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Abstract. We propose an approach to hand sign interpretation in image that is
based on active contour tracking. We can decompose our approach into 5 steps: a
color-based skin pixel detection, a double hand contour detection, the localization
of fingers and palm (the hand description generation), the detection of a final po-
sition (with respect to considered signs) and finally, the interpretation of a single
position or a sequence of positions in terms of a hand sign. We employ a double
active contour-based finger and palm localization in the image and a subsequent
interpretation in terms of signs. As a final result, 21 different signs are recognized,
that correspond to hand positions (i.e. the visibility of palm, fingers and thumb).

1 Introduction

Hand image recognition is mainly considered in the context of man-machine communi-
cation (Rehg and Kanade, 1993) and person identification (biometrics) (Sanchez-Reillo
et al., 2000). In this paper we are interested in man-machine communication aspects,
assuming that a single view is available, the hand can be freely oriented in space, while
finger positions can also be different. Our goal is to interpret the recognized hand in
terms of commands given to the machine by a human operator. The creation of such
image recognition system requires solutions in several image analysis areas: color-based
region-of-interest detection (Yining et al., 1999; Fu et al., 2000), hand contour detection,
3-D hand instance generation and interpretation.

A straightforward approach to object detection is to extract its shape (or contour)
information from the image. A popular approach to closed contour detection for free-form
and deformable objects uses ”active contours” (Kass et al., 1988) or ”snakes” (Berger,
1990). Snakes (active contours) (Kass et al., 1988; Berger, 1990; Osher and Paragios,
2003) are curves defined in image plane that can change their shape and can move under
the influence of forces. Typically we consider parametric curves and allow them to move
toward desired features, usually edges, under the influence of external and internal forces.
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There are two key problems with parametric active contours. First, if the initial contour
is not sufficiently close to the true boundary it will likely converge to a wrong result. The
basic idea is to increase the capture range of the external force fields and to guide the
contour toward the desired boundary (Cohen and Cohen, 1993). The second problem
is that active contours only partially progress into boundary concavities (Abrantes and
Marques, 1996). In our work we adapt the approach of GVF snakes (Xu and Prince,
1998), in which external forces for active contour models take the form of gradient vector
flow (GVF) fields. Particular advantage of the GVF snake over a traditional snake is its
ability to move into boundary concavities.

The final contour should be interpreted in terms of a 3-D object. In this paper we
compute two different active contours and analyze their differences in terms of finger and
palm detection, i.e. we analyze the waveform of a 1-D difference function, that expresses
contour point distances from the contour’s center of mass (Kauppinen et al., 1995).

2 Color-based ROI detection

The sensor data is initially given in a 24-bit RGB color scheme. It is evident that this
color space is not well designed for color-based object recognition. Among different
alternative color spaces, like YUV, HSV and YCbCr, we found the YCbCr space to be
most suitable for our task. In this scheme the Y component represents intensity, the Cb
component - the ”chromatic distance” of given color from pure blue color, and the Cr
component - such a distance from pure red color.

We applied a normalization of the Cb and Cr components driven by the intensity
Y normalization to a predefined value (let us fix it to 128). Due to this procedure we
can achieve very stable and narrow intervals around 100 (for Cb) and 150 (for Cr) that
represent the skin color.





Ynorm

Cbnorm

Crnorm



 =





128
(Cb − 128) ∗ 128/Y + 128
(Cr − 128) ∗ 128/Y + 128



 (2.1)

Without the intensity-based normalization a color-based skin detection may some-
times fail, especially in difficult lighting conditions. If shadows or strong lighting fall
onto the shin surface then the colors significantly change. Also in case of a very struc-
tured background containing colors similar to the skin color, detection problems may
appear. Obviously other color correction solutions may be tried, like for example density
or luminance regularization (Chai and Nagan, 1999).

3 Active contour detection

Snakes (active contours) (Kass et al., 1988; Berger, 1990; Osher and Paragios, 2003)
are curves defined in image plane that can change their shape and can move under the
influence of forces. These are decomposed into internal forces, as a result of expected
curve’s stiffness, and external forces computed from the image data and distributed over
the image. After the snake is initialized inside-of or outside-of an object boundary it is
expected to evolve to this boundary while being controlled by these forces. The internal
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forces are designed to hold the curve together (elasticity forces) and to avoid a large
bending (bending forces).

