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Abstract. In multichannel blind decon-
volution (MBD) the goal is to calculate
possibly scaled and delayed estimates of
source signals from their convoluted mix-
tures, using approximate knowledge of the
source characteristics only. Nearly all of
the solutions to MBD proposed so far re-
quire from source signals to be pair-wise
statistically independent and to be timely
not correlated. In practice, this can only
be satisfied by specific synthetic signals.
In this paper we describe how to modify
gradient-based iterative algorithms in or-
der to perform the MBD task on timely
correlated sources. Implementation issues
are discussed and specific tests on synthetic
and real 2-D images are documented.
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1 Introduction

In speech and image recognition systems (which
are based on the pattern recognition theory)

[DUD73] the first processing step is to pre-
process the sensor data in such a way, that the
useful original source patterns are extracted
without noise and disruption [GON87]. The
applied methods give satisfactory results if the
characteristics of disruption or source character-
istics are properly predicted. But methods are
needed, that can automatically adjust to the
sensor signal [NIE90]. One possible way of seek-
ing general solutions to source extraction lies
in the increase of sensors (e.g. microphones or
camera views) and the processing of a combined
sensor signals (containing given pattern) at the
same time.

Instead of a single scalar sample we analyse vec-
tor samples in a multi-dimensional space. There
exist well-known methods of low-level vector sig-
nal processing, which perform transformation of
the representation space [WID85, CIA02]:

• decorrelation in Cartesian space,

• PCA, PSA - principal component (or sub-
space) analysis;

• ICA - independent component analysis.

The decorrelation process is usually a prelimi-
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nary step for some ICA algorithms, whereas the
PCA and PSA are inherently linked with signal
compression. In the context of source extraction
they are applied for noise cancellation (noise
corresponds to minor components) or ordered
sequential source extraction - after a previous
whitening of the sensor signals.

One of approaches to the ICA constitutes
adaptive methods of blind source separation
(BSS) [HYV96, KAR97, KAS97, CIA02].
They are applied to instantaneous mixtures of
sources. An extension of BSS for convolved
mixtures (mixtures in space and time) is called
BSD (blind source deconvolution) [AMA97,
CIA02, HUA96]. In multichannel blind de-
convolution (MBD) the goal is to calculate
possibly scaled and delayed estimates of source
signals from their convoluted mixtures, using
approximate knowledge of the source char-
acteristics only. Nearly all of the solutions
to MBD proposed so far require from source
signals to be pair-wise statistically independent
and timely not correlated. In practice, this
can only be satisfied by specific synthetic signals.

In this paper we first describe different iterative
update rules that can perform the MBD task.
Then we discuss how to modify the update
rules in order to adapt to the self-correlation
of sources. Implementation issues are discussed
and specific tests on synthetic and real 2-D
images are documented.

The paper is organised into following five main
sections. In section 2 the role of blind signal pro-
cessing techniques is discussed. In section 3 the
theoretical MBD problem is introduced. Then,
in section 4, the class of search-based meth-
ods is described, and three specific search algo-
rithms are reviewed, that can be implemented as
learning algorithms of artificial neural networks.
The tests on different signal and image data are
documented in section 5. The conclusions are
drawn in final section.

2 The role of MBD techniques

The main application fields of the blind sepa-
ration/deconvolution techniques can be grouped
according to the nature of the signal, i.e. a 1-D
signal or a 2-D image. In the processing of 1-D
signals we distinguish:

• Bio-medical applications: the extraction of
nervous signals in muscles and inner organs
[KAR97].

• Speech processing the extraction of selected
speaker in the ”cocktail party” problem
[CIA02].

• Seismology the extraction of signals originat-
ing in different earth layers.

• General data mining in different fields (e.g. a
prospective application might be the sepa-
ration of economic processes in overall eco-
nomic data).

The pre-processing of 2-D images may include:

• The extraction of sparse binary images
[PAJ96] (e.g. images of documents) (Fig. 1).

• Contrast strengthening of smoothed images in
selected regions [CIA02].

• Encryption of transmitted images [KAS96]
(Fig. 2).

