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Abstract

A method for discrete self-localization of an au-
tonomous mobile system was proposed. One of its
many possible implementations was designed, that
uses a camera subsystem, which delivers sensor in-
formation about the environment reduced to an n-
elementary measurement vector. Three different al-
gorithms of image analysis were proposed and imple-
mented. The self-localization approach with three dif-
ferent image sub-systems was tested by computer sim-
ulations on different natural and synthetic scenes. A
robust behavior of the approach in all cases was veri-
fied experimentally.

1 Introduction

The mobile service and diagnostic robots [2, 3] have
to work in a specific ”human-like” environment, that
firstly prohibits the use of such active sensors, like
laser scanner devices, and secondly, it requires to in-
teract with humans, that can cross the trajectory of
a moving vehicle. Both features of the environment
support the use of digital cameras for the acquisition
of sensory information. By using image analysis meth-
ods different tasks required for autonomous navigation
can be be solved, like the detection and recognition of
obstacles [6, 9], the tracking of road borders [5, 10] and
the self-localization in a (partly) known environment
[1, 4]. In this paper we shall propose an approach
to self-localization in an indoor environment that ex-
plores the moving capability of an autonomous vehicle,
i.e. which recursively adjusts its state estimation per-
forming a repeated analysis of a sequence of images
(different views) of the scene.

2 The self-localization method

2.1 The method of state condensation

As an appropriate method of discrete state estima-
tion we choose the method of state condensation [3, 4].
It assumes, that the number of states can be limited
to a finite number, i.e. specific combinations of state
parameter values are ’frozen’ in order to represent a
particular state of the system. For a finite set of states
it is computationally feasible to estimate the probabil-
ity distribution of states.
Belief state – the pdf of states upon the condition

of a sequence of observation:

∀sk : Belt(s
k) = p(skt |ot, ot−1, . . . , ot−n) (1)

In practice a finite set of states S is defined, that
covers the studied environment and during initializa-
tion of the condensation process the a priori pdf od
states is specified (by default or due to a learning pro-
cess):

∀sk : Bel0(s
k) = p(sk0). (2)

The iteration cycle of the condensation algorithm
consists of three main steps (1,2,4 below) and it re-
quires an application-dependent measurement (step 3
below):

1. the prediction of belief state;

The a priori pdf of state transition is available

p(skt+1|s
l
t, . . . , s

i
0) = p(s

k|sl) (3)

where slt, . . . , s
i
0 is the history of past best belief

states - the Markov criterion is assumed to be
satisfied.

On base of current belief state distribution and
the above state transition one gets the prediction
of next belief state, ∀sk :

p(skt+1|ot, . . . , o0) =
∑

si
t
∈S

p(skt+1|s
i
t)p(s

i
t|ot, . . . , o0)(4)
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Figure 1: The state condensation scheme.

2. stochastic diffusion;

In order to model the possible disturbances (sys-
tem noise) the values of predicted belief state are
spread over their neighbor states, for example:

p′(skt+1|ot, . . . , o0) =∑

s∈S

[
p(st+1|ot, . . . , o0)

1
2πσ e

[− 1
2
||sk−s||2]

]
(5)

3. measurement;

The second a priori pdf should be known:

∀sk ∈ S : p(o|sk).

4. modification of the belief state (the reaction onto
the measurement).

Let ot+1 is the measurement at discrete time t+1.
The modification of belief state is finally given as:

∀sk : Belt+1(s
k) = p(skt+1|ot+1, ot, . . . , o0) =

= ct+1p(ot+1|s
k)p′(skt+1|ot, . . . , o0), (6)

where ct+1 is a necessary coefficient for normal-
ization of the belief state sum to 1.

2.2 The algorithm of self-localization

In autonomous navigation the action performed by
the vehicle or camera are usually known, due to the
odometry. Hence, this knowledge can be incorporated
into the state condensation scheme. Now, the role of
the learning phase is:

• for each discrete state s ∈ S and possible mea-
surement vectorm to determine the pdf: p(m|s);

• for each pair of states sk, sj and each possible
action a to determine the pdf of state transition
with respect to action: p(sk|sj ,a).

The working phase of self-localization is an exten-
sion of the state condensation scheme:

1. Get the goal state.

2. Initialization of a default belief state at t = 0
(for example by a uniformly distributed pdf)
Bel0(s

k) = p(sk0 |H0).

3. REPEAT until the goal state is not reached:

(a) t = t+ 1;

(b) find the current best state: s∗t−1 =
argmax p(st−1|Ht−1), where Ht−1 =
(st−1,mt−1, st−2,mt−2, . . . , s0,m0) is the
history of past belief states and measure-
ments;

(c) determine and perform the next action re-
sulting from minimization of the distance be-
tween current best state and the goal state;

(d) as the current action at and the a priori pdf
p(st|st−1, at) are known the predicted belief

state at time t can be computed B̂elt(s
k) =∑

s[p(s
k
t |st−1, at)p(st−1|Ht−1)];

(e) acquire the measurement mt at new posi-
tion.

