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Abstract—The paper presents a stochastic approach to articu-
lated hand (palm shape) tracking in images. The gesture model is
given in terms of a Dynamic Bayesian network that incorporates
a Hidden Markov Model in order to utilize prior information on
gesture structure in the tracking task. The Deformable Templates
methodology is applied for hand shape modeling. Experimental
evaluation of articulated hand tracking in cluttered environment
using particle filtering is provided. A comparison of this method
with a typical tracking approach, that makes no use of temporal
gesture information, is also given.

I. INTRODUCTION

Hand gesture recognition in images [1], [2], [3], [4] is an

important issue in the Human-Machine Interaction domain.

Gestures may carry commands and some additional informa-

tion, e.g about the object of action related to a command,

which can be of paramount importance for instance in robot

control applications. Under the term “hand gesture” we shall

understand here a meaningful sequence of palm postures

and/or palm positions.

The probabilistic modeling has been so far the most suc-

cessful way of modeling dynamic gestures. As a generic

probabilistic model, the Hidden Markov Model (HMM) [5]

was typically chosen for gesture representation. The HMM

models interdependent stochastic processes, one hidden and

one observed. The hidden process (modeled as Markov Chain)

can be viewed as representing the temporal structure of the

gesture, the observable process (dependent on the hidden

one) represents hand articulation and motion over time. A

common usage of the Hidden Markov Model of gesture is

in the task of gesture recognition. The processing scheme

typically follows the bottom-up processing mode: the low

level image processing is used first to detect the hand and

its features in every frame, and then a Hidden Markov Model-

based evaluation of such sequence of features follows in order

to perform gesture recognition [1], [4], [6].

However, not much is known about utilization of the power-

ful knowledge on gesture articulation, that is stored in a Hid-

den Markov Model, for improving hand detection in images

and the estimation of hand parameters. The utilization of a

HMM model is not straightforward in the tracking task, since

HMM lack capabilities of modeling auto-regressive processes.

Nevertheless, the HMM model can still become a part of more

complex probabilistic framework such as the Switched Kalman

Filter [7] or the Dynamic Bayesian Networks (DBN) [8].

The application of DBN to gesture modeling has not been

widely discussed so far. In one early solution [9] an extended

version of the Switched Kalman Filter was applied for ges-

ture tracking. However, the approach concentrated on motion

modeling while the appearance model was reduced to hand

representation as an ellipsoid image patch. In [10] the discreet

state Bayesian network was used as a gesture model, and the

particle filter was used to perform stochastic inference. In [11]

the DBN formalism was used for the solution of a two-hand

gesture recognition problem.

Some other solutions that do not explicitly use the DBN

formalism but are related in terms of adopting the concept of

exploiting gesture models to support the task of hand tracking

have also been devised. In [12] so called joint Bayesian

framework is proposed that consists of the particle filter tracker

of hand position cooperating with the discreet HMM used

for generating filtered estimates of hand posture. In the hand

tracking system given in [13] the modes of dynamic hand

motion are subject to change due to different values of a

discreet variable. In related approach [14] the values of some

discreet variable select the right or left hand for tracking. In

[15] the space of rigid and articulated hand motion is made

discreet and a deterministic hierarchical tracker is applied.

Another problem related to the concept of gesture tracking

concerns the selection of a generative palm model (either 2D

or 3D) capable of representing arbitrary hand postures.

The main contribution of this paper is the proposition of

an integrated stochastic model for tracking articulated hand

(palm) motion, designed in form of a Dynamic Bayesian

Networks. The discrete part of this model is explained in

terms of Hidden Markov Model - it is the main information

source on expected hand gestures and sequences of gestures. A

second part (with discrete and continuous variables) connects

the model with the Deformable Templates method for shape

modeling and model-to-image matching [16], [17]. We will

show that our model can be successfully used for articulated

hand tracking in cluttered image conditions and that the uti-

lization of the prior knowledge on gesture structure increases

the robustness of tracking results.

