moving segment detection problems in image sequences of road scenes under egomotion are discussed:
the classification of image contours into moving or stationary and the 3-D object motion estimation. In both cases two
solution classes are compared. The approaches of the first class (bottom—up, application-independent) are searching for
image feature correspondence in subsequent images. The second class approaches perform a model-based classification
and object motion estimation. Hence the first problem is solved either by image motions of several contour points or
by geometric vanishing point detection. After a road detection step the contours are grouped and their depth positions
are hypothesized. The two approaches applied to the problem of object motion estimation use either the 2-D length
change rate of a contour group or 3-D positions of corresponding groups in subsequent images.

1. Introduction

During early image sequence processing one primarily wants
to redetect the previously detected features in the next image
in order to stabilize the image description and to obtain the
visual motion field [1]. In case of true camera motion in the
3-D space (also called egomotion), not limited to the lateral
camera motion, the visual motion consists of two unknown
components: the first one corresponds to the object motion
and the second one to the egomotion. The visual motion of
stationary objects is not unique — it depends from the ob-
ject position relative to the camera. For a separation of true
moving segments from the stationary background the visual
motion part caused by the egomotion should be estimated.
On the other hand for the calculation of this unknown mo-
tion part the stationary segments should be used only.

In this paper two moving segment detection problems in
monocular image sequences of road scenes under egomotion
are discussed and two classes of methods for solving them are
compared: bottom-up methods based on image motion and
model-driven methods, based on geometry detection in 2-D
or 3-D space. Related works are described for example in [2]
(road scene analysis), [3] (focus of expansion detection), [4]
(adaptive estimation) and [5] (3-D egomotion estimation).

2. System outline

Let us consider a system for dynamic road scene analysis
with a moving observer as depicted in Figure 1. It con-
sists of an application—independent module for image con-
tour detection and image motion estimation (2-D) (left bot-
tom scheme part), that is integrated with a 2.5-D module
for contour classification and road detection (top part), and
they are both interacting with two model-based modules for
object initialization (3-D) and tracking (4-D) (right part).

The 2-D module has been described in [6]. Its task is
to detect closed image contours and to estimate the image
motion vectors of the contours.
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After the contour classification step has been finished (as
described in section 3) application-specific knowledge about
the scene is used next for the detection of the road class,
road width and the observer position relative to the middle
road axis.

Because the measured image motion as well as the im-
age locations are very sensitive to the discretization error,
two stabilization schemes are applied and redundant mea-
surements are provided. A weighted averaging of individual
measurements in a short sequence of up to 5 images is per-
formed and an adaptive scheme is applied (by means of a
recursive linear filter) for the stabilization of the image mea-
surements in a long image sequence.

The contour grouping step starts with the backprojection
of the contours into the 3-D space over the road plane. Then
it tries to aggregate neighbour contours from the same class
together. For example the search for an ”obstacle” group
starts with a non—stationary ”road” contour on the bottom
of the image. It lookes for image neighbours that are located
near the first contour, when projected back to the 3—-D space
over the road. The group should satisfy the geometry restric-
tions given by the object model (i.e. width—to—height ratio).

All initialized objects are supplied to the tracking mod-
ule. The relative motion of ”stationary” objects is caused by
the egomotion of the camera vehicle. The current egomotion
measurement is the result of weighted averaging of individual
stationary road stripe velocities. The weights correspond to
the measurement variances of every object. Both stationary
and true moving objects are tracked by the use of a model-
to-image match (point— or edge-based) and their states are
recursively updated by means of adaptive filtering methods.
The tracking module is scope of the paper [7].

In the current paper the design of the contour classifi-
cation and the object initialization steps is discussed in the
context of the following question: how can the 3-D object
recognition task in image sequences from a low—cost camera
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Figure 1: Processing structure of the road analysis system

be supported by the application-independent image motion
of the contours. During the contour classification step the
image motion in several contour points may allow the sepa-
ration of moving contours from the stationary ones. In the
second step the translational velocity of an object hypothesis
may be initialized by using the image contour change rate
instead of detecting the depth position difference of corre-
sponding hypotheses.