We explain the source deconvolution approach
using the exemplary ”cocktail party” problem.
Let sounds are recorded in a typical room us-
ing an array of microphones. Each microphone
will receive a mixture of (convolved and delayed)
copies of the sound sources (the propagation de-
lay is based on the location of both the sources
and the microphone). Since we have no prior
knowledge of the source mixing and distortion
process, we call the solution: the multichannel
blind deconvolution approach to the cocktail
party problem. In a simplified solution to the
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Figure 1: Blind extraction of three sparse sources (binary images) from their two mixtures.

cocktail party problem - in blind source sep-
aration (BSS) we make the fundamental as-
sumption that the signals are mixed together in-
stantaneously, meaning that all of the signals
are time-aligned so that they enter the sensors
simultaneously without any delays.

3 The MBD problem

3.1 BSS and MBD

The multichannel blind source deconvolution
problem (MBD) [AMA98, CIA02, HUA96,
SAB98] can be considered as a natural exten-
sion of the instantaneous blind source sepa-
ration problem (BSS). An m-dimensional vec-
tor of sensor signals (in discrete time): x(k) =
[x1(k), . . . , xm(k)]T at time k, is assumed to be
produced from an n-dimensional vector of source
signals s(k) = [s1(k), . . . , sn(k)]T (m > n), by
using the mixture model:

x(k) =
∞∑

p=−∞
Hps(k−p) = Hp∗s(k) = H(z)s(k)(1)

where Hp is an (m× n) matrix of mixing coeffi-
cients at lag p :

H(z) =
∞∑

p=−∞
Hpz

−p (2)

H(z) is a matrix transfer function. z−1 is the
delay operator defined by: z−p[si(k)] = si(k−p).

The goal of MBD is to calculate possibly scaled
and delayed estimates of the source signals from
the received signals by using an approximate
knowledge of the source signal distributions and
statistics.

Two general approaches to multichannel blind
deconvolution can be considered. The first ap-
proach focuses on the estimation of the multi-
channel impulse response sequence {Hp} from
the sensor signals x(k) [HUA96] and it can be
called blind identification or equalisation. In the
second approach, on tries to estimate the direct
sources by a generalisation of the blind source
separation approach [AMA97, CIA02].

3.2 A feed-forward model for MBD

Consider a feed-forward model that estimates
the source signals directly by using a truncated
version of a doubly infinite multichannel equal-
izer:

y(k) =
∞∑

p=−∞
Wp(k)x(k − p) = Wp(k) ∗ x(k)

= W(z, k)[x(k)] (3)

where y(k) = [y1(k), . . . , yn(k)]T is an n-
dimensional vector of outputs,
W(k) = {Wp(k) | −∞ ≤ p ≤ ∞} is a sequence
of matrices (of size n × m) at time k, and the
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Figure 2: Encryption of transmitted images: only the friendly receiver knows the two cover images
[KAS96].

matrix transfer function is

W(z, k) =
∞∑

p=−∞
Wp(k)z−p (4)

In the standard BSD approach we use the neural
network models for BSS but the synaptic weights
are generalised to finite-size dynamic filters
(e.g. FIR), i.e. each synaptic weight:

Wij(z, k) =
L∑

p=0

wijp(k)z−p (5)

is described by a finite-duration impulse re-
sponse (FIR) filter at time k.

Then the goal of MBD-search is to adjust
W(z; k) such that the global system is:

lim
k→∞

G(z, k) = W(z, k)H(z) = P0D(z) (6)

Where P0 is an n×n permutation matrix, D(z)
is an n× n diagonal matrix whose (i; i)-th entry
is ciz

−4i, ci is a scalar factor, and 4i is an
integer delay.

General requirements of the MBD theory are:

1. Each source has to be temporally indepen-
dent, identically distributed.

2. Sources should be drawn from non-Gaussian
distributions.

3. The number of sensors is equal or greater
than the number of independent sources.

4. The convoluting filters have no common ze-
roes.

5. The convoluting filters have no zeroes on the
unit circle.
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The definitions of decorrelation and indepen-
dence are given next. Let us consider two ran-
dom variables x(t) and y(t). The following con-
dition holds for decorrelated signals:

E{x · y} = E{x} · E{y} (7)

If E{x · y} = 0 then the signals are also ortho-
gonal. The independence condition is defined as:

pxy(x, y) = px(x) · py(y) (8)

where pxy, px, py are pdf’s of appropriate
distributions xy, x and y.
The decorrelation condition is weaker than
independence, i.e. if x and y are independent
then they are also decorrelated.