The paper is organized as follows: in sec. II there is a
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hand shape modeling approach presented that is based on the

Deformable Templates method, in sec. III our gesture model (a

DBN) is introduced, the hand tracking algorithm is explained

in sec. IV and experimental results are given in sec. V

II. SHAPE MODELING WITH DEFORMABLE TEMPLATES

In our earlier work [17] the Deformable Templates were

used to perform static hand pose recognition. Now, we will use

them for 2D palm modeling in the context of Bayesian gesture

representation. A 1-dimensional curve x(s) is constructed as

a weighted combination of Nb basis functions, which we will

denote as Bn(s), where n = 0, ..., Nb − 1; and s is the spline

parameter. Thus:

x(s) =

Nb−1∑
n=0

xnBn(s), (1)

where xn is the value of the n-th control point and Bn(s)
is the value of the n-th spline basis function at point s. A

compact matrix notation of the curve would be:

x(s) = B(s)TQx, (2)

B(s) =

⎛
⎝ B0(s)

...
BNb−1(s)

⎞
⎠ ; Qx =

⎛
⎝ x0

...
xNb−1

⎞
⎠

where B(s) is a vector of values for all basis functions and

Qx denotes a vector of point coordinates.

A 2-dimensional spline is a composition of two independent

1-dimensional splines founded on the same spline basis:

r(s) = (x(s), y(s)) (3)

A compact matrix notation of the 2-dimensional spline is:

r(s) = U(s)Q, (4)

where r(s) is a vector (x, y) of spline coordinates for the given

spline parameter s, U(s) is a matrix defined as

U(s) =

(
B(s)T 0

0 B(s)T

)
; Q =

(
Qx

Qy

)
and Q is a double-length control vector made up of individual

control vectors for the x- and y-dimension.

The resulting spline curve tries to approximate a polygon

made up of values of control points (e.g. Fig. 1a). See Fig. 1b

for quadratic periodic spline approximation of a fist outline.

In order to calculate similarities between curves the L2 norm

for a 2-dimensional curve is defined as:

‖r‖2 =
1

L

L∫
s=0

|r(s)|2ds (5)

The spline curve typically has many degrees of freedom

(the splinespace has large dimensionality). In order to perform

robust matching of the contour against image features it is

desirable that some constraints would be imposed on the space

of allowed shapes. In [16] a so called shapespace is used to

reduce the number of parameters describing the shape. Each

(a) (b)

Fig. 1. B-spline examples: (a) periodic B-spline and control points follows
the polygon outlined by the set of subsequent control points; (b) B-spline
approximation of sample hand posture

point in the shapespace is denoted by X. To establish a relation

between the shapespace and the splinespace we need two

parameters: the template spline Q0 and the weight matrix W,

expressing how a shapespace point X influences the shape

and position of the resulting spline. The relation can thus be

described by the equation:

Q = WX+Q0, (6)

where Q0 is the original template shape and Q is the shape

after transformation.

There are infinitely many possibilities of defining the

shapespace. One of the simplest examples of the shapespace is

the space of Euclidean transformations, comprised of template

shape rotation, translation and scaling. The transformation

matrix in the shapespace of Euclidean similarities is specified

as follows:

W =

(
1 0 Qx

0 −Qy
0

0 1 Qy
0 Qx

0

)
(7)

The values of the 4-element vector in the shapespace of

Euclidean similarities can be interpreted as:

Xn = [cx, cy, k cos θ − 1, k sin θ]T ,

where cx, cy are responsible for translation, θ is the rotation

angle and k is the scaling coefficient.

In order to measure similarity between two curves specified

by shapespace data a distance metric is introduced (using

metric matrix U ) that applies the L2 norm of the spline,

specified in (5), as:

‖X‖ =
√
XTWTUWX (8)

The norm of the vector X in shapespace is the distance of the

corresponding spline from the template spline:

‖X‖ = ‖X− 0‖ = ‖Q−Q0‖
III. STOCHASTIC GESTURE MODEL

A. Dynamic Bayesian Networks

At its simplest form the Bayesian Network (BN) can be

regarded as a graphical model of a probabilistic system that
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(a) “Unrolled” example of DBN
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(b) 2TBN example of
DBN

Fig. 2. Different representations of a DBN

represents conditional independencies between variables [8].

The Bayesian network represents some particular factorization

of the joint distribution. Random variables correspond to nodes

in a graph and a directed arc from node A to B denotes that B
is (directly) conditioned on A. Each Bayesian Network can be

fully described using conditional probability density functions

(CPD) of its variables.

