
Torres L. et al (eds.): Signal Processing V. Theories and ApplicationsNorth{Holland, Amsterdam, 1990, pp.1723{1726A BI{DRIVEN OPTIMAL SEARCH FOR KNOWLEDGE{BASED VISIONHeinrich NIEMANN ?)2) W lodzimierz KASPRZAK 2)?) Universit�at Erlangen{N�urnberg 2) Bayerisches Forschungszentrum f�ur WissensbasierteLst. f�ur Informatik 5 (Mustererkennung) Systeme (FORWISS), FG WissensverarbeitungMartensstr. 3, D{91058 Erlangen Am Weichselgarten 7, D{91058 ErlangenAbstract. A domain{independent tree search algorithm for semantic network{based image understanding systemsis proposed. The basic transition operators for this search, that provide search space expansion, have been designedfor a (hierarchical) model{to{image match. In this paper two operators for data{dependent matching are additionallyde�ned. The �rst operator forces an iteration of the model concept{to{image match, the second one concerns theinstantiation of generic relations. At end minimal data requirements of conceptions are introduced, allowing the designof one additional global operator of the search space { a data{driven search tree pruning.1. INTRODUCTIONIn this paper the image interpretation problem is viewed asan optimal forward search in an implicit space of partialsymbolic descriptions [1]. A semantic net{based system shellERNEST [2, 3] and the A�{tree search algorithm constitutethe basis of presented approach. The basic transition opera-tors in ERNEST, that provide search space expansion, havebeen designed for a (hierarchical) model{to{image match.But one needs data{driven search operators in vision sys-tems too because the number of non{competitive instancesof given conception may be image{dependent (can not bepredetermined in the model). Two such operators are pro-posed here for data{dependent matching. The �rst one causesan iteration of the model{to{image match. For example itcan be used in following cases: an unlimited number of ob-ject instances may exist in the scene, iterative volume partsof a solid may exist, non{merged segments may exist in theimage description due to segmentation faults. The second op-erator concerns the instantiation of generic relations for theveri�cation of hypotheses and for consistency maintenance.Additionally minimal data requirements may be speci�ed foreach conception. They allow a global pruning of search spacenodes while retaining the admissibility of search.2. KNOWLEDGE{BASED ANALYSIS IN ERNESTThe semantic network in ERNEST provides three nodetypes: the concept, the modi�ed concept and the instance,as well as three link types: part, concrete, specialization. Apart is context dependent or not. Part{ and concrete{links ofa concept are aggregated into modality sets, and each link ismarked inside a set by one of the labels: obligatory, optional,inherent or reference.There are three domain{independent rules for the instan-tiation of concepts and three rules for the modi�cation ofconcepts, that describe the use of knowledge. First a partialinstance Ipartial(A) of a concept A (or its modi�ed conceptQpartial(A)) is computed by requiring instances of the con-text independent parts and concretes only (RULE 1). Hav-ing the partial instance of A instances of context dependent

parts fMg can be generated. With the instances of fMg anddue to the RULE 2 the partial instance of A can be com-pleted (Icomplete(A)) The RULE 3 checks whether there areinstances of optional parts or concretes and it generates ex-tended instances from a complete instance of A. Constraintscan be propagated upwards (RULE 4) or downwards (RULE5) in the knowledge hierarchy. Initial modi�cations of con-cepts are derived by the application of RULE 6 directly tothe image data.The rules for instantiation and modi�cation in connectionwith the A�{tree search algorithm form the skeleton for dif-ferent control strategies. The basic alternating control con-sists of a bottom{up selection of (temporary) goal conceptsand of matching them to the image data. This matchingprocess is tailored into a top{dow model expansion (inverseapplication of the instantiation rules combined with modi�-cation of expected conceptions) and bottom{up instantiationuntil the application speci�ed goal is reached.3. THE BI{DRIVEN CONTROL (Table 1)3.1 Data{driven goal selectionThe primary problem of ERNEST{based signal analysis isto �nd an optimal path in the graph of modi�ed goal con-cepts. This graph is extended over the concrete{of{ andspecialization{hierarchies of the model (and the Z axis formultiple modi�cations of a concept) and a path leads fromsome initial goal concept from the set Cg to some terminalone (from the set of most abstract and most specialized con-cepts in the model net). The search tree is expanded by theapplication of following operators:{ initilization by the application of RULE 6 to the imagedata; one successor node is generated for each initialized goal{ superior goal generation (applying RULE 4 to the instanceof current goal); one successor node for each modi�ed supe-rior concept{ more specialized goal generation (applying the inheritancemechanism to the instance of current goal); one successornode for each partial instance of direct specialization con-cept1723



Input: APPLICATION function to provide a list Cg of competitive goal conceptsInitialize: search tree S= (V,E) with V=fRg, E= �; lists OPEN= �, CLOSED= Rprovide APPLICATION function for initial parametersFOR all concepts K 2 Cg DO:apply RULE 6 to KFOR all modi�ed concepts Qi(K) = oi generated by RULE 6 DO:generate one successor node V Ki of root R in search tree SDATA(V Ki )= foi g; GOAL(V Ki )= oi; h(V Ki )= judgement(V Ki )IF K is a minimal conceptTHEN OBL PREM(V Ki ,Oi)= TELSE OBL PREM(V Ki ,Oi)= Frefer unlimited objects in DATA(V Ki ) in ITER[V Ki ]IF the segmentation data satisfy MIN REQUIRED[V Ki ]THEN add V Ki to OPENWHILE OPEN is not empty DO:select the node N with best score from OPENremove node N from OPEN; add it to CLOSEDIF the APPLICATION decides that an analysis goal or an end has been reachedTHEN STOP - successful end of search or end of resourceactivate APPLICATION function to provide a (possibly empty) set S of new goal conceptsIF S is not emptyTHEN FOR all concepts Ci 2 S DO:apply RULE 4 to CiFOR all objects ol generated this way DO:generate one successor node Vil of N in S; add Vil to OPENDATA(Vil) = DATA(N) [ f ol g; OBL PREM(Vil, ol) = Fh(Vil) = judgement(Vil); GOAL(Vil) = olELSE IF some object ol 2 DATA(N) can be instantiated by one of the RULES 1{3THEN activate ERNEST function instant (N) to instantiate the model in node Ndetermine the set Next(N) of successor nodes of N in OPENactivate ERNEST function consistency check (Next(N))FOR all nodes Ni 2 Next(N) DO:refer all unlimited objects from DATA(Ni) in ITER[Ni]FOR all unlimited objects T(i) 2 (ITER[N ] { ITER[Ni] ) DO:generate one successor node N1i of N in S and OPENcopy Ni to N1i ; DATA(N1i ) = DATA(Ni) [ T(i+1)ITER[N1i ] = ITER[Ni] [ T(i+1)extend the premises of superior objects of T(i) by T(i+1)ELSE IF there is at least one object ol 2 DATA(N) withOBL PREM(N,ol) = FTHEN activate ERNEST function expand (N) to expand the model in Ndetermine the set Next(N) of successor nodes of N in OPENactivate ERNEST function pruning (Next(N)) to prune thenodes Ni 2 Next(N) from OPEN if the available segmentationdata does not satisfy MIN REQUIRED[Ni]ELSE IF there is at least one object ol 2 DATA(N) withOPT PREM(N; ol) = FTHEN activate ERNEST function opt expand(N)to expand the model in node NELSE activate ERNEST function opt spec(N) to consideroptional parts and specializationsSTOP { no success of analysis Table 1: The bi{driven search1724



3.2 Model{to{image matchingThe parts and concrets of a concept are aggregated into a�nite set of competitive modalities (md), i.e. subsets of partsand concrets. The match of selected goal to the image datais a combination of two search problems: a search for a bestsolution graph in an AND{OR graph (expanded model) Mfor current goal A (Fig. 1) and the search in the space ofcompetitive instances of entities from M. The entities in Mare modi�ed concepts created for model paths starting fromcurrent goal A. These modi�ed concepts are refered by socalled object{data structures (denoted by Qi) in a searchspace node. Due to the identi�cation of equivalent paths (asspeci�ed in the model) or equivalent objects (from variousmodality sets of one superior object), one object can repre-sent multiple paths.Hence two search operators are applied during the basicmatching process. Successors of a search tree node are cre-ated either for competitive premises of instantiation (dueto di�erent modalities and di�erent modi�cations generatedby RULE 5) or for competitive instances of every objectQi 2 M . A������ ?AAAAUa b c����� ����� �����CCCCW CCCCW CCCCWw x y z