(f) with the a priori pdf p(mt|st) modify the be-
lief state at time t: Belt(s

k) = p(skt |Ht) =

ctp(mt|st)B̂elt(s), where ct is the current
normalization coefficient (the sum of belief
state distribution should be equal to 1).

2.3 Illustration of a 2-dimensional self-
localization

In our experiments only two degrees of freedom of
the camera were allowed: a translation along the X
and Y axes by unit steps. Hence, the possible ac-
tions were: {at = (dx, dy)|dx, dy = {−1, 0, 1}}. A sin-
gle image corresponds to one particular view of the
scene (see Figure (2)). The measurement system in
this case is performed by an image analysis system,
which detects a measurement vector for each image.

3 Image feature detection methods

We have implemented three types of measurements,
which are based on global image features. Although,
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Figure 2: Illustration of the self-localization process.
A 2-D scene is split into n x n views, where each po-
sition corresponds with a single system state. Due to
image analysis the appearance of digits (from 1 to 4)
is detected and summarized by a measurement vector.

they are of simple nature and they usually provide not
sufficient information to distinguish in one step be-
tween all possible states (views), they are very helpful
to demonstrate the efficiency of the discrete localiza-
tion method. The following types of the measurement
vector were created:

1. MeanVar - the three mean and three standard
deviation values of the R, G and B channels of
the image.

2. FFT6 - the modules of first 6 components of a
Fourier transform of the image.

3. Hist6 - the three dominating color components in
the image with their density values.

3.1 Learning the a priori pdf

The a priori pdf p(m|s) should be computed dur-
ing the learning phase. But the number of possi-
ble measurement vectors is infinite, usually there are
continuous-valued components of m. In practice this
pdf can be made explicit only during the active work.
In the learning phase we compute and store the feature
vectors associated with each discrete state.

During the active work the feature vector of current
view is detected (assuming a previous normalization of
the scene illumination or camera contrast).

The a priori pdf p(mk+1|s) is implicitly defined, as
we can compute for each state sk the value of a Gaus-
sian distributed pdf, with mid point equal to zero, for
the the distance of w|mk+1 −m(s

k)|2 (where w is a
weighting vector that adjusts the intervals of particu-
lar components to some common interval).

3.2 Global mean and standard deviation

In the first measurement method the vectorm con-
sists of global features of given view. In the learning
phase for each view the mean values and standard de-
viation values of each color component are computed.

3.3 Histogram-based features

Image features that are computed from the his-
togram of the image are usually of global character.
At first for each color component its histogram is ob-
tained, i.e., the density distributions of possible inten-
sity values. We have studied an extensive case, where
in addition to the total number of pixels having given
intensity, the position of image regions with given in-
tensity is detected (represented by its mass center and
boundary box). This approach resulted in a matrix of
measurements, rather than a vector. In experiments,
even a simplified approach, that uses a 6-elementary
feature vector only, turned out to be sufficiently ro-
bust. The feature vector consisted of three pairs of
values (Ik, ρ(Ik)), k = 1, 2, 3 (Ik - the k-highest inten-
sity value, ρ(Ik) - the number of pixels with intensity
Ik).

3.4 Frequency-based features

For a square image of size NN, the two-dimensional
FFT is given by:

F(k,l) =
1

N2

N−1∑

i=0

N−1∑

j=0

I(i, j)e−i2π(ki/N+lj/N), (7)

where I(i, j) is the image in the spatial domain and the
exponential term is the basis function corresponding
to each point F(k,l) in the Fourier space. The equation
(7) can be interpreted as: the value of each point F(k,l)
is obtained by multiplying the spatial image with the
corresponding base function and summing the result.
The basis functions are sine and cosine waves with
increasing frequencies, i.e. F(0,0) represents the DC-
component of the image which corresponds to the av-
erage brightness and F(N−1,N−1) represents the high-
est frequency.

3.5 Test results

Several scenes with different illumination condi-
tions were available for testing (Figure 3). Three al-
ternative measurement vectors were tested:

1. MeanVar: m = [m1,m2,m3, σ1, σ2, σ3]



Scene Type MeanVar FFT6 Hist6
Lift mean 0.28396 0.54611 0.36141
Map mean 0.42009 0.71208 0.88932
All mean 0.48502 0.39076 0.53752
Lab mean 0.39041 0.39442 0.48202

Table 1: The means of ’p-values’ between pairs of fea-
ture vectors, learned for the original scene.