3.

3.1  VP-based contour classification

An example of the contour data results from the 2-D mod-
ule is given in Figure 2(a). The wanishing point (VP) in
the image is detected as the center point of an area with the
highest density of hypothetic road line crossings (Figure
2(b). On the basis of the V P location the image pixels are
classified into three classes: "road”, ”surrounding area” and
“heaven”. The contours containing some number of "road”
pixels are classified as "road” contours, the contours with-
out such pixels but containing enough ”surrounding” area
pixels are classified as surrounding contours. The remaining
contours constitute the "heaven” (Figure 2(c)).

After this basic classification the “road” contours with
a large amount of V P—edges (i.e. pointing towards the V P
point) are classified as ”road stripes” (stationary segments)
and the remaining ”"road” contours are ”obstacles” (moving
segments) (Figure 3).

3.2 FOFE-based contour classification

In the general case the existence of a vanishing point is not
garanteed. In such situation an image motion-based method
for moving segment detection could be used instead of the
V P-based method.

In Figure 4(a) a closed discrete contour, its features and
discrete disparity vectors are shown. The unknown motion
(Vz,Vy) of a continuous contour feature is approximated by
a weighted averaging of N-1 disparity vectors for a discrete
feature point — (vz,vy). The weights are directly related to
the additional component of contour motion v, — the rela-
tive contour length change rate. For the motion vector set of
a true moving contour a dynamic focus of expansion point

Contour classification
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(C_FOE) is estimated. This is the point in an image (in gen-
eral a region), where the motion lines induced by the feature
motion vectors vanish.

The general method of moving segment detection is
based on the distinction of individual focus of ezpansion
points for each contour. The idea is to classify contours being
the projections of assumed road stripes and the ”surround-
ing” contours into stationary contours. The motion vectors of
stationary contours induce then the current dynamic focus of
ezpansion point (FOE). This is the center of an area in the
image plane, whith the highest density of C_FOFE points for
stationary contours. A mowing contour should differ from the
stationary background by its visual motion (its C_.FOFE does
not match the stationary FOE point) (Figure 4(b),(c)).

4. Object initialization

The initialization of an object (or generation of an object
hypothesis) is equivalent to the initialization of a parametric
state vector on the basis of one group features and model-
dependent restrictions, with the knowledge about the current
camera—to-road transformation. A state vctor consists of the
trajectory and shape parts. The trajectory subvector z(k) at
time point ¢ is a five-dimensional vector

z(k) = [(px (k), pz(k), O(K)), (V (k),w(k))]", (1)
that consists of the position (px(k),pz(k)) relative to the
camera vehicle, the orientation @(k) of the translational mo-
tion and the magnitudes V (k) and w(k) of translational and
angular velocities.

The localization parameters (position and orientation)
are model-based estimated by projecting the image group
features back into the road coordinates assuming the on-—
road position. Then the model-based restrictions about the
length-to-width and height-to-width ratios allow the orien-
tation estimation.

The angular velocity is assumed to be equal to the cur-
rent egomotion state parameter w(k). The translational ve-
locity along the depth axis can be hypothesized on two ways.
The geometry—based method performs a short—time track-
ing of the object depth, whereas the application-independent
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Table 1: The average errors and the errror variances of the VP and FOE estimation in 5 image sequences

method applies the contour length change rate v, as folllows:

(k) 1) @)

1+ v, (k)
where the coefficient (k) depends from the object type and
the rate v, (k).

Va (k) = pa (k) (

5. Experiments

Five test sequences have been used with complexity of 100-
120 contours in one image and with average contour length
of 100-110 pizels.