The generalized decorrelation can be defined as:

E{f(x) · g(y)} = E{f(x)} · E{g(y)} (9)

for arbitrary non-linearitys f(.) and g(.).

Yet another, general definition of independence
is:

E{xp · yq} = E{xp} · E{yq} (10)

The ICA algorithms force all the statistical cross-
moments to zero, making the output signals sta-
tistically independent.

4 The gradient search methods
for MBD

4.1 Gradient based optimisation

Two well-known iterative optimisation methods
are the stochastic gradient (or gradient
descent) method and the quasi-Newton
convergence method [DUD73].

In gradient descent search the basic task is to
define a criterion J(W(z, k)), which obtains its

minimum for some Wopt if this Wopt is the
seeked optimum solution.

The gradient descent search

1. Start with some initial point W(z, k = 0) in
the multi-dimensional parameter space.

2. Obtain the gradient value ∇J(W(z, k)).

3. Compute the value W(z, k + 1) by moving
from W(z, k) along the gradient descent, i.e.
along - ∇J(W(z, k)):

W(z, k+1) = W(z, k))−η(k)∇J(W(z, k))(11)

where η(k) is a positive-valued step scaling
coefficient.

4. Test the stability of parameters, i.e. if
|W(z, k + 1)−W(z, k)| < θ (threshold).

Quasi-Newton search
An alternative solution to gradient descent
search is a direct minimisation of the series ex-
pansion of J(W) by its first- and second-order
derivatives:

J(W) ≈ J(W(z, k)) +∇JT (W −W(z, k)) +

+
1
2
(W −W(z, k))TD(k)(W −W(z, k)) (12)

where D(k) is the Laplasjan computed at point
W(z, k).

The minimisation of J(W) appears if:

W(z, k+1) = W(z, k)−D(k)−1∇J(W(z, k))(13)

Obviously the matrix D(k) need not to be
singular.

Both standard approaches suffer from practical
implications. The stochastic gradient shows
slow convergence if statistical correlation be-
tween signals appear in the parameter update
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process. The quasi- Newton methods are often
of heavy computational complexity and suffer
from numerical problems.

The natural gradient search

The natural gradient search (as proposed by
Amari [AMA96]) is a modified gradient descent
search, where the standard search direction is
modified according to some local Riemannian
metric of the (weight) parameter space. This
new direction is invariant to the statistical rela-
tionships between the model parameters, and it
has a convenient form for the MBD task:

∇JN (W(z, k)) =

= ∇J(W(z, k))WT (z−l, k)W(z, k) (14)

Gradient methods for detection of function
extremes in BSS / MBD

Let us assume a cost function E{J(W)}, depen-
dent on parameters W. The most popular cost
minimisation approach (in many applications)
uses the steepest descent form. Additionally for
solving the BSS and MBD problems another two
gradient approaches were developed recently
the natural gradient descent and the dual
natural gradient descent.

1. Steepest descent approach:

W(l + 1) = W(l)− η(l)
∂E{J(W)}

∂W
(15)

or its stochastic version (in which the ex-
pected value is replaced by a single observa-
tion):

W(k + 1) = W(k)− η(k)
∂J(W(k))

∂W(k)
(16)

2. Natural gradient descent approach

The natural gradient was developed in-
dependently by: Amari et al. (which
gave a theoretical justification by using the
Riemannian space notation) [AMA97], Ci-
chocki et al. (which proposed an algorithm
justified by computer simulations) [CIC94]
and Cardoso and Laheld (that introduced
the relative gradient) [CAR96]:

W(l + 1) = W(l)−

−η(l)
∂E{J(W)}

∂W
WT (l)W(l) (17)

or its stochastic version:

W(k + 1) = W(k)−

−η(k)
∂J(W(k))

∂W(k)
WT (k)W(k) (18)

3. Dual natural gradient descent approach.

This approach was introduced by Attick and
Redlich:

W(l + 1) = W(l)−

−η(l)W(l)[
∂E{J(W)}

∂W
]TW(l) (19)

or its stochastic version:

W(k + 1) = W(k)−

−η(k)W(k)[
∂J(W(k))

∂W(k)
]TW(k) (20)
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4.2 The optimisation criterion for
standard BSS and MBD

Cost functions for BSS

There exist different theoretical justifications of
the BSS, like the Kullback-Leibler divergence
minimisation, the information maximisation and
the mutual information minimisation. All of
them lead to the same cost function:

J(W, y) = − log det(W)−
n∑

i=1

log pi(yi) (21)

where the pi(yi)-s are pdf’s of signals yi re-
spectively, det(W) is the determinant of the
matrix W.

