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Abstract— An approach to speech feature detection is de-
veloped, which uses the technique of independent component
analysis for a blind (unsupervised learning) detection of
basic vectors in the Fourier space. This kind of features
could replace the Mel Frequency Cepstrum Coefficient
(MFCC) features, widely used today for phoneme-based
speech recognition. Alternatively, the ICA components could
act as basic features in speaker verification systems.
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I. INTRODUCTION

It is common in automatic speech recognition and iden-
tification systems to apply a frame-based segmentation of
the signal; i.e. to use short-time frames [1], [2]. Specific
features of a single frame are detected either in the time-
domain (like LPC features) Fourier space (power coef-
ficients) or in "cepstral" space (a homomorphic filtering
via the Fourier space back to the time domain). Among
these, the Mel Frequency Cepstrum Coefficients (MFCC)
are widely used [2], [3].

Recently it was observed, that statistical cues could
offer increased power to speaker recognition systems [4],
[5]. In this context the two techniques PCA and ICA can
be considered [6], [7].

Assuming, that there exists independent component of
measured signals, the goal of ICA is to reconstruct both
the estimates of original sources (i.e. the basic vectors of
our "independent component" space) and the (inverse of)
"mixing" coefficients [6]. Some ambiguity is inherently
included; i.e. the permutation order and the scaling factors
cannot be reliably detected. In our application these are
not drawbacks, as we are interested in the complete set
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and not in individual vectors, whereas the scaling of
vectors is not relevant.

Different authors derive the principal component anal-
ysis (PCA) or ICA [4] of the power spectra vectors,
which are also smoothed using Mel-scale triangular filters.
Resulting features are further narrowed down using a
linear discriminate based criterion. The authors of [5]
assume that the spectra of sounds generated by a given
speaker can be synthesized using a set of speaker specific
basis functions - the unknown source in the ICA model.

In this paper we expect that the Fourier power coeffi-
cients of a single frame can be mixed from a set of basic
vectors. These basic vectors are assumed to be statistically
independent. At first we want to verify if the basic vectors
itself can be used as an identification criteria. In other
words, in first case we are not tracking the mixture
coefficients, that should vary depending on the phoneme
and person but we only estimate the source set in the
speaker’s spectra and compare it with the learned set for
an individual speaker. In the second case we work with
a fixed set of basic vectors - determined in the learning
phase - and we care about the mixture coefficients that
should vary depending on the phoneme and person.

In section 2 the problems of speaker identification and
independent component are shortly introduced. The two
proposed approaches are described in section 3. Some
simulation results are presented in section 4.

II. THE ICA PROBLEM AND SOLUTION

A. The task of ICA

In Independent Component Analysis we assume that
there exist m zero-mean source signals, s1(t), ..., sm(t),
that are scalar-valued and mutually (spatially) statistically
independent (in practice: as independent as possible)
at each time instant or index value t. The original



sources sj(t) are unknown to the observer, who has to
deal with n possibly noisy but different linear mixtures,
x1(t), ..., xn(t), of the sources (usually for n >= m). The
mixing coefficients are some unknown constants.

The task of ICA is to find the waveforms si(t) of the
sources, knowing only the mixtures xj(t) and the number
m of sources [6]. Denote by x(t) = [x1(t), ..., xn(t)]T the
n-dimensional t-th data vector made up of the mixtures
at discrete index value (usually time) t. The ICA mixing
model is equal to:

x(t) = As(t) + n(t) =

m
∑

i=1

si(t)ai + n(t). (1)

Let us assume further that in the general case the noise
signal has a Gaussian distribution but none of the sources
is Gaussian. In the simplified case at most one of the
source signals si(t) is allowed to have a Gaussian distri-
bution. These assumptions follow from the fact that it is
impossible to distinguish several Gaussian sources from
each other.

In standard source separation approach, an m × n
separating matrix W(t) is updated so that the m-vector
y(t) = W(t)x(t) becomes an estimate of the original
independent source signals. y(t) is the output vector of
the network and the matrix W(t) is the total weight
matrix between the input and output layers.

B. Pre-processing in ICA

The elimination of mean value - results in an algorithm
simplification. Let m be the mean vector of time series
(observation vector) x(t). After estimating the sources in
ICA their means can be reconstructed from:A−1m .

"Whitening" - a linear transformation such that the
observation vector elements will be uncorrelated and with
unit variances:

E{x̃x̃} = I. (2)

Whitening allows the reduction of the ICA search prob-
lem from n2 free matrix coefficients to only n(n− 1)/2
elements, as the matrix must be kept orthogonal (figure
1). Even the matrix size reduction could be possible, if
some eigenvalues λj are to small.