5.1 FOF vs. VP-estimation

In Table 1 the detected errors E and the variances o of
the detection (X,Y) and estimation (X*,Y™) of the FOE
and V P points in five image sequences are given. The orig-
inal V P locations (z,,y,) have been manually measured in
the images. As the camera vehicle is moving approximately
towards the V P-line, the reference value for the FOFE detec-
tion error was the same as for the V' P error. While comparing
the errors and variances an immediate conclusion is, that the
quality of V P detection is about ten times better, than the
quality of FOE detection.

Thus the FOE-based approach has failed to reach his
goals in practical tests. Unfortunately the differences in mea-
sured motion of different contour points have been to small
for a robust and stable determination of a C_FOFE point for
a great number of contours.

5.2 Object motion initialization

There are two road hypotheses tracked in parallel that corre-
spond to a 2— or 3-lane road class. The contours are grouped
into 20 — 30 groups with a tracking success of 90 — 95 %
. Some 10 groups correspond to a moving object hypothe-
sis (there were 3—4 vehicles in the scene) and 10-12 groups
induce a generation of up to 6 road stripes for each road
hypothesis (Figure 5).

The Table 2 summarizes the results of repeated depth
pz and object motion V initializations for a middle road
stripe hypothesis in 20 images. The original values of depth
pzo and velocity V, of the moving object have been measured
manually in the image sequence.

The errors of depth estimation were up to £25% but the
errors of translational velocity along the depth axis, calcu-
lated from the 3-D location differences, were much higher —
between —57% and 67%. The quality of the same velocity,
but computed by the v,—based method, was better — errors
of +£17.5% have been observed. There is a big contour de-
tection instability in the image interval 7-12 as the stripe
is passing a highligted area in the road. During the estima-
tion of the v, change rate, these errors are partly filtered out
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by the measurement stabilization procedures and by the re-
dundancy of measurements (the border length and diagonal
length change rates are combined).

These errors should be related to the discretization errors
of object initialization in a synthesized image sequence. For
a synthetic road stripe of similar size (256x256x8 bit images,
contour length from 34 to 106 pixel) the detected measure-
ment error of v, x! or of the contour center motion (vcz, voy)
was up to 0.3pel/ét or up to 7%. At the same time the errors
of individual border point motions were several times larger
than this error. With known vehicle speed (ca. 1.11m/7) the
error of translational velocity was below 2m or 7.4%.

6. Conclusion

Two classes of approaches for moving segment detection in
image sequences under true camera egomotion have been
compared: general image motion-based methods and model-
based methods. For the first detection problem the process-
ing results of a model-based method (V P—detection) have
been of much better quality than the results of a general
solution (dynamic FOE-detection). For the estimation of
translational velocity along the depth camera axis a contour—
length—change—based method was proposed, which is of bet-
ter quality than the 3-D location difference measurement of
corresponding object hypotheses.
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Figure 4: FOE-based contour classification: (a) the image motion of one contour and the C_FOE—point, (b) the
motion vectors of the contours, (c) the detected FOE point

Space Image feature Image k =

or object state 2 ] 5 ] 8 ] 11 | 14 | 17 | 20
2-D Contour length [ [pel] 34 40 48 74 78 92 106

Stabilized v, [pel/T] 0.064 0.068 0.058 0.063 0.072 0.095 0.106
3-D: V P-based depth pz [m] || -43.70 | -39.40 | -46.15 | -38.95 | -27.00 | -25.95 | -18.10
repeated || épz—based V [m/7] 1.42 1.03 0.49 1.06 1.94 1.04 1.92
init v,—based V [m/7] 1.46 1.45 1.38 1.33 1.10 1.29 1.15
3-D: Pzo |m] -43.27 | -39.79 | -36.31 | -32.84 | -29.36 | -25.88 | -22.41
original Vo [m/7] 1.16 1.16 1.16 1.16 1.16 1.16 1.16

Table 2: Repeated object initialization (depth and translational velocity of ”stationary” objects (the first middle road
stripe) (px, ©¢ are constant and wg = 0)) (7 = 0.04sec, pel-pixel side).
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Figure 5: Object detection: (a) road lane hypothesis, (b) the car object hypotheses, (c) the road stripe objects
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