Cost functions for MBD

We observe m inputs x(k) ={xi(k)|i = 1, . . . , m}
and m outputs y(k) = {yi(k)|i = 1, . . . ,m} over
N time points, i.e. x(1),x(2), . . . ,x(N) and
y(1),y(2), . . . ,y(N).

The m-dimensional output of the network with
finite order FIR weights is

y(k) =
L∑

p=0

Wp(l)x(k − p) (22)

Wp(l) is the synaptic weight matrix at the l-th
iteration (time of learning) and it represents the
connection between vectors y(k) and x(k − p).
Note that for on-line learning, the index l can
be replaced by the time index k. The length of
time delay L is much smaller than N .

The FIR filter should be trained such that the
joint probability density of y is:

p(y) =
m∏

i=1

N∏

k=1

ri(yi(k)) (23)

where {ri(.)} are the probability densities of the
source signals. In practice we shall replace ri(.)

by a hypothesized density model for sources
qi(.), since the true probability distributions are
not known.

In MBD the mostly used criterion is the
Kullback-Leibler divergence (the loss function),
which is a measure of distance between two dif-
ferent probability distributions. This loss func-
tion is:

J(W(z, l)) = − log | detW0| −

−
m∑

i=1

〈log qi(yi(k))〉 (24)

In above equation 〈.〉 represents the time-
average, i.e.

〈log qi(yi(k))〉 =
1
N

N∑

k=1

log qi(yi(k)) (25)

f(y(k)) is a column vector whose components
are defined as:

fi(yi(k)) = −d[log qi(yi(k))]
dyi(k)

(26)

4.3 The derivation of BSS algorithms

The gradient of E{J(y,W )} may be expressed
as:

∇WJ(W) =
∂E(J(W))

∂W
=

= −W−T + 〈f(y) · xT 〉 (27)

with the non-linearity defined as:

fi(yi) = −∂E log pi(yi)
∂yi

= −p,
i(yi)

pi(yi)
(28)

The standard gradient descent approach leads to
the learning rule:
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4W(k) = −η(k)
∂J(W(k))

∂W(k)
=

= η(k)[W−T (k)− f(y(k)) · xT (k)] (29)

The observations of low convergence speed and
the inversion of matrix W in each iteration cycle
are serious drawbacks of this standard learning
rule. An initial whitening of the sensor signals
could be computed in order to speed up the
convergence of the separation rule.

Applying the natural gradient approach we may
derive the learning rule for BSS:

4W(t) = −η(t)
∂E{(W(t))}

∂W(t)
·WT (t) ·W(t) =

= η(t)[I− 〈f(y(t)) · yT (t)〉]W(t) (30)

By using a stochastic approximation of the av-
eraging process we obtain the on-line adaptive
algorithm:

4W(k) = −η(k)bI− f(y(k)) · yT (k)cW(k)(31)

Applying the dual natural gradient descent rule
we obtain:

4W(t) = −η(t)W(t)[
∂E{J(W(t))}

∂W(t)
]T ·W(t) =

= η(t)[I− 〈y(t) · g(yT (t))〉]W(t) (32)

or its stochastic approximation:

4W(k) = η(k)bI− y(k) · g(yT (k))cW(k) (33)

These two natural gradient-based learning rules
can be combined together to one general, flexible
learning rule [CIA02]:

4W(k) = η(k)bI−f(y(k)) ·g(yT (k))cW(k)(34)

4.4 Derivation of learning rules for
MBD

The standard Bussgang method applies the gra-
dient descent search, which gives the following
weight update (learning) rule:

Wp(k + 1) = Wp(k) + η(k)f(y(k))xT (k − p)

for lag p = 0, . . . , L (35)

In their first attempt to MBD Amari et al.
[AMA97] derived the following update rule for
MBD:

Wp(k + 1) = Wp(k) +

+η(k)[Wp(k)− f(y(k)) · uT
p (k − p)] (36)

in which delayed cross filters are used:

up(k) =
L∑

p=0

WT
p (k) · y(k + p) (37)

The number of weight matrices is in practice
limited to some finite range: p = 0, . . . , L .