A Dynamic Bayesian Network (DBN) allows to model prob-

ability distributions over semi-infinite collections of random

variables ( V1 = {V 1
1 , ..., V

N
1 },V2, ...) or in other words -

to design models of discrete time stochastic processes. The

DBN can be naively represented using the formulation of

the Bayesian Network, where each of the series of random

variables (V1, ...,Vi, i = 1, 2, ...) is treated separately (see

fig. 2a, where Vi = {Si, Zi} ). If we assume however that

the model is a first-order Markovian one (higher orders are also

possible) then the DBN can be represented more compactly as

a pair (B1, B→), where B1 is a BN defining the prior P (V1),
and B→ is a two-slice temporal Bayes Network (2TBN) which

describes the transition model P (Vk|Vk−1). The transition

probability can be factorized as:

P (Vk|Vk−1) =
N∏
i=1

P (V i
k |Pa(V i

k )) (9)

where Pa(V i
k ) are parents of the node V i

k . Therefore it turns

out that under first order Markov assumption only two time

slices are required to describe the dynamics of the system.

Most often it is assumed that the transition model is time

invariant, so P (Vk|Vk−1) is constant for arbitrary k. An

example of 2TBN representation is given in Fig. 2b. Given a

finite number of time-steps, a 2TBN can be easily “unrolled”

into corresponding DBN, which have the form of a classical

BN. The joint distribution for such an “unrolled” network is:

P (V1:K) =
N∏
i=1

P (V i
1 )

K∏
k=2

N∏
i=1

P (V i
k |Pa(V i

k )) (10)

B. DBN structure for gesture modeling

In (Fig. 3) our DBN model is presented, designed for

tracking and recognition of gestures in images. The model can

be divided into three distinctive segments. The first segment

of discreet variables Mk, Hk, Fk and Yk covers the selection
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Fig. 3. DBN Model for hand tracking and gesture recognition
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Fig. 4. Structure of a single-word HMM model mi example as a left-right
HMM (the index i is dropped for convenience)

of an appropriate gesture model, a particular palm shape and

a motion model. An analogy between the Hidden Markov

Model and the discreet part of our network is explained

in the subsequent sections. The second segment contains

continuous variables Xk and it controls the object’s dynamics

in 3-D space, founded on the concept of a linear dynamic

system (LDS). The third segment contains the only observable

variable Zk and it represents measurements in the spline-space.

C. CPDs of the discreet variables

1) Single gesture: The representation of a single gesture

(also called a word from now on) can be easier explained if

the appropriate part of our 2TBN, with discrete variables Hk,

Yk, and Fk is converted to an equivalent “left-to-right” Hidden

Markov Model. The “state” variable is Hk, the “output”

variable is Yk, and the variable Fk plays the role of additional

transition conditions. A structure of this HMM for a single

gesture is given in Fig. 4 (it uses HMM states and not the

Bayesian notation!).

The possible values of variable Hk in our DBN correspond

to ”hidden” states in the Hidden Markov Model. The transition

pdf of this variable is made explicit due to state transitions in

the HMM. As these states are organized (nearly) sequentially

(i.e. a left-right model with loops or the Bakis model), a single
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value of Hk has the meaning of a particular stage of a single

gesture being performed. By means of the hidden states we

model the time-alignment of a gesture and can perform time-
warping during gesture recognition. The state transition values

depend on word (gesture) (represented by the variable Hk),

on its own value at the previous stage and on the information

whether the current word is complete or not (i.e. whether the

variable Fk−1 takes its “final” value):

P (Hk = hk|Mk = mk, Hk−1 = hk−1, Fk−1 = fk−1)

= fk−1a
mk

0,hk
+ (1− fk−1)a

mk

hk−1,hk
(11)

where ami,j are inter-state transition probability values (like

in the HMM). Beside states representing values of the Hk

variable, there are two “virtual”, non-emitting states - denoted

under indexes: 0 (initial state) and Nm +1 (final state for the

given word model)), that act as a convenient ”glue” between

different word models. The additional transition probabilities,

ami,0 and ami,Nm+1, are initial probabilities of HMM states and

probabilities of transition to the final state (actually probabil-

ities of setting the Fk variable), respectively. The variable Yk
corresponds to the outputs (emitted values, observations) of the

HMM, however in our approach this variable is unobserved.

