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Abstract. An integrated segmentation approach for color images and
depth maps is proposed. The 3D pointclouds are characterized by normal
vectors and then grouped into planar, concave or convex faces. The empty
regions in the depth map are filled by segments of the associated color
image. In the experimental part two types of depth maps are analysed:
generated by the MS-Kinect sensor or by a stereo-pair of cameras.
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1 Introduction

There is a long history of 3D data acquisition technology, ranging from stereo-
vision, laser scanners to structured light processing techniques [1], [2]. But only
when Microsoft’s project Natal (now known as Kinect) became reality, the use of
depth maps (or now more often called as 3D pointclouds) has became more and
more popular on many fields, including computer entertainment, robotics, etc.
[3]. This paper focuses on segmentation methods of dense depth maps produced
by such a sensor, and using an RGB image aligned with it. Our aim is to use
the segments extracted by the proposed method as the input for a model-based
3D object recognition system, with applications in service robotics [1].

In section 2 some methods of gathering pointclouds are described and a syn-
thetic comparison of them is given. In next section, a method of enhancing the
raw depth map by additional information - the normal vector per point - is
proposed. Section 4 presents the actual segmentation process, that makes use
of many modalities (depth, normal vector, color, etc.). Then section 5 describes
various features that can be calculated for obtained segments, the 3D point sub-
sets. The explanation of approach is in-place illustrated by experimental results.
The paper ends with a summary.

2 Acquisition of pointcloud data

All methods of gathering 3D scene information can be divided into groups, de-
pending on used hardware – from cheap, highly-available cameras, through those



supported by specialized projectors, to the dedicated, highly-sophisticated hard-
ware and laser scanners. Another criterion is the method of information acquisi-
tion – a passive registration of light from environment or the usage of active scene
illumination. This comparison focuses on practical features of three presented
approaches – one that uses an active distance sensor, a second one that uses a
stereo-pair of cameras and a third one based on structured light illumination.

The first approach is using traditional distance sensors, such as rangefinders
or laser scanners [1]. Mounting them on pan-tilt rotatable units allows the ac-
quisition of a series of single scans, that can be merged to form a full 2D depth
map. Precision ranges from single millimeters to centimeters, and depends on
the quality of applied sensors and the precision of pan-tilt units. This method
is rather slow, as a single scan of the whole scene can take up to few seconds.
Very often, there is a need for an additional color camera to get a color image
of scanned scene.

Another method is stereo vision, an image processing approach that uses
two cameras. The depth of a point in space in front of them is calculated while
computing the disparity between its two projections in both images. Most of the
stereo-matching algorithms are based on point features detected in the images,
so they behave well for outdoor scenes, where many natural characteristic points
can be found. In interiors, where many objects with homogeneous surfaces exist
(like walls and furniture fronts), there is a need for some active illumination
to help the stereo-matching algorithm [2]. The generated depth map is usually
automatically aligned with one of the images, so there is no need for separate
color image acquisition. Also, this method can be pretty cheap, even classical
web cameras can give good results. Drawbacks of this method are relatively high
computational load and moderate framerates.
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Fig. 1. Comparison of depth maps generated from MS Kinect and stereo vision algo-
rithm from OpenCV library

Another type of approaches that requires strong image analysis is based on
structured light illumination. A camera observes the scene, which is illuminated



by a well-known light pattern, and the depth map is created by pattern defor-
mation analysis. This method actively uses illumination, so it is well suited for
indoor environments, but in outdoor scenes, with high sun exposure, it usually
fails. In cases where projected pattern uses visible light, the same camera can
be used for depth and color registration, so both maps are perfectly aligned. On
the other hand, using visible light can be uncomfortable if working in common
space with people, so some infrared projectors and cameras are used instead. In
this case, there are at least two cameras needed, and a separate step for aligning
depth and color images is necessary. One of popular sensors using structured light
is Microsoft Kinect, which was quickly hacked by open-source community [3].
This sensor was chosen for this work, because nearly the whole acquisition pro-
cessing is done in hardware and the scene coverage is very high (sample images
can be seen on fig. 1). We have also implemented a stereo-vision approach, but
it is working much slower than Kinect, with an acquisition rate of 8 frames per
second only.

