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Abstract—The time-frequency masking approach in blind

speech extraction consists of two main steps: feature clus-

tering in a space spanned over delay-time and attenuation

rate, and spectrogram masking in order to reconstruct the

sources. Usually a binary mask is generated under the strong

W-disjoint orthogonal (WDO) assumption (disjoint orthogo-

nal representations in the frequency domain). In practice,

this assumption is most often violated leading to weak quality

of reconstructed sources. In this paper we propose the WDO

to be relaxed by allowing some frequency bins to be shared

by both sources. As we detect instantaneous fundamental fre-

quencies the mask creation is supported by exploring a har-

monic structure of speech. The proposed method is proved to

be effective and reliable in experiments with both simulated

and real acquired mixtures.

Keywords—blind source extraction, harmonic frequencies, his-

togram clustering, spectrogram analysis, speech reconstruction,

time-frequency masking, W-disjoint orthogonal.

1. Introduction

Blind source separation (BSS) is an approach for estimat-

ing source signals by using only mixed signals observed

at many input channels [1], [2], [3]. The source recon-

struction is performed blindly, without possessing informa-

tion on each source, such as its location and active time,

and having no knowledge about the mixing matrix. Many

methods have been proposed for BSS problems, among

them the most popular approaches are: independent com-

ponent analysis (ICA) [2], multichannel blind deconvolu-

tion (MBD) [3] and time-frequency masking (TFM) [4].

ICA and MBD rely on statistical independence of the

speech sources and that sources are mixed instantaneously

or by FIR filters. However, it is difficult for ICA or MBD to

solve the underdetermined case in which the source number

is greater than the microphone number.

Time-frequency (T-F) masking methods are based on the

assumption called W-disjoint orthogonal (WDO) (e.g., the

DUET method [4], [5]). This assumes a sparse represen-

tation of speech in the frequency domain: although the

observed signal is a mixture of several sources, most part

of its time-frequency (spectrogram) cells contain one of

the source signals’ component only. Some other assump-

tions are also proposed in the method known as SAFIA [6],

that performs sound source segregation based on estimat-

ing the incident angle of each frequency component. The

T-F masking methods firstly make histogram (or cluster)

analysis in the attenuation- and time delay-space, in order

to detect the number of speakers and their characteristics,

and secondly they perform source reconstruction via spec-

trogram masking. These methods work well for anechoic

mixtures and significantly different orientations of speakers

w.r.t. the microphone set.

Several novel algorithms have been developed recently,

such as time-frequency ratio of mixtures (TIFROM) [7],

DEMIX [8] and uniform clustering [9], that try to over-

come some weak points of basic T-F masking algorithms.

These improvements focus on making more efficient clus-

tering in the 2-D attenuation rate- and delay-time space.

Other recent research topic line is to provide proper mi-

crophone arrangements for T-F masking, e.g., an array of

microphones or a triangle of microphones [10], [11]. Some

background knowledge about speech signals can also help.

In the HS method [12] it is proposed to use harmonic struc-

ture as the clustering feature.

Today the T-F masking methods work quite well for ane-

choic mixtures. However still there are some drawbacks

of them. One of them is the error of phase-difference es-

timation, which is especially large in the low frequency

band. It seems that in this range of frequencies, say up to

1 kHz, the assumptions of WDO is not satisfied. But one

can not simply filter out these frequency components or

skip it during source reconstruction, as they carry crucial

information about signal’s energy. The problem gets even

more complicated if echoic mixtures are processed.

This paper proposes several improvements to both steps in

T-F masking, the feature clustering and source reconstruc-

tion, that are relaxing the strict WDO assumption.

The paper is organized as follows. In Section 2, the BSS

problem is briefly introduced and a basic T-F masking ap-

proach is defined. In Section 3 an analysis of the time-delay

feature across the whole frequency spectrum is performed.