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Q1(A)md1[Q1(A)]md2[Q1(A)]Q1(a) Q1(b) Q1(c)md1[Q1(a)] . . md1[Q1(c)]Q1(w) Q1(x) Q1(y)Q2(y)Q1(z)Identi�ed: Q1(b) �= Q2(b);Path1(A) �= Path2(A)Figure 1: Model expansion with path identi�cationActually the model expansion mechanism is more complexthan the one presented on Fig. 1 because the elements ofone modality are additionally classi�ed into obligatory oroptional. For a given goal concept the obligatory model{to{
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Figure 2: Expanded obligatory model
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Figure 3: Expanded optional modelimage match is performed. In this case RULE 1 and RULE 2are considered only during the model expansion process (Fig.2). Due to the optional parts, required by the RULE 3, theoptional model{to{image match can be distinguished. Beforean extended instance can be created from the complete one,instances of optional parts are searched for (empty instancesare allowed) (Fig. 3).The matching process consists of interlaced expansion{ andinstantiation{steps. The instantiation step has always thegreatest priority. By applying RULES 4 and 5 to new gen-erated instances, the object domains from the data setDATA(N) can be more constrained. In this way the laterexpansion of each such object can be restricted to thosepremises only, which satisfy the new constraints.For the judgement of search space nodes an estimation of thegoal object judgement with respect to the set DATA(N) isperformed. This measure satis�es the admissibility require-ments for the A�{tree search algorithm.3.3 Iterative match for "unlimited" objectsIf the dimension item of some (optional) link is equal to thenumber "unlimited" then it will be searched for an image{dependent number of instances of the appropriate concept.This is represented in the expanded model by an unlimitedobject. The set of such objects in a node N is recognizedby the operator ITER[N]. After n instances of an unlim-1725
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ITER[N ] = Q(l)(hcari)fIi j (i = 1; ::n)g { n instances of Q(l)(hcari)ITER[Nn] = �DATA[Nn] = DATA[N ] [ Qn(Q(l)(hcari)) �Q(l)(hcari)ITER[N1n] = Q(l+1)(hcari)DATA[N1n] = DATA[Nn] [Q(l+1)(hcari) [QNn1 �QNnQNn = f q j q 2 DATA[Nn], Q(l)(hcari) 2 Premise(q) gQNn1 = f q1 j 9q 2 QNn, Premise(q1) = Premise(q) [Q(l+1)(hcari) gFigure 4: Iterated search for object hcariited object (for example object Q(l) of concept hcari) havebeen created, the search space node N is �rstly expanded bynodes N1; :::; Nn as usual (Fig. 4). After one of the nodesNi (i=1,...,n) has been selected for expansion one additionalsuccessor node N1i of node N is created. From this new nodethe model{to{data match for this unlimited object will be it-erated { a next version Q(l+1)(hcari) of the unlimited objectis added to the set DATA(N1i ). The premises of all superiorobjects of the unlimited object have to be changed in or-der to include the next version of this object. The iterationstops because of the limited image data { no data can be in-terpreted twice on one path in the search space. Thus in thesubsequent iteration only this data can be matched, whichis not interpreted by instances from DATA(N) yet.3.4 R{objects for generic relationsA speci�c unlimited object, called the R{object, is given if itspart{ and concrete{links have all the reference labels. Theselinks are not expanded { new objects are not generated forconcepts reached by them. For each object tuple from the ex-panded model that satisfy the premise of the R{concept oneappropriate R{object is generated in the expanded model(Fig. 5). This set may be extended by new objects generatedduring the analysis if some link of the R{object refers to an"unlimited" object.One application example of generic relations is the repre-sentation of relationships for consistency maintenance of thesearch space. After some inconsistent DATA set has been dis-covered (so called NOGOOD search space node) the proce-dure inconsistency check tries to detect inconsistent subsets.Nodes which contain at least one of the detected inconsis-tency can be removed from the OPEN set.3.5 Minimal data requirements for non{expanded objectsThe third operator concerns a data{driven pruning of searchspace nodes. A set MIN REQUIRED is speci�ed for eachsearch node. It contains the minimal image data require-ments for the non{expanded object set of given search node.
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