This variable is the only discreet variable influencing the actual

observation Zk, and the continuous variable Xk. The variable

Yk is treated as an ’output’ of the discreet part of the network

giving information on the hand shape and its motion, expected

at given stage of currently performed gesture. Firstly, it selects

the shapespace for the observed shape. Secondly, it selects the

motion model that controls the behavior of shape parameters.

The variable Yk depends both on the “stage” variable Hk and

the “gesture” variable Mk:

P (Yk = yk|Hk = hk,Mk = mk) = bmk

hk,yk
(12)

The already mentioned variable Fk is a convenience binary

variable – when the word (gesture) is expected to be in its

final stage the variable is set to 1, otherwise it is equal to

0. Fk serves two purposes: 1) it helps to organize the inter-

word-model connections without introducing complex CPDs

between variables and 2) the probability assigned to this

variable during inference provides the prior for the likelihood

that the system could be found in the terminal state (of the

word model) in the next time step. The conditional probability

distribution of the Fk variable is given by the subsequent

conditional probability distribution:

P (Fk = fk|Hk = hk,Mk = mk) = amk

hk,Nmk
+1

2) Set of gestures: The HMMs, each representing a sin-

gle gesture, are parts of a larger HMM model representing

sequences of such gestures. The single gesture HMMs are

alternative paths, closed in a loop-like fashion. This enables to

recognize a stream of gestures and utilize the a-priori Marko-

vian knowledge on word (gesture) succession probabilities

(coming for instance from analysis of a sentence grammar).

The variable Mk represents the current word (or a specific

gesture) and the intra-model variables (Hk, Yk and Fk) are

����
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�
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�
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Fig. 5. Structure of inter-word-model connections in the network

conditioned on Mk. The structure of inter-connected HMMs

for gesture sequence recognition is given in Fig. 5.

The variable depends on its own value in the previous time

step and also on the information whether the current word

model reached its final state (in the previous time step), which

is modeled by the variable Fk:

P (Mk = mk|Mk−1 = mk−1, Fk−1 = fk−1) ={
(1− fk−1) + fk−1ψmk−1,mk

if mk−1 = mk

fk−1ψmk−1,mk
if mk−1 �= mk

(13)

The CPD of inter-word transitions is generated by some

arbitrary transition ψi,j function. The ψi,j function models the

probabilities of transitions between different gesture models

(words) mi and mj . The function takes only 2 arguments and

is able to capture only first-order Markov relations between

words.

D. CPD of the observation

In the ideal case the observation in our system is the hand

shape described by a spline curve. The observation depends on

the continuous variable Xk and the discreet variable Yk. The

observation equation is directly derived from the shapespace-

to-splinespace projection equation (6) – it has the form:

Qz,k = WykXk +Qyk

0 , (14)

where both the weight matrix Wyk and the template Qyk

0

depend on the output yk of the HMM, i.e. a value of the

variable Yk. Thus, the state yk is actually a selector of different

observation models - by changing W and Q it enables to

interpret the values of variable X as different shapes.

E. CPD of the Xk variable

The variable Xk represents the palm shape in terms of an

unobservable state of a dynamic system. Xk is conditioned on

its value from the previous time step Xk−1 and on the discreet

output of the “gesture” HMM, Yk. The variable describes such

continuous properties of the palm object like position, size
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and orientation, but it also may represent deformations of the

object’s shape, modeled in the shapespace.

The general model of dynamics of the Xk variable,

P (Xk|Xk−1 = xk−1, Yk = yk), is chosen to be a first-order

auto-regressive process, which can be most simply expressed

in generative form [16]:

Xk = TykXk + dyk + uk (15)

where Tyk is a matrix defining a continuous state transition

model, uk is a zero-mean Gaussian noise with covariance

matrix Ryk , uk ∼ N (0,Ryk), and dyk is a vector of constant

drift.

The above dynamic model is rather general and in our solu-

tion it can represent different sorts of shape transformations.

E.g. it can represent a set of rigid transformations (such as

Euclidean Similarities) or non-rigid ones (where the space of

shapes is spanned over some set of so called key-frames [16]).