The observation of large errors of time-delay estimation in

the low frequency band leads to the first improvement - the

use of a restrictive mask based on local and global energy

distribution analysis (Section 4). The second problem is

to improve the spectrogram masks for source reconstruc-

tion. A novel method for multi-valued mask generation is

proposed (Section 5). Experimental results verify that cru-

cial improvements in both histogram analysis and source

reconstruction has been achieved (Section 6).
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2. T-F Masking

In the following, we introduce the BSS problem and main

processing stages of a T-F masking approach:

– extraction of spectrogram features and their cluster-

ing,

– spectrogram mask generation and source reconstruc-

tion.

In experiments we focus particularly on a situation where

the number of sources N = 2, and the number of sensors

M = 2.

2.1. The BSS Problem

In discrete time domain, suppose that sources s1, . . . ,sN are

convolved and mixed. This is observed at M sensors

x j(τ) =
N

∑
k=1

∑
l

h jk(l)sk(τ − l) , j = 1, . . . ,M , (1)

where: h jk(l) represents the impulse response from source k

at sensor j, N is the number of sources, and M is the

number of sensors.

The time domain signals x j(τ) sampled at frequency fs are

converted to frequency domain into a time-series of vector

signals X j(t, f ) by applying a L point STFT to consecutive

signal frames:

X j(t, f ) =
L/2−1

∑
r=−L/2

x j(r + tS)win(r)e−i2π f r , (2)

where: win(r) is a window function, S is the window shift

size, t is the integer time frame index, and f is the integer

(0 ∼ L
2
) frequency bin.

The time-frequency approach to blind speech separation

utilizes instantaneous mixtures at each time frame t and

frequency bin f :

X j(t, f ) ≈
N

∑
k=1

H jk( f )Sk(t, f ) , (3)

where: H jk( f ) is the frequency response of the mixing

system, and Sk(t, f ) is a frequency domain representation

of the k-th source signal.

In time-frequency domain, signals have the property of

sparseness. In mathematical form, this is described as:

S1 (t, f ) ·S2 (t, f ) ≈ 0 , ∀(t, f ) . (4)

2.2. Spectral Feature Clustering

Currently most T-F masking algorithms utilize two features:

– the delay time calculated from the phase difference

between observations,

– the attenuation rate between observations.

We limit our interest only to the delay-time. Due to our

experimental setup, where all sources are located at the

same distance from the microphone center, the attenuation

rate provides no cues for separating among sources.

2.2.1. Delay Time Calculation

The anechoic mixing process can be expressed as

[

X1 (t, f )

X2 (t, f )

]

=

[

1 1

e− j 2π f δ1

L
e− j 2π f δ2

L

][

S1 (t, f )

S2 (t, f )

]

, (5)

where: δi ( i =1,2) is the delay between two microphones,

and L is the number of STFT points.

Assuming that microphone 1 is the reference point, under

the condition of WDO, the mixing model can be simplified

to
[

X1 (t, f )

X2 (t, f )

]

=

[

1

e− j 2π f δi

L

]

Si (t, f ) . (6)

The delay δi is obtained using a phase correlation func-

tion [6]:

δ (t, f ) =
L

2π f
φ(t, f ) , (7)

where φ(t, f ) is the phase difference,

φ(t, f ) = ∠X1(t, f )−∠X2(t, f ) . (8)

2.2.2. Delay Time Histogram

Since speech signal has sparsity property against both time

and frequency, to reconstruct the original signals, time-

frequency cells must be clustered into two groups. The

delay between observed signals can be an effective feature.

Using the estimated delays and creating their histogram,

we shall be able to detect two histogram peaks, δ1 and δ2,

corresponding to two sources.

2.3. Spectrogram Masking for Source Reconstruction

Source reconstruction is performed by binary mask detec-

tion for the spectrogram’s cell, for each expected source,

due to some specific feature, followed by an inverse short

time Fourier transform (ISTFT). The binary mask approach

depends strongly on the clustering quality of given feature.