In a more elaborated attempt, while using the
natural gradient search, Cichocki and Amari
have obtained the following weight update
(learning) rule for MBD [CIA02]:

4Wp = −η
p∑

q=0

∂J(W(z))
∂Xq

Wp−q =

= η
p∑

q=0

(∂0qI− 〈f(y(k))yT (k − q)〉)Wp−q (38)

for p = 0, 1, . . . , L, where η is the learning rate.
The term (∂0qI) denotes, that:

∂0qI =

{
I for q = p
0 for q 6= p

(39)
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In particular the learning rule for W0 is :

4W0 = η(I− 〈f(y(k) · yT (k)〉) ·W0 (40)

The selection of appropriate function f(y) de-
pends on the sign of the kurtosis, which is a 4-th
order statistical moment:

κ4(x) = m4 − 3m2
2 (41)

One can choose, for example, f(y) = y3 , for sub-
Gaussian sources (with negative kurtosis) and
f(y) = tanh(γy) (γ > 2), for super-Gaussian
signals (with positive kurtosis).

4.5 The modified natural-gradient up-
date rule

The update rule (38) converges to the equilib-
rium point, described by the two following equa-
tions:

E{〈f(yi(k)) · yi(k)〉} = 1, ∀i (42)

and

E{〈f(yi(k)) · yi(k − p)〉} = 0, ∀i
(p = 1, 2, . . . , L− 1) (43)

In other words, the deconvolution system,
if succeeded, then it produces statistically
independent signals of timely non-correlated
structure.

In practice, for most natural signals or images,
both goals can only approximately be achieved,
as the natural signals are pair-wise not fully inde-
pendent and they also have not a correlation-free
time structure. To deal with natural signals, we
need to know their temporal structure. Probably
for most signal categories this can only approx-
imately be known. Hence, a vector of ”gener-
alized correlation” coefficients is assumed to be
available to the weight update rule:

Λp =
E{〈f(x(k)) · x(k − p)〉}

E{〈f(x(k)) · x(k)〉} (44)

(p = 0, 1, 2, . . . , L− 1)

From above coefficients we form an appropriate
set of diagonal matrices:

Γp =




Λp 0 . . . 0
0 Λp . . . 0
0 . . . Λp 0
0 0 . . . Λp


 (45)

(p = 0, 1, 2, . . . , L− 1)

The modification of update rule (4.28) takes the
form:

4Wp(k) =

= η(k)
p∑

q=0

[Γq − f(y(k)) · yT (k − q))]Wp−q(k)(46)

5 Experimental results

5.1 Practical issues

Usually the initial step value should be selected
appropriately to the variance of input signals.
We observed that the best learning results were
achieved for a descending step size. Usually, the
choice of the initial weight values affects the ini-
tial convergence of the search process. Obviously
the weight matrices need not to be zero-valued.
We selected initial values of the weights from the
range 〈−0.1, 0.1〉.

5.2 Measuring the quality of outputs

For test purpose we assume that the source sig-
nals are known to the observer. Hence, for each
pair (output Yi ; source Sj ) with amplitudes
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scaled to < −1, 1 > one computes the SNR[i, j]
(signal to noise ratio):

SNR[i, j] = 10 · log
〈S2

i 〉
MSE[i, j]

(47)

where 〈S2
i 〉 is the time-average of 2-nd power of

source i (i.e. the variance) and MSE[i, j] is the
mean square error of approximating Sj by Yi ,
i.e.

MSE[i, j] =
1
N

N−1∑

k=0

[Si(k)− Yj(k)]2 =

= 〈(Si − Yj)2〉 (48)

with N - number of samples in one signal.

All the individual SNR-s are combined to a
matrix P = [pi,j ] with pi,j = (

√
MSE[i, j])−1 .

Now a combined error index EI(P) can be com-
puted for the whole separated output set relative
to the source set:

EI(P) =
1
m

[(
n∑

i=1

m∑

j=1

p2
ij

maxi(p2
i,j)

)− n] +

+
1
n

[(
m∑

j=1

n∑

i=1

p2
ij

maxj(p2
i,j)

)−m] (49)

The pi,j-s are entries of two normalised ver-
sions of matrix P. At first, each nonzero row
(i = 1, . . . , n) of P is normalised, such that
maxi(pi,j) = 1. This allows the computation of
first part of above equation (5.3). At second, the
columns of matrix P are normalized in a similar
way and the second part of (5.3) is computed.
In the ideal case of perfect separation the follow-
ing appears:

• P becomes a permutation matrix.