After whitening we get a "rectangular"-like distribu-
tion of samples in every 2-dimensional subspace - it is
sufficient to find one rotation angle (not two) by an ICA
procedure. In contrast to whitening, after PCA the mixed
vector samples are only rotated and the marginal 1-D
distributions are not mutually independent.

C. On-line update rule

A well-known iterative optimization method is the
stochastic gradient (or gradient descent) search [8]. In this
method the basic task is to define a criterion J(W(k)),
which obtains its minimum for someWopt, which is the
estimated optimum solution.

For the ICA problem another gradient approach was
developed recently - the natural gradient descent. This

was achieved by Amari et al. [9] (who gave a theoretical
justification by using the Riemannian space notation),
Cichocki and Unbehauen (which proposed an algorithm
justified by computer simulations) and Cardoso and La-
held (that introduced the relative gradient). The natural
gradient takes the form:

W(k+1) =W(k)−θ(k)
∂J(W(k))

∂W(k)
WT (k)W(k). (3)

Different theoretical justifications of the ICA, like the
Kullback-Leibler divergence minimization, the informa-
tion maximization and the mutual information minimiza-
tion lead to the same cost function [6]:

J(W, y) = −log(det(W))−

n
∑

i=1

log(pi(yi)) (4)

where the pi(yi) -s are pdf’s of signals yi respectively,
det(W) is the determinant of the matrix W.

The criterion is minimized if the border distributions
(individual variables) are independent. After the approx-
imation of (unknown) distribution shapes by means of
fourth order moments, the weight update rule can be
derived.

Applying the natural gradient approach we may derive
the learning rule for on-line ICA as:

∆W(k) = θ(k)[I− f(y(k))yT (k)]W(k). (5)

D. "FastICA"

An efficient "batch" approach is the method "FastICA"
of Hyvarinen et al. [7]. The batch processing allows a
preliminary "whitening" step for the zero-mean mixture
signals, which improves the convergence speed of the ICA
procedure.
A. Initialize nonzero weights W.
B. Iterate:

1. FOR outputs p = 1, ..., n; perform steps (2-4):
2. Vector update:

w+p = E{xg(w
T
p x)} − E{g

′(wTp x)}wp (6)

where g is a nonlinear function, g′ its first derivative with
respect to time.

3. Normalize to a unitary-length vector:

wp =
w+p

||w+p||
. (7)

4. De-correlation of current vector against the previous
vector set (by a Gram-Schmidt orthogonal)

wp = wp −

p−1
∑

j=1

wTpwjwj ; wp =
wp

||wp||
. (8)

Alternatively a symmetric de-correlation of a whole
weight matrix can be performed:

(W = (WWT)−1/2W. (9)

5. If W has not yet converged then repeat from step 1.



III. THE TWO APPROACHES

A. The standard MFCC features

The short-term power spectrum is computed by ap-
plying the discrete Fourier Transform (DFT) (in fact the
FFT) to each windowed signal and taking directly the
magnitudes of Fourier coefficients raised to the power of
two. The power spectrum is usually represented on a log
scale. Due to the properties of the log function, the shape
of the log power spectrum is preserved, independent of
the input signal strength.

A MEL scale (empirical result) adopts the frequency
bandwidths to the bandwidths recognized by the human
auditory system. The set of Fourier features is reduced by
considering bandwidths, centered around some MEL scale
frequencies. Usually one uses a set of l triangle filters
D(l, k) to compute l so called Mel-spectral coefficients
MFC(l, t) for each signal window.

Since the vocal tract is smooth, energy levels in adja-
cent bands tend to be correlated. The inverse DFT (in fact
only the cosine transform as the transformed MFC’s are
real-valued) converts the set of logarithm-scaled energies
to a set of cepstrum coefficients (usually m = 12), which
are largely un-correlated.

B. Approach 1: ICA sources for a single speaker

In this approach we consider learning samples for a
single speaker only. The Fourier coefficients for given
frame FC(., t) constitute a single vector x(t) - a single
(mixture) input to the ICA learning procedure (the size of
vector is N). This is expected to be a particular mixture of
m < N independent sources. From the spoken word we
get a learning set of frames for given speaker: xi(t)(i =
1, ..., n; t = 1, ..., N).

The basic mixing model in ICA (without noise) is
assumed. x(t) is a matrix of n time-varying vector signals,
each of size N . ai is a set of n mixing vectors (each of
size m) combined to a mixing matrix A (every ai is a
single row of matrix A). si is a set of m sources - each
of size N .

After ICA both unknown sources and unknown mixing
coefficients are determined - on base of given sequence
of observations (frames) xi(t) the vector s and weight
matrix W are estimated.

We obtain for each speech sample its corresponding
best-suitable set of sources. The decision (classification)
rule can take into account, if this source set is similar to
the learned source set of given speaker or not.

