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Abstract. Natural landmarks are assumed to exist in the environment. Global color
image features are extracted from sensor data to feed the robot’s self-localization
approach. The color features correspond to natural landmarks, that are learned by
the navigation sub-system. During the localization process, which is a Bayes filter-
ing of a Markov environment, the posterior probability density over possible discrete
robot locations (the belief) is recursively computed. The approach was tested to pro-
vide robust results under varying scene brightness conditions and small measurement
errors.
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1. INTRODUCTION

The localization process of an autonomous robot
takes as input a previously acquired map, an es-
timate of the robot’s current pose, and a set of
sensor data acquired in current pose, and it pro-
duces as output a new estimate of the robot’s pose
[1, 4]. Obviously, any input data for the localiza-
tion process may be incomplete and distorted by
noise or errors. In generally, pose means the po-
sition and orientation of the robot in the world
coordinates or global map.

The vision data is acquired by a passive sensor,
i.e. a camera does not influences the environment
by its measurement process. This kind of sen-
sor is especially applicable for indoor navigation
in environments, that are populated by humans,
i.e. offices, hospitals, museums, etc. [3]. Addition-
ally, image processing methods can rely on natural
landmarks, whereas this case for the active sensor
devices has started to be studied only recently [2].
The use of image analysis methods in robot navi-
gation has been intensively studied over the past
30 years [6, 9, 8, 10]. In this paper we focus on
general image features, that could be relatively
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insensitive to changing lighting conditions, but at
the same time, can be relatively easy computed,
to be obtained in real-time by a simple processing
unit.

The general scheme of our self-localization ap-
proach is described in an accompanying paper
[7]. In theoretical terms the localization process
is equivalent to a Bayes filtering of a finite envi-
ronment satisfying the Markov condition, i.e. past
and future data are conditionally independent if
one knows the current state. During the localiza-
tion process the posterior probability density over
possible discrete robot locations (the belief) is re-
cursively computed. The use of different global
features of monochromatic images was tested to
provide robust results if the brightness of observed
scene is constant or it can be compensated [7].

In this paper, we describe a detailed algorithm for
the discrete self-localization scheme and we pro-
pose and test a more robust set of image features,
based on color information. In sec. 2 the detailed
algorithm for self-localization is presented. Sec. 3
defines two alternative sets of global color image
features, that serve as ”visual” measurements for
the localization process. Test results are given in
sec. 4.
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2. THE SELF-LOCALIZATION ALGO-

RITHM

The general discrete self-localization scheme [7],
based on Bayes filtering of a Markovian environ-
ment, is also called state condensation or particle
filtering [5]. It assumes, that the number of states
can be limited to a finite number. Only then is
computationally feasible to estimate the probabil-
ity distribution over states.

By belief we denote the pdf of states upon the
condition of a sequence of observations (measure-
ments mt):

∀sk : Belt(s
k) = p(skt |mt,mt−1, . . . ,mt−n) (1)

In the learning phase the system should acquire
two a priori pdf’s:

1. The a priori conditional pdf of measurement
upon state, i.e. for each discrete state s ∈ S
and possible measurement vectorm to deter-
mine the pdf: p(m|s);

2. The a priori pdf of state transition

p(skt+1|s
l
t, . . . ,s

i
0) = p(s

k|sl) (2)

where slt, . . . ,s
i
0 is the history of past best

belief states. In autonomous navigation the
action performed by the vehicle or camera are
usually known, due to the odometry. Hence,
this knowledge can be incorporated into the
state condensation scheme - for each pair of
states sk,sj and each possible action a to de-
termine the pdf of state transition with re-
spect to action: p(sk|sj ,a).

The discrete self-localization algorithm consists of
the initialization step and a main iterative belief
”refinement” step with sub-steps of : belief predic-
tion, stochastic diffusion, measurement and mod-

ification of belief (the reaction onto the measure-
ment).

Belt(s
k)

prediction
p(skt+1| . . . )
diffusion
p′(skt+1| . . . )

observation ot+1

modification

Belt+1(s
k)

Fig. 1. One iteration of belief refinement.

The algorithm of the self–localization pro-

cess

1. Get the goal state.

2. Initialization of a default belief state at t = 0
(for example by a uniformly distributed pdf)
Bel0(s

k) = p(sk0 |H0).
3. REPEAT until the goal state is not reached:
(a) t = t+ 1;
(b) find the current best state:
s∗t−1 = argmax p(st−1|Ht−1), where
Ht−1 = (st−1,mt−1, st−2,mt−2, . . . , s0,m0)
is the history of past belief states and mea-
surements;

(c) determine and perform the next action re-
sulting from minimization of the distance
between current best state and the goal
state;

(d) as the current action at and the a priori
pdf p(st|st−1, at) are known the predicted
belief state at time t can be computed

B̂elt(s
k) =

∑

s

[p(skt |st−1, at)p(st−1|Ht−1)]

(e) acquire the measurement mt at new posi-
tion.