• Only one element in each row and column
equals to unity, and all the other elements
are zero.

• EI achieves its minimum possible value equal
to 0.

Without the knowledge of original sources we
still are able to judge about the separation qual-
ity by computing the correlation factors between
outputs. The normalized cross-correlation be-
tween each pair of output signals si and sj is:

E{si · sj}
σi · σj

(50)

During the learning process the outputs should
get less correlated. Initially the mixture signals
are highly correlated (they are to some amount
stochastically dependent).

5.3 The sources

We have applied two sets of sources: artificial
binary images and natural face images (Fig. 3).
In Table 1 the results of the normalisation of
sources is documented: they all are of zero-mean
and of negative kurtosis.
From Table 2 it is evident that the sources are
highly self-correlated in time. Hence, we ex-
pect that the standard MBD rule (38) will not
work properly on convolution mixtures of such
sources.

5.4 Some test results

In our experiments three sources (assumed to
be unknown to the deconvolution system) ( (a)
the synthetic binary images or (b) the natural
face images) were convolved by using a set of
mixing matrices {Aq|q = 0, . . . , M − 1}, where
each matrix Aq was of size: m = 3, n = 3. In
practice we set M = 4 (see Fig. 4).

The deconvolution system consisted of three
FIR filters of order (up to) L = 8, i.e. the num-
ber L of delay units were in the range from 1 to 8.

The two natural-gradient based update rules
the original one (38) and the modified one (38)
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Table 1: Cross-correlation between source pairs.

mean var κ4

Binary 1 0.0 0.9256 -1.99913
Binary 2 0.0 0.8005 -1.9579
Binary 3 0.0 0.8003 -1.9579

mean var κ4

Face 1 0.0 0.2790 -0.9108
Face 2 0.0 0.2271 -1.4727
Face 3 0.0 0.1077 -0.6037

Source I - Source J 1 2 3
E{sIsJ}

σIσJ

Binary 1 1.0 0.063 0.012
Binary 2 1.0 0.031
Binary 3 1.0

Source I - Source J 1 2 3
E{sIsJ}

σIσJ

Face 1 1.0 -0.3045 0.1719
Face 2 1.0 0.1727
Face 3 1.0

Table 2: Auto-correlation of sources in time (p is time delay).

E{f [si(k)]sj(k−p)}
σiσj

p=0 1 2 3 4 5 6 7 8 9

Binary 1 1.0 0.924 0.853 0.783 0.712 0.641 0.568 0.494 0.420 0.345
Binary 2 1.0 0.939 0.881 0.824 0.766 0.710 0.653 0.596 0.539 0.483
Binary 3 1.0 0.939 0.881 0.825 0.768 0.711 0.655 0.598 0.540 0.482

E{f [si(k)]sj(k−p)}
σiσj

p=0 1 2 3 4 5 6 7 8 9

Face 1 1.0 0.986 0.971 0.956 0.942 0.927 0.913 0.898 0.883 0.869
Face 2 1.0 0.936 0.884 0.841 0.806 0.780 0.772 0.771 0.769 0.767
Face 3 1.0 0.894 0.764 0.743 0.813 0.866 0.823 0.733 0.692 0.706

Table 3: Approximation of the auto-correlation of sources in time.

Norm. time-correlation p=0 1 2 3 4 5 6 7 8 9
Binary images 1.0 0.93 0.88 0.80 0.75 0.70 0.65 0.59 0.50 0.40
Face images 1.0 0.93 0.88 0.85 0.85 0.85 0.83 0.78 0.76 0.76
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Figure 3: Sources - three synthetic binary images or three natural images.

for timely-correlated sources were tested on
these two source sets (see Fig. 5).

The modified rule (38) requires an estimate
for timely self-correlation of sources. We have
approximated these estimates in the same
way for all sources in given set. The applied
parameter values are given in Table 3.

The quality index EI was computed for the
whole range of deconvolving weight matrices
W0 −W7 (see Table 4). The quality results be-
have like expected the original rule can not cope
with clearly timecorrelated sources, whereas the
modified rule is able to cope with these problems.

In the first case the best results were achieved
after using only the weights W0, with additional
weights corresponding to decorrelation in time,
the results are steadily degrading.