C. Approach 2: ICA sources for many speakers

In this approach we try to learn a set of sources in ICA
(basis vectors), which is common to some (all available)
speakers, but limited to one specific utterance (word).
Every word is now recognized by a unique set of mixing
coefficients. Now the word recognition process consists
of following steps:

1) compute a selected spectrogram for tested speech;

2) with the ICA components, obtained for a word to
be recognized, estimate the coefficientsW corresponding
to tested spectrogram;

3) classify the image of coefficients W.

IV. EXPERIMENTAL RESULTS

The first approach described in section 3 was imple-
mented and tested on speech signal examples, acquired
with sampling frequency of 22 kHz. Polish spoken digits
from 18 persons (both male and female) were available
for testing. Figures 1-3 document the process of com-
puting PCA components (either the reference- or tested
components) for two speakers.

For the purpose of speaker identification or word
recognition the ICA components obtained for currently
tested speech need to be matched with the reference
components of given speaker (or given word). During the
comparison of these two sets we need to establish the
proper permutation index, the scaling and even the sign
of amplitude for the individual components. The matching
procedure is as follows ([10]):
(1) The amplitudes of all components are re-scaled to an
uniform interval of <-1, 1>.
(2) FOR all tested components yi, (i = 1, ..., n):

FOR all reference components sj , (j = 1., ..., n):
compute the mean square error of approximating sj by

yi or by −yi:MSE[yi, sj ] and MSE[−yi, sj ] and select
the better one, i.e. with lower value;
(3) All selected MSE-s are transformed into elements
of a new created matrix P = [ai,j ]n×n, where ai =
1/
√

MSE[yi, sj ].
(4) The error index EI(P) is computed as:

1

n
[

n
∑

i=1

n
∑

j=1

aij
maxi(aij)

− n] +
1

n
[

n
∑

j=1

n
∑

i=1

aij
maxj(aik)

− n].

The first part of above sum expresses the average error
for matching a tested ICA component with one reference
component, whereas the second part is equivalent to a
penalty score, if a single reference component is matched
with more than one tested component.

Some experiments of both approaches are summarized
in tables 1-2, where the EI index values were computed
while matching the tested sample components with the
proper reference components. From Table 1 it is evident,
that the errors are quite independent from the speaker.
Hence, let us fix one set of reference ICA components
S and estimate the mixing coefficients: W = Xinv(S),
where X is the selectively chosen spectrogram for given
speech sample. In Fig. 4 two sets of coefficients W are
presented for the same word "zero" pronounced by two
speakers. It is evident, that both sets are more similar than
their spectrograms.

From Table 2 we conclude that ICA components,
obtained for the same speaker but for different words
are also similar. Hence our approach seems to produce a
general base for speech recognition. In Fig. 5 we see that
the coefficient matrices W for words "jeden" and "dwa"



0 0.5 1 1.5 2 2.5 3 3.5

x 104

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
1zero01.wav

0 0.5 1 1.5 2 2.5 3 3.5

x 104

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
2zero01.wav

Fig. 1. Waveforms of the word "zero" pronounced by two speakers
(male and female).
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Fig. 2. The spectrograms (selected frames with sufficient energy only)
for above words "zero".

acquired from the mixture with the ICA components
coming from word "zero" are quite different, than the
coefficients for word "zero". An easy word detection
should follow.

V. CONCLUSION

We have proposed two approaches for the use of ICA
in speaker identification and word recognition. The first
experiments seems to be promising. Although speaker
identification and word recognition have quite different
goals - to discriminate between different pronunciations
or to generalize pronunciations - in both cases the ICA
provides a general basis for feature detection.

Table 1. Comparison of the error index EI(P) in the first experiment
- the same word ("zero") but 4 different speakers (31 components with
32 elements each).

Reference components M1 F1 M2 F2
Tested components

Male 1 6.04 4.46 5.15 3.90
Female 1 6.15 4.62 5.85 5.56
Male 2 6.21 4.47 5.13 4.70

Female 2 9.03 8.47 7.45 7.92

Table 2. Comparison of the error index in the second experiment
- different words ("zero", "jeden", "dwa") but the same speaker (31
components with 32 elements each).

Reference components "zero" "jeden" "dwa"
Tested components

"zero" 3.46 2.50 1.98
"jeden" 2.33 2.82 1.20
"dwa" 2.66 2.94 1.85
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Fig. 3. The detected 31 basic vectors (one column represents one vector
with 32 elements) after ICA was applied to above two spectral images.
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Fig. 4. The coefficients W (one column represents one vector of
coefficients for one signal frame) for two speech samples from different
speakers, with the same ICA components computed for the word "zero".
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Fig. 5. The coefficients W for different words "jeden" and "dwa"
from the same speaker. The ICA components come from a different
word "zero".