Though the delay data δ (t, f ) are spread, the peaks can

approximately estimate the direction of sources.

In conventional method the clustering is given by drawing

the separation line at the middle of two histogram peaks.

Then the binary masks are generated by

M1(t, f ) =
{

1 if |δ (t, f )− δ1| < |δ (t, f )− δ2| ,
0 otherwise

(9)

M2(t, f ) =
{

1 if |δ (t, f )− δ1| > |δ (t, f )− δ2| .
0 otherwise

(10)

Therefore, the speech mixture signal can be separated by

binary masks Mi(t, f ), and the separated signals Ŝi(t, f ) are

given by the following:

Ŝi(t, f ) = Mi(t, f )X j(t, f ) . (11)

Finally, by using the ISTFT, the separated signals are trans-

formed in time domain.
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3. Analysis: the WDO Assumption

3.1. Experimental Set-Up

Some experiments are performed in a conference room to

certify our methods. The geometrical arrangement and pa-

rameters are shown in Fig. 1, and other parameters are

shown in Table 1.

Fig. 1. The arrangement for signal acquisition.

Table 1

Experimental parameter setup

Sampling frequency fs = 8000 Hz

Microphone distance d = 40 mm

Sound velocity c = 340 m/s

Window type Hamming

STFT frame length L = 1024

Frame overlap ∆ = 512

We use sources and mixtures coming from the ASJ con-

tinuous speech corpus [13], available for research work.

One source is located at orientation expressed with respect

to the normal line of the base line of two microphones.

The normal line corresponds to the direction of 0 degree.

The first source can be oriented as follows: starting from

0
◦ it can take next orientations with 10-degree increments

up to 80 degrees. The other sources can be located from

10
◦ to 90

◦ with 10 degree-increments. Hence the small-

est possible orientation difference between two sources is

10 degrees, whereas the largest one is 90 degrees.

3.2. Phase Difference Errors

Although in principle the time-frequency masking based

on time delay between microphones is a good method for

the BSS problem, in real circumstances there appear large

errors of phase difference estimation. For example, the cal-

culated delay time derived from phase difference between

two microphone signals should be less than d/c, where d is

the distance between microphones, c is the sound velocity,

but the estimated delays for lower frequencies obviously

often violate this restriction. Fig. 2 shows examples of

the time delays as a function of individual frequency bins

{τ = f ( f req)} for real and simulated mixtures.

Fig. 2. Time delays as a function of frequency: (a) in real

mixtures and (b) simulated mixtures.

Due to large errors, both histogram analysis and cell clus-

tering by the use of delay values will be very difficult in

the lower frequency band.

3.3. Cut-Off Frequency

One way to cope with the large estimation error in low

frequency band is deleting these lower frequency compo-

nents when generating binary mask. If we set the cut off

frequency very low, the separated signal will still contain

the error components. On the other hand, if we set the cut

off frequency very high, it will affect the tone quality of

separated signals.

The selection criterion for the cut-off frequency is keeping

the tone quality of separated signals, at the same time, elim-

inating error components as much as possible. As demon-

strated in reference [12] and by experiments, the cut off

frequency need to be set around 400 Hz. In this paper

instead of applying a general and simple cut-off we will

individually examine each cell according to some energy

criteria (Section 5).
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4. Orientation Histogram Generation

and Analysis

4.1. 1-D or 2-D Histogram?

With similar magnitude of sources no significant differ-

ences in attenuation rate appear. In Fig. 3a a histogram

of symmetric attenuation values (A – 1/A) is shown, com-

puted for already restricted, selected cells. For simulated

mixtures there is only one clear maximum, at 0, that cor-

responds to attenuation ratio, A = 1. The reason for this

observation is easy explained as the sources are of normal-

ized amplitude and both mixtures are approximately in the

same amplitude range. Hence in the ideal case of simulated

data there is no gain of using attenuation ratio. Our element

selection rules (that will be explained later) are sufficient

to get clear 1-D direction histograms.