In the modified rule case an improvement of the
total output results is observed if additional ma-
trices W0 −W4 are learned. In the case of face
images after we add even more matrices, the
quality is slightly decreasing again (i.e. EI is
increasing).
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Figure 4: Examples of sensor signals.

6 Conclusions

Most work in the area of blind signal processing
deals with simple, synthetic sources, which
fully satisfy the independency constraints of
the theory. Unfortunately, natural signals are
quite different they have complex distributions
and are not fully statistically independent,
neither in space nor in time. This paper deals
with the blind pre-processing of natural source
mixtures. In order better to illustrate the test
results image sources have been considered.
But the results are also true for 1-D signals,
e.g. speech or sound sources. We have shown
how to modify the update rules in blind source

deconvolution in order to adapt to the non-zero
auto-correlation values of sources in time.
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Appendix

Matlab source code of the MBD learning process

function weights = MBDLearningProc(Signal, weightsIN, EtaIN,
sensnum, ...

outnum, delay, time, maxsample, Function, LAMBDAmat)
% The learning procedure for multichannel blind source deconvolution,
% based on the modified (by W.Kasprzak) NG- (defined by S.Amari et al.)
% -based learning (update) rule
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Parameters:
%Signal; /* the set of mixed input signals */
%weightsIN; /* the weights to be learned */
%EtaIN; /* the learning rate matrix */
%sensnum; /* number of sensors */
%outnum; /* number of outputs */
%delay; /* number of time delays - shift_signum */
%time; /* maximum number of learning epochs */
%maxsample; /* length of one epoch */
%Function; /* the index of nonlinear function */
%LAMBDAmat; /* typical (expected) high-order correlation of sources in time */
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: Wodzimierz Kasprzak (ICCE WUT)
% Place and time: Warszawa, 15. June 2002
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global BLOCKLEN; global WEIGHT_DIFF; global MINIMUM_ETAINIT;
%%%%%%%%%%%%%%%%%%%%%%
%I. Initialisation
[m,SIGLxBLL] = size(Signal); % The size of input data

weights = weightsIN; Eta = EtaIN; ffun = zeros(1,outnum); gfun =
zeros(1,outnum);

% Expected high-order correlations in time
IMAT = zeros(sensnum, sensnum, delay); for (i=1: 1: delay)

IMAT(:,:,i) = diag(LAMBDAmat(:,i)’);
end

%Local variables
s=0; samples=0; ss=0.0; samplestep = 0.0;

%%%%%%%%%
%Parameters
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p = outnum; %/* output number: the y_j output index */
m = sensnum; %/* sensor number: the x_i index */
mmsize = m * m ; %/* m rows and m columns, quadrat */
nmsize = p * m ; %/* p rows and m columns, quadrat */
N = delay; %/* number of deconvolution samples for signals and ref.noise */

% Set Etainit
Etainit = zeros(1,delay); % Initial learning rate in vector form
Etainit = EtaIN; % default value
% or (comment it out if not used)
% a subfunction if Etainit should depend on variance
Etainit = SetEtainitMBD(p, m, N, Signal, Function);

%Initialize weight matrix and store it for eventual re-start
winitmem = zeros(m,m); weightmat = zeros(m,m,N); winitmem =
InitWeightsMBD(Method, p, m, N, weightsIN(:,:,1)); for (i=1: 1:
delay)

weightmat(:,:,i) = winitmem / i;

Etainit(i) = Etainit(i) / i;
end Eta = Etainit; weights = weightmat;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% II. Repetitive learning process
sstart = 1; tstart = 1; DDsamples = 0;

for (DD = 1: 1: delay) % Main loop according to time delay index
ffunmat = zeros(m, DD); %f(y) in matrx form
gfunmat = zeros(m, DD); %g(y) in matrix form
xk = zeros(m, DD + DD); yk = zeros(p, DD); % input and output samples

%/* Main repetition loop for a single delay index */
REPEAT = 1;
while (REPEAT==1)

REPEAT = 0;
if (Etainit(DD) < MINIMUM_ETAINIT)

fprintf(’*Error: Etainit is to small. No learning possible !\n’);
break;

end
blockDDsamples = 0; % number of learned blocks of samples for current DD
lambda = 1.0;
OrigIndex = zeros(1,m);
%/* Initialize the weight matrix with index DD */
Eta(DD) = Etainit(DD);
weights(:,:,DD) = weightmat(:,:,DD);
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%/* Store current weight modules required for convergence test */
wprev = 0.0;
for (k=1: 1: m)

wprev = wprev + weights(k,:,DD) * (weights(k,:,DD))’;
end
%/* Initialize samplestep */
ss = 1.0; %/* the decay step of learning rates */
samplestep = 99 / SIGLxBLL;

