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Abstract. A general (application independent) framework for the recog-
nition of partially hidden 3-D objects in images is presented. It views
the model-to-image matching as a constraint satisfaction problem (CSP)
supported by Bayesian net-based evaluation of partial variable assign-
ments. A modified incremental search for CSP is designed that allows
partial solutions and calls for stochastic inference in order to provide
judgments of partial states. Hence the detection of partial occlusion of
objects is handled consistently with Bayesian inference over evidence and
hidden variables. A particular problem of passing different objects to a
machine by a human hand is solved while applying the general frame-
work. The conducted experiments deal with the recognition of three ob-
jects: a simple cube, a Rubik cube and a tea cup.

1 Introduction

The recognition of 3D objects in images has been studied for many decades [1],
[2]. One aspect of these works is the design of computational frameworks for
model-based object recognition, which reflect the structure and uncertainty of
the data and provide appropriate tools for knowledge representation, learning
and inference. Using a declarative language for model description in such frame-
works allows large parts of the recognition system to be application-independent.
Many different frameworks have been proposed, e.g. attributed graphs [3], se-
mantic networks [4], relation structure grammars [5]. One of the main problems
of such approaches is how to manage and evaluate partial model-to-data matches.
It is known that uncertain and vague knowledge can be modelled efficiently in
terms of probabilistic theory [6] or fuzzy logic [7]. In this paper we propose a
framework that views the 3-D object recognition problem as a modified con-
straint satisfaction problem ([6], [8]), combined with the Bayesian approach to
statistical inference [6], [9]. Both parts are dominantly of declarative nature and
additionally there exists well-known ML learning procedures for Bayesian prob-
ability distributions [9].

In section 2 the particular problem of hand-holded objects is presented and
the segmentation stage of image analysis is explained. Our model-based search



and hypothesis judgment approach is explained in section 3. Then the approach
is illustrated in section 4 as applied to the recognition of 2 different object shapes:
boxes with texture and objects with elliptic boundaries.

2 The problem

2.1 Objects in human hand

The goal of low-level image processing is to separate the human hand and the
background from the other objects. In our system this is done based on color
processing and moment-based contour filtering, as explained in the earlier paper
[10]. First, the input image is subject to color processing in the YUV space. This
allows to detect the human hand and (optionally) to focus on its neighborhood
only. Morphological operations, edge and contour detection steps follow. Specific
contour classes, like small ”rectangular” chains, are labelled on base of features
extracted by geometric moment functions. Next, the sufficiently long chains are
approximated by linear segments. Consecutive segments are then approximated
by arcs (fig. 1). Finally, a model-based detection of objects allows to assign model
instances to segments groups detected in the image (fig. 2).

Fig. 1. After segment detection Fig. 2. Object recognition results

2.2 Elliptic arc detection

Straight line segments are detected by a conventional method of edge chain
approximation. Here a more detailed description of our approach to elliptic arc
detection follows. This arc detection algorithm consists of 4 steps:

1. Detection of pairs of consecutive line segments, to be approximated by arcs
(figures 3 and 4);

2. Extending existing arcs by including neighbor line segments (fig. 5) if they
together can be approximated by an arc;



3. Connecting consecutive arcs together if they form a larger arc of the same
type, i.e. convex or concave (e.g. ACBJ and JFE in fig. 6 are not connected);

4. Verifying the shape of an arc sequence. If the consecutive arcs form a closed
contour then it is tried to approximate such contour by a circle or ellipse.

Examples of image segmentation results are provided in figures 7 (detection
of line segments) and 8 (approximation of linear segment chains by arcs, circles
and ellipses).

Fig. 3. The first stage of arc detection -
arc ACB is found

Fig. 4. Approximating two line segments
by an arc

Fig. 5. Extending an arc by including a
next line segment - arc ACB is extended
to ACBJ

Fig. 6. There is no arc BJF but there is a
second arc JFE

Fig. 7. Detected line segments that ap-
proximate contour chains

Fig. 8. Line segment chains approximated
by arcs, circles and ellipses



3 The framework for object modelling and recognition

3.1 CSP

The search space definition in a discrete Constraint Satisfaction Problem
consists of following elements:

– A state set S, where a particular state, s = (d1, d2, ..., dn), is defined by
assignments to its variables, X = x1, x2, ..., xn, where each xi, (i = 1, ..., n),
can take values from a (finite) domain Di.

– Actions, a ∈ A, mean transitions between states: ak : si → sj .
– The goal test checks a set of constraints, C(X), which induces allowed

combinations of assignment values for subsets of state variables.
– A solution state is every state that satisfies the goal test, i.e. the sequence of

actions is not relevant, but the final state only. The state s = (d1, d2, ..., dn),
satisfies the goal test if: C(d1, d2, ..., dn) = True.

In particular, in our problem: the variables in X correspond to line segments
of the object model, the values in D represent the current image segments and
an action is assigning a value to some variable in given state. The variables
and the set of constraints, C(X), can be represented as a graph, G(X, C(X))
where nodes X represent variables and arcs C(X) represent constraints between
particular variables.

The structure of our CSP search is presented in table 1. While starting from
an empty assignment the goal is to match (assign) eligible image segments (val-
ues) with model entities (variables). We introduced two modifications to the
basic CSP search. The first modification is due to the definition of a Bayesian
network for every problem. The subfunction Score calculates probability value
of a partial solution, that consists of eligible assignments to variables. This score
is due ti stochastic inference process performed in a dedicated Bayesian net,
created for current CSP problem. An empty assignment to a variable is also
possible.