2. FFT6: m = [F(0,0), F(0,1), F(0,2), F(0,3), F(0,4), F(0,5)]

3. Hist6: m = [I1, I2, I3, ρ(I1), ρ(I2), ρ(I3)]

As indicated on fig. 4 the intensity and contrast of
current scene is significantly changed if compared to
the original scene, on which the system has learned.
Also the positions of views are shifted by few pixels
from their original positions. With a particular system
state only a small view (via an image of size 256x256)
of the scene is available. The goal state (on the right),
the current (unknown to the system) view (in the cen-
ter) and the default initial best state (on the left) of
the real scene.

3.6 Statistics of the feature vectors

Let us first verify the statistical correctness of the
proposed image feature vectors.
The p-value of two distributions expresses the cor-

rectness of a hypothesis, that both distributions are
statistically equivalent. If the p-value is equal to zero,
then the above hypothesis is wrong and both features
can be treated as being different. This definition can
be extended to more than two distributions.
We have examined the behavior of our three sets of

image features, when the image analysis was applied to
our four 2-D scenes. Table 1 summarizes the results of
’p-val’ computed for all pairs of the measurement vec-
tor (pairs of states of the original scene). The values
of ’p-val’ near zero indicate, that the features are dis-
tinct. From this point of view the feature setMeanVar
is more distinctive, than our FFT6-set (with the third
set Hist6 located in-between). Table 2 summarizes the
values of p-value computed for all pairs of feature vec-
tors, where the first element of the pair corresponds to
the state of the original scene, and the second element
- to the compatible state in the real scene. Remember,
that the compatible views are shifted one-against-the-
other by few pixels, and the intensity and contrast of
the camera have also changed.

Figure 3: Examples of 2-D scenes that were used for
testing: All, Lab, Lift, Map.



The optimal feature set achieves a p-value of nearly
1, what means, that the features for learned view and
real view are the same. Form this point of view this
table documents, that the feature set FFT6 is per-
forming best of all, i.e., the other two sets are very
sensitive to changes of lighting and camera positions.

Figure 4: The scene used for learning (top image) dif-
fers from the real scene (bottom image) by illumina-
tion conditions and a slight shift of camera positions.

3.7 The quality of self-localization

For each 2-D test scene (in total - four scenes
were used) and for each measurement method we have
run the self-localization process 100 times, with ran-
domly chosen start and goal states. A particular self-
localization process is illustrated on figure 5. At the
start point the belief state distribution is an uniform
distribution. After 2-4 steps the appropriate state that
corresponds to the real position can already be se-
lected - the belief state value for such state dominates
already the beliefs of remaining states.
In table (3) we provide data illustrating the cor-

rectness (quality) of self-localization tests in different
scenes and measurement methods. The FFT6-set al-
lowed for error-free self-localization, the MeanVar-set

Scene Type MeanVar FFT6 Hist6
Lift min 0.2345 0.7452 0.1920

max 0.9985 0.9999 0.9872
mean 0.8833 0.9606 0.7682

Map min 0.3015 0.9322 0.2643
max 0.9999 0.9999 0.9943
mean 0.9429 0.9856 0.8953

All min 0.1733 0.1738 0.1695
max 0.9998 0.9997 0.9965
mean 0.8866 0.9456 0.8240

Lab min 0.5867 0.5613 0.5230
max 0.9976 0.9966 0.9985
mean 0.9179 0.9158 0.8896

Table 2: The minimum, maximum and mean values
of the ’p-value’ for pairs of measurement vectors for
compatible states in the original and real scene.
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Figure 5: The distribution of the first 3 measurement
features of the MeanVar-set corresponding to states.

performed very well, whereas the Hist6 was very sen-
sitive to lighting and position changes.

4 Summary and Conclusions

A self-localization method for (partly) known in-
door environment was designed and it was experimen-
tally proved to be robust and effective. Three different
environment measurement algorithms, based on image
analysis, were proposed and tested. It was shown that
even for natural scenes, the use of even a small set of
image features, expressing only global information of a
particular view, is sufficiently robust. An obvious pre-
condition for using global image features is the scene
normalization, i.e., the images of the scene (environ-
ment) acquired during the active navigation should



Scene MeanVar FFT6 Hist6
state num.
Lift-352 89 100 54
Map-234 99 100 78
All-594 99 100 71
Lab-150 87 100 51

Table 3: The number of successful runs of the self-
localization process (for 100 tests in total).

be non-linearly scaled to adapt to the contrast and in-
tensity of the scene in the learning phase. Otherwise
the detection of discrete image features is preferred,
also this is out of scope of this paper. The global im-
age features are sufficiently robust to overcome small
geometric perturbations in image acquisition, i.e., a
shift of the view by several pixels with respect to the
learned position.
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Figure 6: Illustration of the self-localization process:
(a) the second (after the initial uniform distribution)
6th and 16th belief state distribution; (b) the assumed,
real and goal state are shown after 5 and 16 steps -
approaching the goal state.