(f) with the a priori pdf p(mt|st) modify the
belief state at time t:

Belt(s
k) = p(skt |Ht) = ctp(mt|st)B̂elt(s),

where ct is the current normalization coef-
ficient (the sum of belief state distribution
should be equal to 1).

In our experiments the camera was fixed mounted
on the mobile platform, which was moved along
two directions only, without performing a rota-
tion. Hence only two degrees of freedom of the
camera were allowed: a translation along the X
and Z axes by unit steps. A single image corre-
sponds to one particular view of the scene (see
fig. 2). The measurement system in this case is
performed by an image analysis system, which de-
tects a measurement vector for each image.

3. GLOBAL IMAGE FEATURES

In a previous paper ([7]) we have implemented
three types of global measurements in monochro-
matic and color images: (MeanVar) the three
mean and three standard deviation values of the
R, G and B channels of the image; (FFT6) the
modules of first 6 components of a Fourier trans-
form of the intensity image; (Hist6) the three dom-
inating color components in the image with their
density values. They are of simple nature and
usually they do not provide unique values for all
possible states (views). But they are of sufficient
quality (under assumption of constant scene illu-
mination) to be used in a localization process, that
takes a sequence of belief refinement steps.

3.1. The color feature vector

Every pixel in an RGB-color image can be mapped
to a point in the 3–D color space. The measure-
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Fig. 2. The distribution of pose localizations (top
view): there is a finite number of positions on
the floor expressed in the OXZ coordinate sys-
tem.

ment process for each image needs first to obtain
a 2–D histogram of relative color densities. The
individual cell of this histogram is indexed by the
relation pair [R(p)/B(p), G(p)/B(p)]. In addition
to the density of each ”relative color” region we
compute its enlargement, i.e. the boundary box
of regions of such color, and its mass center posi-
tion in the image.

The feature vector consists of these data items for
some number (e.g. N = 6) of pixel colors, that
are selected from the 2–D histogram on the base
of their largest densities in the image. Especially
in this paper, we consider two sets of features:

• (set C1) only the N color indices (R/G,G/B)
and their largest densities are considered;
• (set C2) additionally to the N color indices
with largest densities, the feature vector con-
tains the boundary boxes of regions with ev-
ery selected color and the mass centers of such
regions.

The results of the measurement process are stored
in a matrix rather than a vector. The feature ma-
trix consists of N vectors of following p = 7 values:

(R/Bi, G/Bi, ρi, µXi, µYi,∆Xi,∆Yi), i = 1, . . . , N

where (R/Bi, G/Bi) is the color with the i–highest
density, ρi – its density in the image, (µXi, µYi) -
the center and ∆Xi,∆Yi) the enlargement of im-
age regions consisting of such pixels. The set C1
is a subset of the C2 set (i.e. for C2 the parameter
p = 3).

3.2. Learning the a priori pdf

The a priori pdf p(m|s) should be computed dur-
ing the learning phase. But the number of possible

measurement vectors is very large, even if we re-
strict the measurement items to be discrete valued
only. In practice we compute this pdf during the
active phase of the localization process.

In the learning phase we only compute and store
the feature vectors associated with each discrete
state.

During the active localization phase the feature
vector of current view is detected.

The a priori pdf p(mk+1|s) is defined according to
the difference of both measurement vectors: the
current measurement mk+1 at time k+1 and the
stored measurement ms for ∀s ∈ s. The condi-
tional probability density is modelled by a 1–D
Gaussian normal distribution, with its mid point
corresponding to the zero value of a weighted dif-
ference

N×p∑

i=1

wi|m
i
k+1 −m

i
s|
2

(where w is a weighting vector that scales the
expected ranges of particular feature elements to
some common level).

4. TEST RESULTS

Several laboratory scene were available for testing
- two of them are shown in figure 3. From the
point of view of applied general intensity-based
or color-based features, the structure of the scene
seems not to be so crucial as it may be for spe-
cialized features. A scene which contains nearly
a single red table on the wall (fig. 4(a)) (in fact
a single artificial marker) should allow more pre-
cisely to determine the state than a scene with
more structure (fig. 4(b)), but only if one knows
what kind of specialized feature to search for. In
our localization approach both types of scenes are
well managed. Below we report some quantitative
results obtained for the localization process in the
less structured laboratory scene.

Besides the new two color feature sets C1 and
C2 we also tested the previous feature schemas
of MeanV ar, FFT6 and Hist6 for these scenes.