Although several experiments were performed with both these

transformations, in this paper we will concentrate only on the

first case described in sec. II. Here the transition matrix is set

to identity, Tyk = I, and the noise covariance matrix is:

Rk = σ0(Hyk)−1

and Hyk = (Wyk)TUykWyk . With such defined parameters

we get:

P (Xk|Xk−1) ∝ exp(− 1

2σ2
0

‖Xk −Xk−1 − dyk‖2) (16)

Thus, the dynamic model is an isotropic random walk with
drift, defined in such a way that the specific value of probabil-

ity density corresponds to a fixed distance from the previous

curve Xk−1 plus the constant drift vector dyk - of course,

the larger the distance, the smaller the value of probability

density. Intuitively the dynamic model should be understood

as allowing the movements from the space of Euclidean

Transformations (translation, rotation, scaling), but the move-

ments, except for translation component, are probabilistically

constrained to lie near the previous curve with respect to the

L2 norm. In such a case the palm shape is treated as a rigid

object and all the gesture articulation must be encoded by the

observation variable Yk - allowing to ’switch’ shapes according

to the yk value. If the space of hand poses is densely quantized

or if motion between different hand poses is rapid enough to

neglect transient hand postures, it can well approximate the

real hand dynamics. Since it may be very easy defined ’by-

hand’ the Euclidean Transformation model is used in this work

for the evaluation of inference methods.

IV. HAND TRACKING

A. The inference task in DBN

Our gesture model allows to interpret such inference tasks

in DBN, like filtering and most likely explanation [8], as

hand tracking and gesture recognition processes. The tracking

problem is regarded as a “state” variable filtering task - its

goal is to find the posterior joint distribution of all the “state”

variables in the network, Vk = (Xk,Mk, Hk, Fk, Yk), given

evidences (observation sequence of output variables). At time

step k the sequence of observations z1:k is available and

the filtering task is to estimate the probability P (Vk|z1:k).
Although our DBN is suitable for a Switched Kalman Filter

(under some assumptions), we present results obtained with

the Particle Filter [18], which is a straightforward solution for

approximating multimodal distributions and is expected to be

more resistant to image clutter.

In the Particle Filtering approach the posterior distribution

is approximated by a set of (weighed) particles. We apply a

modified version of the particle filter, called Rao-Blackwellized
Particle Filter (RBPF) [8], where only the continuous variables

were sampled while the discreet ones were integrated analyt-

ically.

The gesture recognition problem may be solved by a token
passing search [19], a modification of the well known Viterbi
search [5], performed for the overall HMM, In the experiments

we shall concentrate on using our DBN for palm tracking, and

especially verifying the use of high-level information (about

the gesture) for shape and motion prediction.

B. Image preprocessing

The experiments were performed on edge images obtained

from grayscale images. A grayscale image was obtained due to

a transformation of the color image acquired by a camera. The

input image was first smoothed and converted into grayscale,

then an edge image was generated by the Sobel operator,

and afterwards an edge thinning operator removed the least

significant edges. The edges detected correspond both to the

palm and hand outline, to within-palm lines (such as lines

between fingers), as well as to clutter from other objects in

camera’s field of view. Example of a preprocessed edge image

is given in Fig. 8b.

C. Practical measurement process

Although the theoretic measurement model was given sec.

III-D it is not realistic mainly due to the fact that it is hard

to obtain spline curve directly from the image. However,

in case of particle filtering the only thing we must obtain

during inference is the likelihood of the observation given

some predicted spline. Let us consider the spline function r(s)
associated with one particle at given timestep

r(s) = U(s)Q

Now let us assume that the spline is projected onto the image

and measurements are collected along the vectors normal

distributed along the curve r(s) (measurements are simply

the detected characteristic points such as edges). We will

denote the observations taken along j-th normal as zj . The

observation likelihood for a single normal vector can be

represented as [16]:

P (zj |r(sj)) ∝ 1 +
1√

2πσα

∑
t

exp(− (νjt )
2

2σ2
) (17)

σ and α are observation model parameters, zj is a vector

of observations along a single normal to the spline and
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Fig. 6. Graphical representation of measurement model for particle filter

νjt = |r(sj) − zjt | is interpreted as a distance between the

point on the spline and the measurement. This model takes

into account both the situations when several measurements

were found along the normal (from which only one is true) or

no observation was found (e.g. the object could be obscured).