REPEAT = 0;
samples = DDsamples;
DDsamples = 0;
%/* c1. Epoch loop */
for (s = 1 : 1 : time)

%/* Initialize indices to the ffun, gfun memory */
FBegind = 0; FEndind = 1;
%/* c2. Time loop */
for (t = 2 : 1 : maxsample) % delay must be <= BLOCKLEN

% We need two times DD samples
blockDDsamples = blockDDsamples + 1;
baseskip = t;
%/* c3. Block loop */
for (l = 1 : 1 : BLOCKLEN)

baseskip = baseskip + 1; samples = samples + 1;
DDsamples = DDsamples + 1;
%/* Get current and delayed input samples */
xk = GetMultiSample(m, DD + DD, Signal, baseskip);
%/* Current output samples y(t) of network ’weights’:
% D output samples */
yk = ConvFForwardSample(m, p, DD, weights, xk, yk);
%/* Set current activation function values: ffun, gfun */
for (i=1:1:DD)

lamsum = 0.0; lam2sum = 0.0;
y2 = yk(:,i) .* yk(:,i);
lamsum = yk(:,i)’ * yk(:,i);
y3 = y2 .* yk(:,i);
lam2sum = y2’ * y2;
switch(Function)
case 1,

ffun = y3’; gfun = yk(:,i)’; % f(y) = y^3, g(y) = y

otherwise,
[ffun, gfun] = GetCurrentFunctions(m, Function, ...

ffun’, gfun’, yk(:,i)’, y2’, y3’);
end
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%/* Add current function value to delay function memory */
ffunmat(:, i) = ffun’;
gfunmat(:, i) = gfun’;

end
FEndind = FEndind + 1; % DELAY_TIME
% /* Scalar Eta of steady default decay - nonadaptive */
Eta(DD) = Etainit(DD) / ss;
ss = ss + samplestep;

%/* c4. Deconvolution learning rule */
weights(:,:,DD) = MBDNGLearningRule(l, m, p, N, DD, Eta, ...

weights, ffunmat, gfunmat, IMAT);
FBegind = (FBegind + 1); % DELAY_TIME;
%/* Testing the stability of weights */
[REPEAT, wprev] = WeightStabilityTest(m, p, mmsize, ...

Etainit, weights(:,:,DD), wprev);
if (REPEAT == 1)

Etainit(DD) = 0.4 * Etainit(DD);
fprintf (’(RESTART) etainit(%d)= %.6f * (10)-3\n’, ...

DD, 1000.0 * Etainit(DD));
end

if (REPEAT == 1)
break;

end
end %/* Closing the block loop */
%/* c6. Check weight restart condition */
if (REPEAT ==1)

DDsamples = 0;
break;

end
end %/* Closing the time loop */
%/* c7. Check weight restart condition, again */
if (REPEAT == 1)

DDsamples = 0;
break;

end
%/* c8. Modify samplestep for next epoch */
samplestep = 0.4 * samplestep;

end %/* Closing the epoch loop */
end %/* Closing the repeat loop */

end % Closing the DD loop
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Subfunction: the modified NG-based update rule
function wpD = MBDNGLearningRule(ll, n, m, N, D, eta, weights, ff,
gf, lmat)
% A single weight matrix with for the delay index D is updated
% Author: Wodzimierz Kasprzak (ICCE WUT)
% Place and time: Warszawa, 15. June 2002
%%%%%%%%%%%%%%%%%%%%%%%
w1n = weights(:,:,1:D); wpD = zeros(m,n);
k = D; %
w1 = zeros(m,n); for (q = 1: 1: k)

pq = k - q + 1;
if (q == 1)

w1 = w1 + (lmat(:,:,pq) - ff(:, 1) * gf(:, pq)’) * weights(:,:,pq); %
else

w1 = w1 + (lmat(:,:,pq) - ff(:, 1) * gf(:, pq)’) * weights(:,:,pq); %
end

end wpD = weights(:,:,k) + eta(k) * w1; return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%