Table 1. The minimum, maximum and average
’p-values’ obtained for all pairs of
states during the learning phase on
base of the original scene images.

p-val C1 C2 M.Var Hist6 FFT6
min 0.166 0.092 0.014 0.006 0.017
aver 0.658 0.704 0.462 0.595 0.471
max 1.000 0.998 0.999 0.999 0.998

The illumination conditions of the scene have been
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(a) (b)

Fig. 3. Examples of three views in different robot lo-
cations of two real laboratory scenes.

changed between the learning process an the ac-
tive localization process. Additional problem was
caused by the fact, that we are able to estimate
robot’s positions by odometry with finite accuracy
only. This causes the measurement of images, that
are shifted by several pixels if compared to appro-
priate images, applied for state distribution learn-
ing.

To achieve a statistically sufficient amount of re-
sults, many repetitions of the self-localization pro-
cess have been run with changing start and goal
states.

4.1. Statistics of the feature vectors

Let us first verify the statistical characteristics of
the proposed image feature vectors.

The p-value of two distributions expresses the cor-
rectness of a hypothesis, that both distributions
are statistically equivalent. If the p-value is equal
to zero, then the above hypothesis is wrong and
both features can be treated as being different.
This definition can be extended to more than two
distributions.

Table 1 summarizes the results of ’p-val’ computed
for all pairs of the measurement vector (pairs of
states of the original scene). The values of ’p-val’
near zero indicate that the features are distinct.
From this point of view both color feature sets C1,
C2 are less distinctive than the MeanVar, Hist6
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Fig. 4. The color histograms of two scenes: (a) with
single red marker, (b) with more structure.

and FFT6 sets. At the first view this may require
a longer navigation sequence if we use the color
features C1 or C2. But the advantage of proposed
color features is their insensitivity to small illumi-
nation and positional changes. This was not the
case with the other three sets of features, where
we required a global scene illumination sensor to
compensate the changes of scene intensity.

Table 2 summarizes the relative errors between
learned features and corresponding measured fea-
tures, when disturbances of the measurement pro-
cess appeared: |mk −ms|/|ms|. The first feature
vector of every pair corresponds to the state of
the original scene, and the second vector - to the
compatible state in the real scene. The real scene
views may be shifted against-the-other by few pix-
els, and also the color can be nonlinearly changed.
A zero-valued error means, that the features for
learned view and real view are the same. This ta-
ble documents, that the feature set C2 can com-
pensate small measurement errors of both kind,
i.e., they perform better in this matter than the
global intensity based feature sets. Only slightly
worse if compared to C2 was the performance of
the other color set C1.
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Table 2. The minimum, maximum and average
relative feature vector errors obtained
for the C2 set in case of measurement
disturbances: (8,8) means position
error in pixels and B10 means an
increase of the blue color component
by 10%.

Relative (0,0) (4,4) (8,8) (8,8)
error +B0 +B0 +B0 +B10
minimum 0.0000 0.0136 0.0176 0.1233
average 0.0000 0.1361 0.1221 0.2946
maximum 0.0000 0.4091 0.3447 0.6550

Relative (0,0) (0,0) (0,0) (8,8)
error +B10 +B25 +B50 +B25
minimum 0.0768 0.0375 0.0760 0.1041
average 0.2756 0.2644 0.2930 0.2795
maximum 0.6509 0.4799 0.6247 0.4803

Table 3. The rate of successful runs of the
self-localization process (for 100 tests
in total) and the average path length,
under different measurement errors;
i.e. (8,8) means position error in pixels
and B10 means an increase of the blue
color component by 10%.

(0,0) (0,0) (8,8) (8,8) (8,8)
+B25 +B50 +B0 +B10 +B25

Success 100 75 100 100 75
rate

Aver. 4.25 5.0 4.25 4.5 5.2
path

4.2. The quality of self-localization

For each measurement method we have run the
self-localization process 100 times, with randomly
chosen start and goal states. A particular self-
localization process is illustrated in figure 5. At
the start point the belief state distribution is an
uniform distribution. After 2-4 steps the appro-
priate state that corresponds to the real position
can already be selected - the belief state value for
such state dominates already the beliefs of remain-
ing states.

In table 3 we provide the data that illustrates the
correctness (quality) of self–localization tests if the
C2 set is applied under different measurement dis-
turbances. From this table it can be concluded,
that up to a 25 % error of the blue component or
up to a position error of (8 x 8 ) pixels a 100 % suc-
cess of the self-localization process was achieved.

5. SUMMARY

Two methods for global color feature detection in
color images were proposed and its use as the mea-
surement step in a discrete self–localization pro-
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Fig. 5. The distribution of the 6 measurement features
of the C1-set corresponding to all 32 discrete
states of the test scene.

cess was experimentally tested.

It was shown that even for natural scenes with
changing illuminations and small perturbations of
the odometry data, the use of even a small set of
image features, expressing only global information
of a particular view, is sufficiently robust.

In more complex scenes the detection of discrete
image features is preferred, although this is out of
scope of this paper.
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