We consider parametric curves and allow them to move toward desired features, usu-
ally edges, under the influence of potential forces, which are defined to be the negative
gradient of a potential function. The active contour is defined in the image plane as a
sequence of control points pi = (xi, yi), (i = 0, ..., n − 1) and connecting line segments
Li = [pi, pi+1]. During contour evolution the total energy of points is minimized.

3.1 The GVF snake

The external energy Eext is traditionally estimated as a potential energy (the sum of
image function I(x, y)) measured in control points:

Eext = K0 ∗

n−1
∑

i=0

I(xi, yi), (3.1)

where K0 is a scaling coefficient. The appropriate external force is computed as the
negative gradient of this potential energy function (Fext = −∇Eext). It pulls the contour
toward the desired image edges.

We have applied another approach for the computation of external forces, called
gradient vector field (GVF) (Xu and Prince, 1998), that allows us better than before to
move the snake into boundary concavities. The GVF is a dense vector field, v(x, y) =
[u(x, y), v(x, y)], derived from the image by minimizing a certain energy functional in a
variational framework (Figure 1). The energy functional is similar to the one formulated
for the computation of optical flow (Horn and Schunck, 1981):

E =

∫ ∫

m(u2
x + u2

y + v2
x + v2

y) + |∇f |2 · |v −∇f |2dxdy (3.2)

where f(x, y) = ∇I(x, y) is the gradient image and m is some weight parameter.
The minimization of E is achieved by solving a pair of decoupled linear partial dif-

ferential equations that diffuses the gradient vectors of a gray-level or binary edge map
computed from the image.

The internal energy Eint consists of two components:

Eint = Eelastic + Estiffness (3.3)

The elasticity energy is proportional to the squared contour’s length:

Eelastic = K1 ∗

n−1
∑

i=0

|pi − pi−1|
2, (3.4)

where K1 is an elasticity coefficient and the pi-s are the contour’s control points. The
elasticity force tends to shorten the line segments, i.e. to move the control points closer to
their neighbors. The stiffness energy is proportional to the squared curvature measured
in control points:

Estiffness = K2 ∗

n−1
∑

i=0

|pi−1 − 2pi + pi+1|
2, (3.5)
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where K2 is an stiffness coefficient. The stiffness force tends to lower the curvature, i.e.
it avoids bending the contour without shortening it.

The appropriate elasticity and stiffness forces can be derived by using the energy
gradient (i.e. F = −∇E). In the final stable state of the contour the balance of forces
for given contour in given image is achieved:

Fint + Fext = 0 (3.6)

We repeatedly apply for every control point pi the pair of equations:

xi = xi + a · Felastic(X, i) + b · Fstiff(X, i) + g · Fext(X, i) (3.7)

yi = yi + a · Felastic(Y, i) + b · Fstiff(Y, i) + g · Fext(Y, i) (3.8)

where a, b, g are some weight parameters and F (X, i) or F (Y, i) denote the force compo-
nent along the X axis or Y axis, respectively, at control point pi.

Figure 1. The gradient image (on the left) and the gradient vector field (with m = 0.2)
(on the right) computed from a hand image with a uniform background.

Figure 2. The detection of initial active contour in the segmented image: (a) sample
image, (b) the detection of consecutive initial contour points, (c) examples of a well-
detected initial contour.

3.2 Initialization of the active contour

The input data to this step is the binary image containing skin-color pixels. The
binary image is divided into 3x3 or 4x4 blocks (the block size is a parameter). At first
the blocks are examined from left to right and from top to down. If a block contains a
sufficient amount of skin pixels (let us call it the ”block filling” threshold) then the next
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Figure 3. The detection of initial active contour in a deteriorated segmentation image
- its dependence from the block size and the ”block filling” threshold.

active contour point is located in the left upper corner of this block. The search moves
to the next column on the right side. This cycle is iterated until the end of image or a
no-skin column is found (see Figure 2). Next, the blocks are examined from right to left
and from bottom to up. An eventual control point of the active contour is now located
in the bottom right corner of the examined block.