Table 1. Comparison of selected methods of generating 3D scene image

Method CPU load Acquisition
time

Resolution I/Oa HW cost

2D sensors moderate 1s-3s 180x256px  / ˜1000USD

Stereo vision high 0.1s-1s 640x480px G#/ ˜100USD

Proj. texture stereo high 0.1s-1s 640x480px  /G# ˜400USD

MS Kinect low 0.03s 640x480px  /# ˜100USD

TOF cameras low 0.01s-0.04s 176x144px  /# ˜8000USD

a I - works well indoors, O - works well outdoors

Finally, the last type of 3D data acquisition approaches is using time-of-flight
cameras [4], where the light is emitted from a projector and the arrival time (or
light phase) is measured after it bounces back from objects on the scene. Again,
to get an additional color image information there is a need for another camera
and a depth map-to-image registration step. A summary of described methods
and their main features is presented in table 1.

3 Extending the depth data

Let us observe, that to rely only on the raw depth map could be insufficient in
many applications. For example, a box located on a desk could be left undetected
while using the depth map, because no real depth discontinuity is observed.
Therefore, from this depth map some more information of different modality
need to be extracted.



3.1 Normal vector map

The most straightforward extension is to obtain the normal vector map – at each
depth map element we estimate a normal vector while taking into account the
local neighborhood of given point in the depth map. The depths in the neigh-
borhood are assumed to sample the unknown surface. Most often two kinds of
algorithms are applied: based on numerical optimizations or on Voronoi dia-
grams [5]. The algorithms may work either on raw depth map (with distance
from camera to object held in each pixel), or on its pointcloud representation
(3D coordinates in some fixed frame held in each pixel). There are many chal-
lenges associated with normal estimation, such us handling the measurement
noise and discontinuities in depth. For example, to avoid generating false nor-
mals indicating presence of wall, see fig 2. Using normal vector maps, objects
mentioned earlier can be easily segmented – even if there are no discontinuities
in depth, there will be visible edges in the normal image.

c
d

a

a

b

Fig. 2. Some caveats of estimating normals from sampled points; a - parts of real
surfaces, b - sampled points, c - incorrect normal due to presence of noise, d - incorrect
normal on edge of surface

3.2 Surface curvature

Another modality that extends the depth map is the curvature factor of un-
derlying surface [6]. This kind of information can be directly computed from
the raw depth map. It can greatly enhance the detection of fuzzy boundary
points, where the normal vectors show approximately continuous distribution,
but where different surfaces cross (for example a bottle could be segmented into
it’s cylinder-like main part and sphere-like top, fig. 4a,b). There are of course
visual differences between mentioned maps, that can be easily observed when
looking at the image containing flat surfaces and spheres. In the normal vector
map, both object types are filled with some gradient (in case of flat surface not
parallel to camera plane), but it’s hard to tell whether surface is really flat or
distinguish a sphere from a cone (fig. 4c). Every flat surface, on the other hand,
is filled with uniform color on normal maps (and curvature maps), independent
of it’s orientation (normal vectors of surface are the same in it’s every point).
Also sphere-like regions can be easily distinguished from cone-like regions in the



depth map, but to tell exactly, where the border between sphere and cylinder is
one must look at the curvature map (fig. 4d).

4 The pointclouds segmentation approach

4.1 Similarity of points

Our segmentation approach is based on a region growing technique, but instead
of working on a single intensity image, we feed it with all the image maps men-
tioned earlier (hence the name of this approach – multimodal segmentation).
These input maps are aligned with each other, so pixels can be immediately
sampled from all of them when segments are created. Because of using multiple
images as input, similarity function has to be expanded accordingly.

