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Abstract The technique of independent component analysis (ICA) is applied for texture
feature detection. In ICA an optimal transformation (with respect to the statisti-
cal structure of the image samples set) is discovered via blind signal processing.
Any texture is considered as a mixture of independent sources (basic functions
of detected transformation). Experimental comparison is documented on the
compactness and separability of base functions, the data-specific ICA-based and
universal Gabor functions (the latter are set by default for all kinds of images).
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Introduction
A fundamental research area in image analysis [1, 2] is the description and

classification of textures [3, 4]. Typical approaches to texture analysis are: sta-
tistical features for an intensity connection matrix or for the matrix of sums
and differences [5], linear transformations [6] like Fourier or Hadamard [2] or
DCT transforms [6], filtering the texture by Gaussian-based kernel masks, Ga-
bor filters [7, 8] or wavelets [2]. All these approaches provide feature detection
schemas established by experience in a heuristic manner.

In this paper the technique of independent component analysis (ICA) is ap-
plied for texture feature detection. ICA allows for a statistical analysis of data
samples and leads to an optimal transformation with respect to the indepen-
dence of data samples representing different textures [9, 10]. Opposite to the
approach of principal component analysis, that seeks for a transformation best
for generalization [11], ICA establishes a best separation of samples from dif-
ferent classes. ICA performs a blind processing (i.e. unsupervised learning),
whereas discriminate analysis searches for a feature space transformation by a
supervised learning [12].
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In the past one of the authors has proposed to apply ICA to image separation
[13, 14] and encrypted image transmission [15]. Other authors discovered the
potential of ICA as applied for feature detection [16, 17].

1. The ICA problem and solution
In Independent Component Analysis we assume that there exist m zero-

mean source signals, s1(t), ..., sm(t), that are scalar-valued and mutually (spa-
tially) statistically independent (or as independent as possible) at each time
instant or index value t. The original sources sj(t) are unknown to the ob-
server, who has to deal with n possibly noisy but different linear mixtures,
x1(t), ..., xn(t), of the sources (usually for n >= m). The mixing coefficients
are also unknown variables.

Denote by x(t) = [x1(t), ..., xn(t)]T the n-dimensional t-th data vector
made up of the mixtures at discrete index value (usually time) t. The ICA
mixing model is equal to:

x(t) = As(t) + n(t) =
m∑

i=1

si(t)ai + n(t), (1)

where aTi denotes the i-th row vector of the matrixA.
In standard neural source separation approach, an m × n separating matrix
W(t) is updated so that the m-vector y(t) =W(t)x(t) becomes an estimate
of the original independent source signals. y(t) is the output vector of the
network and the matrixW(t) is the total weight matrix between the input and
output layers.

Pre-processing in ICA:

The elimination of mean value - results in an algorithm simplification.
Letm be the mean vector of time series (observation vector) x(t). After
estimating the sources in ICA their means can be reconstructed.

"Whitening" - a linear transformation such that the observation vector
elements will be uncorrelated and with unit variances:

E{x̃x̃} = I. (2)

Whitening allows the reduction of the ICA search problem from n2 free
matrix coefficients to only n(n − 1)/2 elements, as the matrix must be
kept orthogonal.

Reduction of the number of outputs if some eigenvalues λj of the auto-
correlation matrix of the input vector are comparatively small.

Applying the natural gradient approach we may derive the learning rule for
on-line ICA as [10]:

∆W(k) = θ(k)[I− f(y(k))g(y)T (k)]W(k), (3)
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where f(.), g(.) is a pair of suitable activation functions (see [13, 14, 15]) and
θ is the learning coefficient.

An efficient "batch" approach is the method "FastICA" of Hyvarinen et al.
[9]. The batch processing allows a preliminary "whitening" step for the zero-
mean mixture signals, which improves the convergence speed of the ICA pro-
cedure. Both "on-line" and "batch" methods should converge to the same so-
lutions if the input mixtures satisfy the source independence conditions.

2. Texture analysis by ICA
Image blocks (of size k×l = N ) are assumed to be decomposable, i.e. to be

a weighted sum ofm independent components (Fig. 1). In the ICA de-mixing
process we should extract the independent components (unknown sources)
from image data samples. The set of observed image blocks is scanned into
input vectors xi(t), (i = 1, ..., n; t = 1, ..., N).

Figure 1. The idea of image decomposition into an additive set of base blocks (independent
components).

Hence x(t) represents the vector of n mixtures. The ai-s (i = 1, ..., n) are
n weight vectors of size m (representing features of given block in the space
that we search for) and they constitute rows of the mixing matrix A. The si-s
are unknown N -element vectors (in totalm sources).

In the ICA process we estimate both the source vector y(t) and the de-
mixing matrixW(t). After convergence of the weights,W gets ”frozen” and
we compute the final source vector y. The weight matrix itself is not of interest
in this step.

In the feature extraction step the equation x(t) = aT s(t) is still valid, but
now both the observable single mixture x(t) (i.e. current image block for
which we want to compute its features) and the source vector y(t) are avail-
able, whereas only the coefficient vector a is unknown. This constitutes a stan-
dard linear equation problem, which can be solved by a least square method.

3. Tests
The experimental verification of our approach is illustrated in two ways:

(a) by the examination of detected base vectors (ICA components) and (b) by
measuring the compactness and separability of point clusters for different tex-
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tures in ICA-based space. A comparison is made against Gabor-based features,
induced by a constant set of filter masks (Fig. 2).

Gabor filters are the same if applied to Brodatz textures (Fig. 3) or to angiog-
raphy images (Fig. 4), whereas these two sets of images exhibit quite different
statistical nature.

Figure 2. A set of 50 base functions in Gabor filtering (represented as blocks of size 12× 12
- kernel masks for image filtering).

In contrast to Gabor filtering the base functions (ICA components), found
for Brodatz textures and angiography images are much different one from the
other (Fig.5). For every Brodatz texture a block of size 40 × 40 pixels was
selected to be a single input mixture signal. Hence the input vector consisted
of 20 mixtures with 1600 samples each.

Figure 3. 20 Brodatz textures supplied to the
ICA procedure.

Figure 4. 16 angiography images that were
subject to the ICA analysis - blocks of size 40×
40 were taken as inputs of the ICA procedure.
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(a) (b)

Figure 5. 20 base vectors (converted into image blocks) found by ICA for (a) Brodatz textures
or (b) angiography images.

The independence of base vectors was examined by checking if they are
pair-wise un-correlated - it appeared that in all cases the correlation values
were below 1 % (this is in practice a good result).

In order to compare the compactness and separability of class clusters in the
spaces determined by ICA and Gabor functions we have computed a distance
merit as a simplification of the Fisher information. For the test set of textures,
classified "by hand" into 5 classes for angiography images and 20 classes for
Brodatz images, we have computed the class centers. Then the relation be-
tween average ”in-class” variance to the average ”between-classes” variance
was computed. It appeared that for Brodatz textures the merit for ICA results
was slightly better than Gabor filtering (lower by 4%) but it was much better
for the angiography images (by 13 %).

4. Summary
We presented an ICA-based texture feature detection method, in which the

base functions matches the statistical structure of images. The optimal trans-
formation (with respect to the image samples set) is discovered by blind signal
processing. We have compared the compactness and separability of base func-
tion, retrieved by ICA, with Gabor functions, that are set by default for all kinds
of images. The results are promising. The research work will be continued by
considering various classifiers of image features and making comparisons of
classification results for texture features, obtained by ICA and Gabor filtering.
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