Fig. 3. The 1-D histogram of symmetric attenuation ratio for

(a) simulated mixtures and (b) real acquired mixtures.

But is the attenuation ratio helpful for echoic mixtures?

In Fig. 3b the attenuation histogram is now deteriorated

and it shows a second local maximum, around –0.5. But

there is no correspondence of this maximum to any of the

sources. By checking where these values come from we

conclude that they are the result of a significantly delayed

echo, which still is a mixture of sources.

To summarize this discussion: attenuation ratio can even-

tually help if the mixed signals are of significantly different

amplitudes. But these can not be echoic mixtures.

4.2. Orientation Instead of Delay Time

In our approach we compute a histogram of orientation an-

gles instead of delay times. For this feature the histogram

bins are linearly matching the angle scale, e.g., the differ-

ence of, say, 10 degrees corresponds to the same number of

bins when θ is nearly 90 degrees or near 0 degrees. But in

the histogram of delay times, the linear decomposition of

histogram bins in the time space will correspond to a non-

linear scale in the orientation space, due to the mapping by

the sin() function.

In fact, for the arrangement given in Fig. 1, where two

sources are located at the same distance of 2 m from the

center of two microphones, we can write:

θ (t, f ) = arcsin(δ (t, f ) · c/d), (12)

where: c is the average speed of sound and d – the base

distance between two microphones.

Fig. 4. A difficult separation case of two sources at orientations

of 80 and 90 degrees with respect to the normal to base line

of microphones: (a) the orientation histogram succeeds, whereas

(b) the delay-time histogram fails
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The delay time δ (t, f ) can be measured from the mixture

spectrogram according to Eqs. (7) and (8). From Eq. (12) in

turn we observe that the delay time is nonlinearly dependent

on the orientation angle. We can write:

δ (θ ) =
d

c
sin(θ ) . (13)

Let us observe the Fig. 4, which illustrates the most difficult

case in T-F based speech separation when both sources are

oriented very closely and at 80 and 90 degrees with respect

to the normal to base line of microphones, i.e., nearly in-

line with this base line. Still two clear local maxima are

present in the orientation histogram, but not in the time

delay histogram. In the latter case the time delays are nearly

the same and they fall into a single histogram bin.

4.3. Confidence of Time Delays versus Energy-Based

Selection

It is already well recognized that particular F-T cell’s pro-

vide features with different quality or error, as in practice

the WDO principle is often violated. The recently proposed

methods, called TIFROM and DEMIX, use a “confidence

measure” to select elements of the T-F signal (mixture)

representation, which are with high probability “produced”

by a single source only. The “confidence” is based on

multiple PCA analysis in the attenuation-delay space for

samples coming from the local neighborhood (say 3×3) of

given element in the T-F space. The principal PCA-based

axis is determined for each T-F cell and a confidence value

is established that reflects the eigenvalue related to such

principal eigenvector. The confidence value plays the role

of a weight and allows to generate a weighted histogram.

In our experiments, where both sources have similar am-

plitude, this approach performs worse.

Fig. 5. Selection mask for spectrogram cells based on confidence

value (top), compared with energy-based selection mask (bottom)

(for real mixtures).

As it is seen in Fig. 5, if we follow the DEMIX approach

and allow only highly confident elements (with confidence

value > 90, we still enable most of the high energy, low-

frequency elements to contribute to our direction histogram.

As we have already shown, the delay information at low

frequency bins is deteriorated by large errors. Applying

our selection scheme we are able to concentrate on the

relatively error-free information. This is further validated

by results provided in Section 6.

4.4. Energy-Based Selection Criteria

Instead of computationally expensive approaches in

TIFROM or DEMIX, our proposition is to use a restric-

tive cell selection rule, considering two criteria.