Finally, a strong assumption is made: the observations along

different normals of the same spline can be considered inde-

pendent (which may not be true in general). Hence, the total

observation model is:

P (Zk|Xk, Yk) ∝
∏
j

p(zj |r(sj))

V. EXPERIMENTS

A. Experimental setup

For evaluation of inference methods in our DBN network

the evaluation set of gestures given in Fig. 7 has been prepared

and the DBN network distributions were set accordingly. The

set of gestures consists of 4 different key hand postures

(finger pointing upwards, thumb ’ok’ sign, open palm and

open palm with protruding thumb). The first two gestures

are composed of 4 different static hand poses. Remaining

two gestures each use a single hand posture (finger pointing

upward) and they are dynamic – they start in static positions,

in one of them the hand is moved to the right and then to

the left, for the second gesture it is the opposite. It should be

noted that the gesture set poses significant difficulties to any

tracker/recognizer since the gestures are highly similar (e.g.

they all start from the same hand pose and the first gestures

end also in the same poses, while dynamic versions differ only

by associated motion model).

For the experiments the probability distributions in the

network were selected manually. A discreet part of the network

was treated as a parallel composition of left-right Hidden

Markov Models with loops (as shown in Fig. 4). Each sub-

model (corresponding to a single gesture) consisted of three

emitting states and the probability of transition to the next

state was arbitrarily set to 0.1. For the static gestures the

emission symbols consisted of numbers 0 − 3 corresponding

to four different hand postures modeled in the network. The

Fig. 7. Evaluation sequence for DBN with the Euclidean Dynamic Model

probability of emission of the ’correct’ hand posture corre-

sponding to the given state (as shown in 7) was set to 0.7 while

probabilities of remaining hand posture symbols were set to

0.1 each. The addition of this small ’jitter’ was intended to

give better resistance of the tracking to occasional mismatches

of hand postures.

In case of dynamic gestures additional output symbols 4, 5
were used. Thus the symbols 0 − 3 describe four static hand

postures, while symbols 4 and 5 correspond to the hand

posture ’finger pointing upwards’ with associated dynamic

model of movement to the left and to the right-hand side. For

the dynamic gestures the probability of emitting of a ’correct’

hand posture was set to 1.0. The parameters of the dynamic

model P (Xk|Xk−1, Yk) were set manually. The parameters

of the observation model P (Zk|Xk, Yk) were learned by first

manually outlining each of hand posture contour manually to

obtain a template curve Q0, aligning splines obtained in this

way in order to make natural transitions between different hand

postures, and computing remaining parameters (especially the

matrix W) to obtain the space of Euclidean Transformations.

Input for the tracker was the sequence of images captured

from the camera. In order to evaluate robustness of approach

the images were captured in grayscale and a significant amount

of clutter was present in the images. Example of the input

image is given in Fig. 8a.

B. Results

1) Gesture tracking: In order to evaluate tracking perfor-

mance for both static and dynamic gestures, 10 movie se-

quences were recorded each containing a continuous sequence

of four gestures (giving 40 gestures in total), and the RBPF
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(a) (b)

Fig. 8. Cluttered desktop environment used for evaluating tracker perfor-
mance. (a) input grayscale image (b) edge image - the source of image
observations

was used to perform tracking of the hand performing gestures.

The experiments were performed in cluttered environment.

For the sake of experiment, it was assumed that the hand

starts from a fixed position. During the test there were eval-

uated correctness of hand position, proper selection of the

gesture model (denoted by the posterior marginal distribution

of the Mk variable), and proper selection of the hand posture

- however in the latter case occasional mismatches were

accepted. The number of only 100 particles was selected in

order to simulate the on-line tracking.

The tracker was able to successfully track all the recorded

sequences, with respect to all conditions defined above. One

sequence required restart for the correct tracking (which is

due to quite small number of particles used). Some examples

from articulated hand tracking are given in Fig. 9. The

conclusions from other, less formalized experiments, are that

the system proposed is robust to clutter condition and it can

also track rapid motion providing that it is consistent with the

model of dynamics associated with specific gestures. The most

important problem recognized were the imperfection in shape

models, which led to occasional mismatches of hand postures

prominent especially during transitions between different hand

postures (before continuous parameters could be adjusted the

their optimal value).