The basic algorithm for CSP is a depth-first tree search with a backtracking
step when the path is not consistent with given constraints. The second mod-
ification of a typical CSP is that now partial paths can be potential solutions.
The backtrack step is performed now when currently selected (extended) path
does not satisfy the constraints of given problem or its score is lower than the
score of predecessor path. In our view this is not a general failure but a situation
where the previous state corresponds to a partial solution. The current path is
conditionally stored as a possible partial solution when it is of higher score than
the previous best one.

Still, if we succeed to find a complete path (with assignments for all variables)
then we immediately stop the search with this final solution.

3.2 Bayesian net

This is a simple, graphical notation for conditional independence assertions and
hence for compact specification of full joint distributions. Syntax:



Table 1. Modified backtracking search for the framework of CSP and Bayesian net

function BacktrackingSearch( csp ) returns Solution

static solution = { } ;
path = { }
solution = RecursiveBacktracking( solution, path, csp)
return solution

function RecursiveBacktracking( solution, path, csp) returns solution

IF path is complete (Stop test)
THEN return solution
var ← SelectUnassignedVariable( csp.variables, path)
valueList ← GetDomainValues( var, path, csp)
FOR EACH value ∈ valueList

IF (path∪ {var ← value } ) are consistent with csp.constraints
AND Score(path∪ { var ← value })> Score(path)

THEN add { var ← value } to path
IF Score(path) > Score(solution)
THEN solution = path
result = RecursiveBacktracking(solution, path, csp)
IF result 6= failure
THEN return result
remove { var ← value } from path

return failure

– a set of nodes, one per variable;
– a directed, acyclic graph (link means that ”direct influence”);
– incoming links of given node represent a conditional distribution for this

node given its parents, P (Xi|Parents(Xi)).

In the simplest discrete case, conditional distribution is represented as a condi-
tional probability table (CPT), giving the distribution over Xi for each combi-
nation of parent values.

3.3 Example: a cube model

Let the hierarchic structure of a generic cube structure is given, i.e. the concept
”cube” consists of 12 ”edges” numbered as (0, 1, 2, ..., 11). In our framework
this object has two other corresponding models. First, there is a ”planar” graph
of constraints (fig. 9), where line segments correspond to vertices and arcs to
constraining predicates. For this particular object these constraints may be as
follows: A = line segments are connected; B = line segments are parallel; C =
line segments are of similar length. Second corresponding model is a Bayesian
network that represents stochastic dependencies between the ”high-level” con-
cept ”cube”, intermediate-level concepts ”views” and low-level ”edges” (that can
be observed in the image) (fig. 10).



Fig. 9. Graph of constraints for a cube Fig. 10. Bayesian net for a cube

The score of a partial state, in which some number of variables Xi have
already been assigned image segments lk , but not all of them, is obtained due to
stochastic inference in Bayesian net, i.e. the computation of posterior probability
of ”cube” cause, given evidences. For example if segments are assigned to X0 and
X2 then one computes the probability: P (cube|X0 = l1, X1 = l2). This leads to a
summation of pdf over all domain values for remaining (non-evidence) variables,
X2, ..., Xl. Thus, scores of partial matches or a complete match, between image
segments and model entities, are naturally obtained by the same evaluation
method.

4 Results

4.1 A Rubik cube model

Although a Rubik cube seems to be a straightforward extension of a simple
cube but it adds an important feature, a well-defined texture of its faces. Hence
instead of a wire-frame model we need to create a surface model for it. First we
detect image segments that are rectangular polygons filled by some color and
assign them to the single-face model. Polygons satisfying face constraints are
grouped into faces. Thus the graph of constraints (fig. 11) contains variables at
”two abstraction levels”, i.e. the CSP variables correspond to polygons or to
faces. The polygon constraints have the following meaning: A = two polygons
are neighbors, B = polygons have parallel edges, C = polygons are not neighbors,
D = polygons are of similar size. The constraints between face variables are: fA
= faces are neighbors, fB = the edges of two faces are pair-wise parallel.

The corresponding Bayesian net has a similar structure in the simple cube
case, although now the ”face” nodes does not share their ”polygon” children



Fig. 11. Graph of constraints for ”face” and ”poly-
gon” variables of the Rubik cube

Fig. 12. A Bayesian net for the
Rubik cube

(fig. 12). Some results of model-based detection of a Rubik cube are shown in
fig. 13-16.

Fig. 13. Polygons
grouped to a single
face

Fig. 14. A single
face view is recog-
nized

Fig. 15. Polygons
grouped to two
faces

Fig. 16. A two-face
view is recognized

4.2 A tea cup model

Let us represent a tea cup again by a wire-frame model. But the edges of a cup,
numbered as (0, 1, 2 and 3) (called ”variables” in CSP), correspond mostly to
elliptic segments and ellipses. The parts 0 and 2 represent arcs that are parts of
the top and bottom ellipses in a 2D view of this object. The CSP constraints are:
A = the elliptic arcs are of similar length, B = an arc is connected with a linear
segment, C = the segments are parallel, D = the segments are of similar length.
Some results of model-based detection of a tea cup are shown in fig. 17-20.

5 Summary

An application-independent framework has been designed and tested for objects
of several types that are passed to the robot by a human. It combines advantages



Fig. 17. Exam-
ple of detected
segments

Fig. 18. Object
recognition result

Fig. 19. Exam-
ple of detected
segments

Fig. 20. Object
recognition result

of two modelling tools: an easy structure representation and efficient search
methods of the CSP model, with well-defined learning and inference methods
of a probabilistic Bayesian network model. We demonstrated practically how to
handle in this framework wire-frame and textured objects of both linear and
curved edges. The aim of future work is to extend the graph of constraints to
handle many-level objects, with hierarchies like existing in a semantic network
model, and to use continuous pdf in the Bayesian network.
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