Another modification of the classical region-growing segmentation is that
in our approach points can be compared not only to mean values of already
segmented ones, but also only to border pixels (pixels are compared only to
currently considered ones, to be precise). This allows to detect slowly changing
surfaces as single segments, that would be broken into smaller parts by a standard
comparison criterion w.r.t. the mean value.

Our point similarity function (1) has four parameters, defining how close each
of components has to be in both pixels, TR, TD, TN and TC , where R stands
for normalized RGB, D for depth, N for normal vector and C for curvature,
respectively:

S(px, py) = FUN

(
dR(px, py)

TR
,
dD(px, py)

TD
,
dN (px, py)

TN
,
dC(px, py)

TC

)
(1)

The final value can be calculated by substituting FUN with either sum or max
function, each giving slightly different results. Distances are calculated by asso-
ciated d functions. Color comparison is done by calculating Euclidean distance
between the normalized RGB values (i.e. R/L, G/L, B/L, where L means lumi-
nance) of both points, and TR is the maximum allowed difference.

The location distance of points is calculated also as a Euclidean distance be-
tween their 3D coordinates, and TD is expressed in meters. Normal vectors could
be treated similarly to maps mentioned earlier, but it will be counterintuitive,
so we calculate the angle between both vectors (2) using their dot product:

dN (px, py) = arccos(normal(px) · normal(py)) (2)

Observe, that both vectors are already normalized, so it’s unnecessary to divide
the distance by their length. TN is then given in degrees, which is much more
convenient.

The last component in (1) is a curvature, which is expressed as radius of
sphere fitted to the point’s local neighborhood. Hence, a simple comparison of
curvature is needed only, like comparing two numbers.



4.2 Processing pipeline

The pointclouds segmentation processing pipeline is shown on fig. 3 (the blocks
represent components, the arrows represent data flows between the components).
Along with the real data acquired by the Microsoft sensor, there is also a com-
ponent for generating test scenes, consisting of some simple shapes, with a pos-
sibility of adding synthetic noise. This component is applied for testing whether
algorithms works as expected on (almost) perfect data.

The segmentation approach has been implemented in DisCODe data process-
ing framework [7], using the OpenCV library and the data acquisition module
of the Kinect device.
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Fig. 3. The proposed segmentation processing pipeline

5 Multidimensional segment descriptors

The usability of raw segments, without having any specific information about
them, is rather low. That’s why we add another step to the processing pipeline –
the feature extraction step. Apart from using widely known image moments [8],
there are also popular features that are based on histograms of geometric dis-
tances from some fixed point (like center of mass) [9].

We propose another approach to feature extraction, that uses not only point
coordinates, but also makes use of other information, their normal vectors specif-
ically. For every point in given segment we calculate the angle between its normal
vector and vector from this point to segment center of mass. All angles are accu-
mulated and the mean value along with standard deviation are calculated. Based
on those two factors we can classify a segment into planar (when the mean an-
gle is close to 90◦, green color in fig. 4d), concave (mean is lower than 90◦−ε,
blue color in fig. 4d) or convex surface (mean is larger than 90◦+ε, red color
in fig. 4d). Using the standard deviation value one can decide if the segment
has proper parameter values – a high deviation value means that the current
pointcloud set has not been sufficiently decomposed into segments and that it
has to be further split.
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Fig. 4. Illustration of the pointcloud segmentation process: (a) example image, (b) the
raw depth map, (c) normal vector map, (d) segmented point clouds

6 Summary

We have proposed an integrated segmentation approach for dense depth maps
and associated color images. Differently than in a typical Delaunay triangulation
approach the raw 3D pointclouds are first characterized by their normal vectors,
estimated on base of the point’s local neighborhood. In the segmentation pro-
cess, the subsets of 3D points are easily grouped into planar, concave and convex
faces. In future work, we are going to implement a more detailed surface patch
classification step that is based on the superquadrics approach to surface model-
ing [10]. The empty regions in the depth map are assumed to belong to a distant
background and they are filled by segments of the associated color image. This
step can also be enhanced in the future by assigning texture patterns, detected
in the color image, to the surfaces, detected for 3D pointclouds.
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