2) Evaluation of HMM-guided hand tracking: In the fol-

lowing section we will try to evaluate, to what extent the

prior knowledge encoded in the HMM part of the Dymamic

Bayesian Network may influence the hand tracking perfor-

mance.

To see how the knowledge on hand articulation influences

the tracking performance the DBN instance learned only to

track the first two static gestures from the evaluation set

were confronted with a simple artificial DBNs for which each

symbol Yk (associated with single hand posture) was generated

with equal probability (thus presenting no preference concern-

ing hand shape). During the test no significant difference in

performance between the two network instances was noted

concerning hand postures recognized. In other words the

network with prior knowledge on hand posture succession

performed as well as the one with no such knowledge. The

conclusion is that given a good approximation of hand position

and effective matching method using Deformable Templates

(a) (b)

(c) (d)

Fig. 9. Examples of articulated hand tracking using our DBN definition and
RBFP. (a) appearance of the open palm with protruding thumb is characteristic
to the gesture model ’1’ and causes the probability mass to be concentrated
into this model, (b) source of observations for matching in a), (c) rapid
movement of the hand to the left side after static phase, causes the selection
of corresponding 3rd gesture model, (d) source of observations for matching
in c)

as well as limited number of postures to match, the prior

knowledge is not actually required for differentiation between

the given four hand postures.

This result is to some extent connected with the inference

method used. In our RB particle filtering implementation

the discreet states (which are responsible for hand posture

selection) are not sampled. So the prior knowledge has no

chance to direct search into areas of larger probability. The

situation is expected to be different in case of other inference

techniques such as Particle Filter with simple prior proposal.

In the next set of experiments, the performance of the

DBN model designed for tracking gestures from the evaluation

set, was compared against some artificial model on 10 test

sequences containing only the two dynamic gestures recorded

in cluttered environment. The goal was to evaluate to what

extent the prior knowledge on expected motion influence the

quality of tracking.

In our DBN the three switching dynamic models were

utilized (stationary, motion to the left, motion to the right)

with drift element initialized to dyk = [±30, 0, 0, 0]T . The

stochastic component of the motion was set to σ0 = 20. Our

main DBN instance was able to correctly track hand motion

in 9 out of 10 sequences (in the remaining one tracking results

depended on the specific run). The number of particles in the

particle filter was set to 100.
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The first comparative test was aimed at checking whether it

is not sufficient to keep a single motion model for all gestures

to obtain good tracking efficiency. In order to check this the

DBN instance devised for tracking only the first two static ges-

tures was tested on the same set of dynamic gesture sequences.

In a single dynamic model the drift vector was set to 0 and

the stochastic component was identical as above. From the set

of 10 sequences only 4 (with most moderate movement) were

correctly tracked (without the loss of track). Subsequently the

stochastic component σ0 was increased twofold, to see if this

could make up for lower diversity of motion models. This time

the track was kept to in 8 out of 10 sequences, however, during

tracking serious discrepancies between real and recognized

shape could be often spot.
The goal of the second comparative test was to see whether

the knowledge of the sequence of motion model switching

characteristic to each gesture brings value to gesture tracking

as compared to the system with equal probabilities set to all

models. For the experiments an artificial DBN specification

was prepared, in such way that the new network was accepting

the same symbols Yk as the DBN network designed for

tracking in the full evaluation set, with exception that all

the symbols had equal probability ≈ 1/6. The dynamic

model parameters were set just as in the first experiment. The

measured performance of the network was still lower than that

of the original network. The new network was able to keep

track in 6 out of 10 test sequences.
Depending on the parameters used the Particle Filter utiliz-

ing 100 particle achieved nearly online performance of about

7-9 frames per second (including image processing of full-

frame PAL input).

VI. CONCLUSION

We presented a stochastic model for the purpose of ar-

ticulated hand motion tracking and gesture recognition. Im-

portant feature of the DBN model proposed in this paper is

the incorporation of a Hidden Markov Model of gestures,

that outputs a “prior” information on gesture structure that

may be used to improve the results of hand tracking in an

image sequence. The experiments have shown that when our

model is coupled with an effective inference algorithm based

on the Rao-Blackwellized Particle Filter it can be used for

articulated hand tracking even in difficult, cluttered conditions.

The tracker that uses knowledge on temporal gesture structure

proves to be superior over the tracker with no such knowledge

due to better prediction of hand motion.
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