1. The local maxima along each frequency-indexed col-

umn (Fig. 6).

2. Near global maximum cells along the time axis for

each frequency bin (Fig. 7).

Fig. 6. The spectrogram of first mixture and a local maximum-

based cell selection mask.

Fig. 7. Global-maximum-based cell selection mask (top) and the

combined local- and global-based selection mask.
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5. Many-Valued Masking

5.1. Classification Rule

The simple criterion for T-F mask generation, presented

in Section 2, which classifies a spectrogram cell according

to the smallest distance of its feature value to a histogram

peak of this feature, is not a proper solution. We propose

a more restrictive criterion that allows a feature peak-based

classification only for cells where the distances-to-peak are

relatively small. Then the appropriate mask is filled with

value 1 and the other with 0 at given cell. If the fea-

ture value differs to much from all the detected histogram

peaks, the masks are filled with some values from the inter-

val [0, 1], computed by some frequency distance functions:

Ai(t, f ), i = 1,2. The rule for creation of the two spectro-

gram masks is as follows:

M1(t, f ) =















1 if |θ (t, f )−θ1| < θmax

0 if M2(t, f ) = 1

A1(t, f ) otherwise

, (14)

M2(t, f ) =















1 if |θ (t, f )−θ2| < θmax

0 if M1(t, f ) = 1

A2(t, f ) otherwise

. (15)

The normalized frequency distance functions are:

A1(t, f ) =
W1(t, f , f 01(t))

W1(.)+W2(.)
, (16)

A2(t, f ) =
W2(t, f , f 02(t))

W1(.)+W2(.)
, (17)

where the f 0i(t)− s represents the fundamental frequency

of source i in window t. The distance function Wi(t, f , f 0i)
gives a weight in proportion to two distances of cell’s fre-

quency f to the two nearest harmonic frequencies of given

source (nL f 0,nH f 0).

5.2. Harmonic Frequencies

The next results illustrate processing steps for the detection

of two fundamental frequencies and their common multiple

frequency. Even in a general overview of the total energy

distribution along frequency bins we can already distinguish

local maxima that corresponds to fundamental frequencies

of both speakers and to magnifications around common

multiple frequency (Fig. 8).

As the fundamental frequency can change during the speech

the energy measurements are repeated every several con-

secutive frames. At first the gradient function is computed

from the energy function along frequency axis (Fig. 9).

Then the clearly visible local maxima peaks are detected

and their harmonic structure is analyzed in order to select

the fundamental frequencies and their common multiple

frequency (Fig. 10).

Fig. 8. Total energy distribution per frequency bins for real

mixtures.

Fig. 9. The energy gradient along the frequency axis computed

for real mixtures.

Fig. 10. The locations of two fundamental frequencies and a com-

mon multiple frequency for real mixtures.
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6. Results

6.1. Histogram Analysis – Experiments

In experiments it turned out that the most difficult case

is to distinguish between orientations of 80–90 degrees.

This was the reason while we prefer to use direction fea-

ture clustering instead of the time delay one. The direction

histogram for real data is not a simple mixture of two Gaus-

sians, centered at speaker directions, as the interference is

so that the second signal seems to “generate symmetric

peaks” around the center of the first signal (Fig. 11). This

interference effect could also be responsible for lower his-

togram peaks of the second source.

Fig. 11. Example of orientation histograms obtained for mixtures

of two sources.

Table 2

The estimated orientations θ1 and θ2 (in top and bottom

rows) based on the orientation histogram for two real

acquired mixtures

s2 at: 20
◦

30
◦

40
◦

50
◦

60
◦

70
◦

80
◦

90
◦

s1 at 13 15 13 13 13 12 12 12

10
◦ 22 29 41 46 55 73 78 87

Table 2 shows how well the clustering can be done for the

whole representative range of orientation angles [0◦, 90
◦].

The detection of orientations for both speakers has im-

proved, especially in the most difficult range of orientations:

[80
◦, 90

◦].