There is no guarantee that the initial contour matches sufficiently exact the hand
shape. In a deteriorated segmentation image (Figure 3) different block sizes and ”block
filling” parameters may lead to correct or quite incorrect initial contours.

3.3 Outer (i.e. hand) and inner (i.e. palm) contour detection

Two active contours are computed out from the same initialization. In the image of
size 640 × 480 in our experiments the hand covered the image part of 7 - 20% . For the
first (outer hand) contour the snake parameters were set to: a = 0.8, b = 0.1, g = 0.6.
The second contour should detect the palm area of the hand, i.e. without covering the
fingers. In this case we changed the parameter g to 0.15. Under these conditions the
elasticity force is more dominant than in first case and this leads to a shorter contour
than the initial one (Figure 4).

4 Contour difference description

At first a new relocation of contour’s control points is established due to an approximation
of existing points. The new control points are uniformly distributed and its number is
fixed. Next the center of mass of the inner contour is determined. This center point
together with the direction of the longer boundary box of the outer contour allows for a
first contour post-processing step - the elimination of a forearm part (Figure 5).
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Figure 4. Typical results of
double active contour detection.

Figure 5. The elimination of a forearm part from
both contours: (left column) the part contained in the
triangle area is eliminated, (right column) the post-
processed contours.

The distances of all contour points from this mass are computed, starting from the
point that is located lowest in the image and nearest to the image column, in which the
center of mass is located. We obtain two 1-D distance distributions. These distributions
are subtracted one from the other, length-normalized and all negative values are reset to
zero. In the resulting function the visible tips of fingers correspond to local maximum
points (Figure 6).

5 Hand instance detection and sign interpretation

Finally a hand instance detection on base of two contour descriptions can be performed
and this hand instance can then be interpreted in terms of a specific sign from a set of
21 static signs. The implicit hand model consists of a box representing the palm and 5
cylinders that represent the 5 fingers.

Current hand instance is generated out from the hand contour description in three
steps. The center of mass and other specific boundary points of the inner contour deter-
mine the location and size of the palm (Figure 7(a)). The fingers are detected on base
of the locations of finger tips with respect to the projection point of the center of mass
onto the palm rectangle side, opposite to the tips (Figure 7(b)). The thumb is detected
among the points if its tip projection onto the palm rectangle is located below the mass
center point (Figure 7(c)).

The relation of inner contour’s height-to-width induces the front or side-view, while
the height-to-height relation for both contours induces the fraction of top-view.
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Figure 6. Example of the difference be-
tween distance-to-mass center values for
both active contours. We have here 5
easy-detectable extremum points along
the horizontal axis.

(a) (b)

(c) (d)

Figure 7. The detected hand instance and
its corresponding sign: (a) palm detection,
(b) finger detection, (c) thumb detection, (d)
the GUI of the application showing the final
sign and hand description.

Table 1. The set of 21 signs and their codes
corresponding to hand instances.

Sign Thumb Detected Hand view
position fingers

A No closed (0) Front/Back
B No 5in1 (0) Front/Back
C No 1 Front/Back
D No 2 Front/Back
E No 3 Front/Back
F No 4 Front/Back
G No 5in1 (0, 1) Side
H Left thumb (1) Front/Back
I Left 4in1 + thumb Front/Back
J Left 2 Front/Back
K Left 3 Front/Back
L Left 4 Front/Back
M Left 5 Front/Back
N Left 4in1 + thumb Side
O Right thumb (1) Front/Back
P Right 4in1 + thumb Front/Back
Q Right 2 Front/Back
R Right 3 Front/Back
S Right 4 Front/Back
T Right 5 Front/Back
U Right 4in1 + thumb Side

H

N

Figure 8. Some steps of sign detection
of letters H and N.
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6 Test examples

We have experimentally verified that our hand description can in an unique way be
transformed into a set of 21 signs (Table 1). In Figure 8 examples of intermediate steps
of our hand sign detection approach are shown. If the fingers are well separated one from
the other then the first active contour is progressing in-between them. The second active
contour is then matching the boundary palm area of the hand. Otherwise, both contours
are similar, except of the visible thumb position.
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