6.2. Source Reconstruction

The performance of the spectrogram masking step will be

evaluated in terms of the WDO coefficient (measure of

W-disjoint orthogonality) [4]. This coefficient is computed

for given useful destination source and interference sig-

nal. Related criteria are: the preserved-signal ratio (PSR)

and the signal-to-interference ratio (SIR). The definitions

are as follows:

W DO(d, i) =
||Md(t, f )Sd(t, f )||2 −||Md(t, f )Si(t, f )||2

||Sd(t, f )||2

= PSR−
PSR

SIR
, (18)

PSR =
||Md(t, f )Sd(t, f )||2

||Sd(t, f )||2
, (19)

SIR =
||Md(t, f )Sd(t, f )||2

||Md(t, f )Si(t, f )||2
, (20)

where: Sd(t, f ) is the desired source signal, Md(t, f ) is the

spectrogram mask for source d, and Si(t, f ) is the interfer-

ing signal. The range of WDO values is: 0 ≤ WDO ≤ 1.

For ideal source reconstruction it would be WDO = 1.

The results in Table 3 clearly illustrate the statement

that a binary spectrogram mask does not allow a proper

extraction of speech sources from real echoic mixtures.

The WDO coefficients have low values within the range

of [0.26, 0.66].

Table 3

The WDO(1,2) and WDO(2,1) coefficients (in top and

bottom rows) for source reconstruction with ordinary

binary spectrogram masks (according to Eqs. (9)–(10))

s2 at: 20
◦

30
◦

40
◦

50
◦

60
◦

70
◦

80
◦

90
◦

s1 at 0.39 0.46 0.66 0.59 0.50 0.49 0.29 0.26

10
◦ 0.27 0.33 0.52 0.40 0.30 0.27 0.28 0.26

The results in Table 4 have been achieved by applying the

multi-valued mask for source extraction, proposed in this

paper. Here we focus on most difficult situations, when the

sources are close to each other and their orientations w.r.t.

the microphones are ending towards 90
◦. The results are

significantly better than in the binary mask case. With the

multi-valued mask a sufficiently good source extraction is

Table 4

The WDO(1,2) and WDO(2,1) coefficients (in top and

bottom rows) for source reconstruction with multi-valued

spectrogram masks (according to Eqs. (14)–(17))

s2 at:
60

◦
70

◦
80

◦
90

◦

s1 at

50
◦ 0.92 0.91 0.90 0.88

0.90 0.89 0.87 0.85

60
◦ – 0.90 0.90 0.88

– 0.89 0.88 0.85

70
◦ – – 0.81 0.68

– – 0.75 0.58

80
◦ – – – 0.45

– – – 0.27
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possible even for orientations in the range of 80
◦ (and to

some part even to 90
◦), where the binary mask definitely

failed.

7. Conclusion

This paper introduces several improvements to the time-

frequency masking approach to blind speech separation,

that relax the strict DOA assumption. After experiments

with anechoic (simulated) mixtures and echoic (real) mix-

tures of speech sources, acquired by two microphones, we

worked out methods that improve two steps of such con-

ventional approach – orientation histogram analysis and T-F

mask creation. The creation of an orientation histogram is

efficiently performed by considering the phase-difference

data of reliable cells only. For this we combine an energy

local maximum criterion along the frequency axis (for ev-

ery time frame) with near global maxima intervals along

the time axis (for each particular frequency bin).

Next improvement is due to the use of many-valued spec-

trogram mask. Thus we relax the strict WDO assumption,

that seems not to hold perfectly in practice. The clus-

tering feature is now only responsible for selecting cells

with obviously perfect behavior. Otherwise the harmonic

frequencies are applied as a new selection criterion. The

WDO coefficients for the reconstructed sources document

a significant improvement, even for close sources and for

large orientation angles – reaching nearly 90◦.
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